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Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets
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We demonstrate that the plasmon frequency and Drude weight of the electron liquid in a doped graphene
sheet are strongly renormalized by electron-electron interactions even in the long-wavelength limit. This effect
is not captured by the random-phase approximation (RPA), commonly used to describe electron fluids, and
is due to coupling between the center-of-mass motion and the pseudospin degree of freedom of the graphene’s
massless Dirac fermions. By making use of diagrammatic perturbation theory to first order in the electron-electron
interaction, we show that this coupling enhances both the plasmon frequency and the Drude weight relative to
the RPA value. We also show that interactions are responsible for a significant enhancement of the optical
conductivity at frequencies just above the absorption threshold. Our predictions can be checked by far-infrared
spectroscopy or inelastic light scattering.
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I. INTRODUCTION

The first theory of classical collective electron density
oscillations in ionized gases by Tonks and Langmuir1 in the
1920s helped initiate the field of plasma physics. The theory of
collective electron density oscillations in metals, quantum in
this case because of higher electron densities, was developed
by Bohm and Pines2,3 in the 1950s and stands as a similarly
pioneering contribution to many-electron physics. Bohm and
Pines coined the term plasmon to describe quantized density
oscillations. Today, plasmonics is a very active subfield of
optoelectronics,4,5 the aim of which is to exploit plasmon
properties in order to compress infrared electromagnetic
waves to the nanometer scale of modern electronic devices.
This wide importance of plasmons across different fields
of basic and applied physics follows from the ubiquity of
charged particles and from the strength of their long-range
Coulomb interactions.

The physical origin of plasmons is very simple. When
electrons in free space move to screen a charge inhomogeneity,
they tend to overshoot the mark. They are then pulled back
toward the charge disturbance and overshoot again, setting up
a weakly damped oscillation. The restoring force responsible
for the oscillation is the average self-consistent field created
by all the electrons. Because of the long-range nature of the
Coulomb interaction, the frequency of oscillations ωpl(q)
tends to be high and is given in the long-wavelength limit
by ω2

pl(q → 0) = nq2Vq/m, where n is the electron density,
m is the bare electron mass in vacuum, and Vq is the Fourier
transform of the Coulomb interaction. This simple explicit
plasmon energy expression is exact because long-wavelength
plasmons involve rigid motion of the entire plasma, which
does not involve the complex exchange and correlation
effects that dress6 the motion of an individual electron. The
exact plasmon frequency expression is correctly captured by
the RPA,2,3,6 but also by rigorous arguments7 in which the

selection of a particular center-of-mass position breaks the
system’s Galilean invariance and plasmon excitations play the
role of Goldstone bosons. In two-dimensional (2D) systems,
Vq = 2πe2/q so that ωpl(q → 0) =

√
2πne2q/m, where e is

the magnitude of the electron charge.
Electrons in a solid, unlike electrons in a plasma or

electrons with a jellium model6 background, experience a
periodic external potential created by the ions, which breaks
translational invariance and hence also Galilean invariance.
Solid-state effects can lead, in general, to a renormalization
of the plasmon frequency, or even to the absence of sharp
plasmonic excitations. In semiconductors and semimetals,
however, electron waves can be described at superatomic
length scales using k · p theory,8 which is based on an
expansion of the crystal’s Bloch Hamiltonian around band
extrema. In the simplest case, for example, for the conduction
band of common cubic semiconductors, this leads us back
to a Galilean-invariant parabolic band continuum model with
isolated electron energy Ec( p) = p2/(2mb). The crystal back-
ground for electron waves appears only via the replacement of
the bare electron mass by an effective band mass mb. In this
type of k · p Galilean-invariant interacting electron model,
valid for many semiconductor and semiconductor heterojunc-
tion systems, the plasmon dispersion is accurately given by the
random-phase approximation2,3,6 (RPA) and it is given by the
classical formula quoted above with the replacements m → mb

and e2 → e2/ε, ε being the high-frequency dielectric constant
of the semiconductor material. The absence of electron-
electron interaction corrections to plasmon frequencies at very
long wavelengths in these systems has been demonstrated
experimentally by means of inelastic light scattering.9,10

The situation turns out to be quite different in graphene, a
monolayer of carbon atoms tightly packed in a 2D honeycomb
lattice.11–15 When k · p theory is applied to graphene, it leads
to a new type of electron fluid model, one with separate
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Dirac-Weyl Hamiltonians for electron waves centered in
momentum space on one of two honeycomb lattice Brillouin-
zone corners K and K ′:

ĤD = h̄v
∑
k,α,β

ψ̂
†
k,α(σ αβ · k)ψ̂k,β . (1)

Here, v is the bare electron velocity, k is the k · p momentum,
α,β are sublattice pseudospin labels, and σ αβ = (σx

αβ,σ
y

αβ) is a
vector of Pauli matrices that acts on the sublattice pseudospin
degree of freedom. It follows that the energy eigenstates for a
given p have pseudospins oriented either parallel (upper band)
or antiparallel (lower band) to p. Physically, the orientation
of the pseudospin determines the relative amplitude and the
relative phase of electron waves on the two distinct graphene
sublattices.

Electron-electron interactions in graphene are described by
the usual nonrelativistic Coulomb Hamiltonian16

ĤC = 1

2S

∑
q �=0

Vq ρ̂q ρ̂−q, (2)

where S is the sample area, Vq = 2πe2/(εq) is the 2D Fourier
transform of the Coulomb interaction (ε being an effective
average dielectric constant), and ρ̂q = ∑

k,α ψ̂
†
k−q,αψ̂k,α is the

usual density operator. Electron carriers with density n can be
induced in graphene by purely electrostatic means, creating a
circular 2D Fermi surface in the conduction band with a Fermi
radius kF, which is proportional to

√
n.17 The model described

by Ĥ = ĤD + ĤC requires an ultraviolet wave-vector cutoff
kmax, which should be assigned a value corresponding to
the wave-vector range over which ĤD describes graphene’s
π bands. This corresponds to taking kmax ∼ 1/a0, where
a0 ∼ 1.42 Å is the carbon-carbon distance. This model is
useful when kmax is much larger than kF. The cutoff we have
employed here is usually termed “hard” or “rigid” (see also
Appendix D); as we will discuss below in Sec. V, other types
of cutoffs have been introduced and employed in the literature.

The feature of graphene that is ultimately responsible for
the large many-body effects on the plasmon dispersion and
the Drude weight is broken Galilean invariance. The lattice
reference frame remains present in the continuum model
through the coupling between momenta and pseudospins. The
oriented pseudospins provide an “ether” against which a global
boost of the momenta becomes detectable. This is explained
in detail in the caption of Fig. 1.

Figure 1 explains why the plasmon frequency in graphene is
so strongly affected by exchange and correlation. In a plasmon
mode, the region of occupied states (Fermi circle) oscillates
back and forth in momentum space under the action of the
self-induced electrostatic field. In graphene, this oscillatory
motion is inevitably coupled with an oscillatory motion of
the pseudospins. Since exchange interactions depend on the
relative orientation of pseudospins, they contribute to plasmon
kinetic energy and renormalize the plasmon frequency even at
leading order in q.

In this paper, we present a many-body theory of this
subtle pseudospin coupling effect and discuss the main
implications of our findings for theories of charge transport
and collective excitations in doped graphene sheets. Our
paper is organized as follows. In Sec. II, we introduce the
most important definitions and the basic linear-response

FIG. 1. Breakdown of Galilean invariance in graphene. Panel (a)
shows the occupied electronic states in the upper band of graphene
in the ground state. Notice that every state is characterized by a value
of momentum (the origin of the arrow) and a pseudospin orientation
(the direction of the arrow). Panel (b) shows the occupied states after
a Galilean boost. An observer riding along with the boost would
clearly see that the orientation of the pseudospins has changed. It
looks like the pseudospins are subjected to a “pseudomagnetic field”
that causes them to tilt toward the +x̂ direction. The appearance
of this pseudomagnetic field is the signature of broken Galilean
invariance. In contrast, in a Galilean invariant system [panels (c) and
(d)], the energy eigenstates are characterized by momentum only: an
observer riding along with the boost would not see any change in the
character of the occupied states.

functions that control the plasmon dispersion, the Drude
weight, and the ac conductivity. In Sec. III, we present
the approach we have used to calculate the Drude weight
and the ac conductivity, i.e., diagrammatic perturbation
theory, and the main analytical results. Identical results can
be obtained using a kinetic equation approach, which will
be detailed in a separate publication18 that is focused on
a different application. Our main numerical results based
on this approach are illustrated in Sec. IV. In Sec. V, we
emphasize how density-density and current-current response
functions do not lead to the same results for the Drude weight
and ac conductivity due to the presence of a rigid cutoff in
momentum space. Finally, in Sec. VI, we summarize our
findings and draw our main conclusions. Three appendices
(A–C) highlight some important technical aspects of
the diagrammatic calculation, while Appendix D reports on the
generalized form of the continuity equation that applies in the
presence of a rigid momentum cutoff, and Appendix E reports
numerical results for Thomas-Fermi screened interactions.

II. FORMULATION

The collective (plasmon) modes of the system described
by Hamiltonian Ĥ can be found by solving the following
equation6:

1 − Vqχ̃ρρ(q,ω) = 0, (3)
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where χ̃ρρ(q,ω) is the so-called proper19 density-density
response function. In the q → 0 limit of interest here, we can
neglect the distinction between the proper and the full causal
response function

χρρ(q,ω) = χ̃ρρ(q,ω)

1 − Vqχ̃ρρ(q,ω)
. (4)

We show below that

lim
ω→0

lim
q→0

Reχρρ(q,ω) = D
πe2

q2

ω2
, (5)

where D is a, as yet unidentified, density- and coupling-
constant-dependent quantity. Note the order of limits in Eq. (5):
the limit ω → 0 is taken in the dynamical sense, i.e., vq �
ω � 2εF. Here, εF = h̄vkF is the Fermi energy and 2εF is
the threshold for vertical interband electron-hole excitations.
Using Eq. (5) in (3) and solving for ω, we find that, to leading
order in q,

ωpl(q → 0) =
√

2πe2n

εmpl
q, (6)

where we have introduced the “plasmon mass” mpl =
πe2n/D.

In the dynamical limit, the imaginary part of the ac
conductivity σ (ω) = ie2ω limq→0 χρρ(q,ω)/q2 has the form

Imσ (ω) → D
πω

. (7)

It then follows from a standard Kramers-Kronig analysis that
the real part of the conductivity has a δ-function peak at ω = 0:
Reσ (ω) = Dδ(ω). Thus, the quantity D introduced in Eq. (5)
is the Drude weight. In the presence of disorder, the δ-function
peak is broadened into a Drude peak, but the Drude weight is
preserved for weak disorder.

We thus see from Eq. (6) that the Drude weight com-
pletely controls the plasmon dispersion at long wavelengths.
When electron-electron interactions are neglected, D tends to
the RPA Drude weight D0 = 4εFσ0, where σ0 = e2/(4h̄) is
the so-called universal20–24 frequency-independent interband
conductivity of a neutral graphene sheet. In the same limit,
mpl → h̄kF/v and

ω2
pl(q → 0) = ε2

F

h̄2

gαee

2

q

kF
, (8)

where g = gsgv = 4 is a spin-valley degeneracy factor
and we have introduced the dimensionless fine-structure
coupling constant αee = e2/(εh̄v), the ratio between the
Coulomb energy scale e2kF/ε and the kinetic energy scale
h̄vkF. (The fine-structure constant can be tuned experi-
mentally by changing the dielectric environment surround-
ing the graphene flake.25,26) Equation (8) is the well-
known RPA result27–30 for the plasmon dispersion at long
wavelengths.

In the following section, we calculateD exactly to first order
in the fine-structure constant αee by means of diagrammatic
perturbation theory, demonstrating in the process that its value
is substantially enhanced by electron-electron interactions.
Our results depend on the electron density via the ultraviolet
cutoff  = kmax/kF. Thus, the momentum sums that appear in

(a)

ρ̂q ρ̂− q

(b)

ρ̂q ρ̂− q

(c)

ρ̂q ρ̂− q

(d)

ρ̂q ρ̂− q

FIG. 2. Irreducible Feynman diagrams for the density-density
response function χρρ(q,ω) up to first order in the electron-electron
interaction. (a) The bare bubble diagram. (b) Vertex correction.
(c) and (d) Self-energy diagrams.

the evaluation of the diagrams will be restricted in such a way
that only single-particle states with wave vectors k � kmax

are involved. The value of  varies from ∼20 for a very
high-density graphene system with n ∼ 1013 cm−2 to ∼ 100
for a density n ∼ 5 × 1011 cm−2 just large enough to screen
out the unintended31 inhomogeneities present in samples on
substrates. We will see that our results are only weakly
dependent on . If this were not true, the Dirac model for
electron-electron interactions in doped graphene would not
be useful and it would be necessary to correctly account for
interaction effects at energy scales beyond those for which
the model is valid. The cutoff appears only in the well-known
electron-electron interaction enhancement of the quasiparticle
velocity.

III. DIAGRAMMATIC PERTURBATION THEORY

In Fig. 2, we show the irreducible diagrams that contribute
to the density-density response function χρρ(q,ω) up to first
order in the coupling constant: the bare bubble diagram, two
self-energy-correction diagrams, and one vertex-correction
diagram. As usual, partial cancellations between the self-
energy and vertex corrections play an essential role. In Fig. 2,
solid lines are noninteracting Green’s functions32 (from now
on we set h̄ = 1)

G(k,ω) = 1

2

∑
μ=±1

1σ + μσ k

ω − ξk,μ + iηk,μ

, (9)

where 1σ is the identity matrix in pseudospin space, σ k =
σ · k/k, ξk,μ = μvk − εF, and ηk,μ = ηsgn(−ξk,μ) (with η =
0+). Dashed lines are electron-electron interactions.

All wave vectors q, k, and k′, which appear below, are
measured in units of kF, while frequencies and energies are
in units of 2εF. We also introduce the density of states at the
Fermi energy ν(εF) = 2εF/(πv2).

The diagrams in Fig. 2 are first evaluated in the limit of
small q (i.e., to order q2) and finite ω. Then, for the real
part of χρρ , we will retain only the terms that scale as q2/ω2

for ω → 0 and thus contribute to the Drude weight, while
for the imaginary part of χρρ , which controls the real part of
the ac conductivity, we calculate the full frequency-dependent
function.
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Proceeding in this manner, we see that the empty bubble in
Fig. 2 (i.e., the noninteracting diagram), denoted by χ (0)

ρρ (q,ω),
reproduces the noninteracting Drude weight D0, as expected
(see Appendix A):

Reχ (0)
ρρ (q,ω) = D0

4πv2e2

q2

ω2
= 1

8
ν(εF)

q2

ω2
(10)

and

Imχ (0)
ρρ (q,ω) = − π

16
ν(εF)

q2

ω
[�(ω − 1) + {ω → −ω}],

(11)

where �(x) is the usual Heaviside step function and the
notation “{ω → −ω}” means that we have to add to the
first term in square brackets an identical term in which ω

is interchanged with −ω.
The next diagram is the so-called “vertex correction,”

denoted by χ (V)
ρρ (q,ω), which physically represents the dressing

of the external driving field by the internally generated
exchange field. We find that, up to order q2 and for ω → 0
(see Appendix B for details),

Reχ (V)
ρρ (q,ω)

= − 1

32
αeeν(εF)

q2

ω2
[V0(1,1)+2V1(1,1)+V2(1,1)] (12)

and

Imχ (V)
ρρ (q,ω) = − π

16
αeeν(εF)

q2

ω

×[�(ω − 1)JV(ω,) + {ω → −ω}], (13)

with

JV(ω,) = V2(ω,1) − V0(ω,1)

2
+ ω

2
P

∫ 

1
dk

F (ω,k)

k2 − ω2

(14)

and F (ω,k) = 2kV1(ω,k) + ω[V0(ω,k) + V2(ω,k)]. Here,
Vm(k,k′) are dimensionless Coulomb pseudopotentials33

Vm(k,k′) =
∫ 2π

0

dθ

2π

exp (−imθ )

qTF +
√

k2 + k′2 − 2kk′ cos(θ )
, (15)

where qTF = 4αee is the Thomas-Fermi screening wave vector
(in units of kF). Making use of these formulas, it is easy to check
that the vertex correction to the Drude weight [i.e., Eq. (12)]
is negative and that the integral in the second line of Eq. (14)
converges in the limit  → ∞.

The last two diagrams are “self-energy” corrections, de-
noted by χ (SE)

ρρ (q,ω), which physically describe the modi-
fication of the response function due to exchange energy
corrections to the quasiparticle dispersion. We find that (see
Appendix C for more details)

Reχ (SE)
ρρ (q,ω) = 1

32
αeeν(εF)

q2

ω2
[V0(1,1) + 2V1(1,1)

+V2(1,1)] + 1

32
αeeν(εF)

q2

ω2

×
∫ 

1
dk[V0(1,k) − V2(1,k)] (16)

and

Imχ (SE)
ρρ (q,ω) = − π

16
αeeν(εF)

q2

ω

× [�(ω − 1)JSE(ω,) + {ω → −ω}], (17)

where ⎧⎪⎨⎪⎩
JSE(ω,) = 1

ω
�(ω,) − ∂ω�(ω,),

�(ω,) = 1
2

∫ 

1
dk kV1(ω,k).

(18)

In writing Eq. (17), we have excluded a term proportional to
δ(ω − 1), which is an artifact of perturbation theory as we
explain below.

IV. DRUDE WEIGHT RENORMALIZATION AND ac
CONDUCTIVITY

We now combine the terms calculated in the previous sec-
tion. Extensive cancellations occur between vertex corrections
and self-energy contributions. For example, the first term on
the right-hand side of Eq. (16) cancels the vertex contribution
(12). The final result for the Drude weight to first order in
αee is

D
D0

= 1 + αee

4

∫ 

1
dk[V0(1,k) − V2(1,k)]. (19)

The real part of the ac conductivity is given, to the same
order, by

Reσ (ω)

σ0
= �(ω−1){1+αee[JV(ω,)+JSE(ω,)]}. (20)

Equations (19) and (20) are the most important results of this
paper.

A. Long-range interactions

For unscreened Coulomb interactions [qTF = 0 in Eq. (15)],
V0(1,k) decays as 1/k at large k (see, for example, Ref. 33);
we thus find that

D
D0

= v�

v
+ βαee, (21)

where

v�

v
= 1 + αee

4
ln () (22)

is the well-known logarithmic velocity enhancement34 (see,
also, Refs. 33, 35, and 36,) and

β ≡ 1

4
lim

→∞

∫ 

1
dk

[
V0(1,k) − 1

k
− V2(1,k)

]
= −1

8
+ 1

4π

(
2

3
− 4C

)
+ ln 4

4

 −0.017, (23)

with C 
 0.916 being Catalan’s constant. Notice that in
Eq. (23) we have taken the limit  → ∞ since the integrand
decays like 1/k2 for k → ∞ [β reaches its  = ∞ asymptotic
value reported in Eq. (23) already at values of  as small
as ≈ 10]. For all dopings of experimental relevance,  � 1:
In this regime, the doping dependence of D is logarithmic
and stems from the velocity enhancement factor (22). The
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enhancement or suppression of D with respect to D0 depends
on the relative strength of the two terms in Eq. (21), which
have opposite sign. In the low-density  � 1 regime, the
velocity enhancement completely dominates the “β term”
and D/D0 > 1. The enhancement of D or, equivalently, of
the plasmon frequency, can be understood qualitatively by
noting that electron-electron interactions reduce the pseu-
dospin susceptibility37 and therefore increase the pseudospin
stiffness, i.e., the energy that is required to align pseudospins
along a given direction. According to the discussion given
in the Introduction, the larger pseudospin stiffness results
in higher energy of plasma oscillations. This observation
is consistent with the fact that, in a Landau Fermi-liquid
description,37 the suppression of the pseudospin susceptibility
would be driven by the many-body enhancement of the
density of states factor v�/v, while interactions between
the quasiparticles produce the opposite effect. Once again,
we must conclude that the many-body enhancement of the
plasmon frequency is intimately connected to the many-body
enhancement of the quasiparticle velocity v�/v. Any physical
mechanism that reduces v�/v without affecting the interaction
between quasiparticles could, in principle, result in a reduction
of the plasmon frequency and Drude weight.

The Drude weight D and the real part of the ac conductivity
σ (ω) are plotted as functions of doping n and frequency ω,
respectively, in Figs. 3 and 4. We observe that the Drude weight
(and hence the coefficient of q1/2 in the plasmon dispersion
relation) is substantially enhanced above the noninteracting
value. As we showed above in Eqs. (21) and (22), the
enhancement grows slowly (logarithmically) as a function
of  [it grows linearly with  for short-range interactions,
see Eq. (24) in Sect. IV B]. The ac conductivity is likewise
enhanced above the threshold ω = 2εF.

FIG. 3. (Color online) The ratio D/D0 between the interacting
value of the Drude weight D, calculated from Eq. (19), and the RPA
value D0 = 4εFσ0 is plotted as a function of electron density n (in
units of 1012 cm−2) for different values of graphene’s fine-structure
constant αee. The value αee = 0.9 is believed to be appropriate for
graphene deposited on SiO2, the other side exposed to air. Note that
D/D0 > 1 and that it depends weakly on carrier density.

(a)

(b)

R
e

FIG. 4. (Color online) (a) Deviation of the real part of the
ac conductivity Reσ (ω) from the noninteracting universal value
σ0 = e2/(4h̄), as a function of frequency ω/(2εF), calculated from
Eq. (20) for several values of the fine-structure constant αee and for
n = 1.5 × 1012 cm−2 ( = 50). (b) Same as in the main panel, but
for a fixed value of the fine-structure constant (αee = 0.9) and two
different values of doping (corresponding to  = 50 and 100). Notice
that the dependence of the conductivity on the value of the cutoff 

is almost invisible at low frequencies and becomes visible only at
frequencies several times εF.

As we have mentioned above, an unphysical term propor-
tional to δ(ω − 1) has been omitted from Eq. (20). This singular
contribution is due to the shift of the interband absorption
threshold from the bare value 2εF to the dressed value 2ε�

F. In
first-order perturbation theory, the absorption shift appears as a
δ(ω − 1) contribution to the integrand for frequency integrals.

Figure 4 shows that, for ω � 2εF but ω � 2εF, the ac
conductivity approaches the high-frequency universal value
σ0. However, as ω becomes comparable to 2εF, the conduc-
tivity decreases and, in fact, has an unphysical logarithmic
divergence at ω = 2εF. This makes perfect sense since
our model is only valid for energies that are much smaller
than the cutoff energy 2εF. As long as this condition is
met, the calculated spectrum is essentially independent of
the cutoff. This is a very satisfactory feature of the present
calculation. Notice, finally, that interactions are responsible
for a substantial enhancement of the ac conductivity close to
the interband absorption threshold.

B. Short-range interactions

It is instructive to examine how the results presented in
the main body of this section change if the electron-electron
interaction is assumed to be of ultrashort range in space, i.e.,
V0 = v = const and all other moments Vm with m � 1 are
zero. The calculations can be carried out in a completely
analytical fashion with the following results:

D
D0

∣∣∣∣
sr

= 1 + αeev̄

4
( − 1), (24)

045429-5



SAEED H. ABEDINPOUR et al. PHYSICAL REVIEW B 84, 045429 (2011)

where v̄ = εkFv/(2πe2), and

Reσ (ω)

σ0

∣∣∣∣
sr

= �(ω − 1)[1 + αeeJsr(ω,)], (25)

where

Jsr(ω,) = v̄

2

{
−1 + ω

2
ln

[
(ω + 1)( − ω)

(ω − 1)( + ω)

]}
. (26)

Note that Jsr(ω,) becomes independent of  for  → ∞.
It is easy to see that, in this limit, Reσ (ω) approaches the
universal value for large ω, since Jsr(ω,∞) goes to zero like
v̄/(6ω2) for ω → ∞. If, on the other hand, ω is allowed to tend
to infinity before , then unphysical cutoff-related features
appear, such as a logarithmic divergence at ω = .

C. The undoped limit

Let us make a brief comment on the limit of zero doping
of our theory. This topic has indeed attracted considerable
interest32,38–43 and has been at the center of a dispute.39,40,42,43

We have to distinguish between long- and short-range interac-
tions.

For long-range Coulomb interactions, it has been shown
that the real part of the ac conductivity of an undoped sheet in
the collisionless regime (ω � kBT ) behaves as39

Reσundoped(ω) = σ0

[
1 + C αee

1 + αee ln(ωc/ω)

]
, (27)

where C is a dimensionless constant and ωc is an ultraviolet
cutoff. The numerical value of the constant C has been the sub-
ject of substantial debate.39,40,42,43 Expanding the right-hand
side of Eq. (27) up to first order in αee, we find Reσundoped(ω) =
σ0(1 + αeeC) + O(α2

ee)). The value of the constant C can
thus be extracted from our first-order perturbation-theory
calculation. Taking the limit 1 � ω �  in Eqs. (14), (18),
and (20), one finds44 that, for long-range Coulomb interactions,
C = (19 − 6π )/12 ≈ 0.0125 has a small value, in perfect
agreement with the results by Mishchenko40 and by Sheehy
and Schmalian.42

For short-range interactions, the situation is completely
different: the real part of the ac conductivity in the undoped
limit does not show any corrections due to interactions. Indeed,
taking the limit 1 � ω �  in Eqs. (25) and (26), we find
Reσundoped(ω) = σ0, in agreement with a recent theorem for
the Hubbard model at half-filling.45

V. DENSITY RESPONSE VERSUS CURRENT
RESPONSE

In many models of electronic systems, gauge invariance and
the continuity equation allow us to express the density-density
response function in terms of the current-current response
function. In the present model, the relation would take the
form

χρρ(q,ω) = v2q2

ω2
χσσ (q,ω) + vq

ω2
〈[σ̂q,ρ̂−q]〉, (28)

where σ̂q is the longitudinal component (parallel to q) of the
pseudospin-density fluctuation and [σ̂q,ρ̂−q] is an anomalous
commutator,46 reminiscent of the commutator of Fourier-
component-resolved density fluctuations in a 1D Luttinger

liquid.47 Because the current in the Dirac model is proportional
to the pseudospin density, χσσ (q,ω) in Eq. (28) is the current-
current response function. Equation (28) works perfectly
at the noninteracting level, but fails when electron-electron
interactions are taken into account. Due to the cutoff in
momentum space, it turns out that the continuity equation

i∂t ρ̂q = q · ĵ q, (29)

with the current-density operator ĵ q given by

ĵ q = v
∑
k,α,β

ψ̂
†
k−q,ασ αβψ̂k,β , (30)

is no longer satisfied in the interacting system (see
Appendix D).

Similar conclusions have been reached by Mishchenko40 in
the context of calculations of the ac conductivity of undoped
graphene sheets. Mishchenko,40 in particular, was the first to
clarify that the calculation of σ (ω) based on the density-density
response function predicts a very small correction over the
noninteracting conductivity [C = (19 − 6π )/12], which is
also in agreement with the experimental findings,20,21 while
methods based on the current-current response function39

or on the kinetic equation40 predict very different results
[C = (25 − 6π )/12 ≈ 0.513]. We have also found48 that a
naive application of Eq. (28) to the interacting system produces
strongly cutoff-dependent results for both the Drude weight
and the ac conductivity of the doped system. Moreover, it
yields a qualitatively different behavior of the Drude weight
with respect to that found in this paper [see Eq. (19) and
Fig. 3]. The Drude weight calculated from the current-current
response is suppressed 48 rather than enhanced. On the
other hand, if Eq. (28) is corrected to take into account
the modification of the continuity equation due to electron-
electron interactions, then the results of the present analysis
are recovered. The conclusion is that it is generally safer in
an effective low-energy theory with a hard or rigid cutoff
to work with the density-density response function χρρ(q,ω)
rather than with the current-current response function, since
the calculation of the former places less weight on high-
energy intermediate states, which are not properly described.
This observation is consistent with the findings of other
authors.40

Recently Juričić et al.43 have published a very complete
paper on the ac conductivity of undoped graphene. In
that paper, they introduce a new dimensional regularization
scheme, which respects the Ward-Takahashi identities and, in
the undoped case, gives a result [C = (11 − 3π )/6 ≈ 0.263]
that is intermediate between that obtained previously by Herbut
et al.39 and that obtained by Mishchenko40 and by Sheehy
and Schmalian,42 using procedures analogous to hard cutoff
and Pauli-Villars regularization, respectively. It is shown that
the three regularization schemes give qualitatively similar
results.

Of course, satisfying the Ward-Takahashi identity does not
guarantee that the regularization scheme will produce the exact
value of C for the physical system. We believe that if a really
quantitative result is desired for the constant C in Eq. (27),
then one should resort to a complete electronic structure
calculation (based, for example, on a realistic tight-binding
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Hamiltonian) rather than working with an effective low-energy
theory.

VI. DISCUSSION AND CONCLUSIONS

Large Fermi velocity enhancements due to exchange inter-
actions, like the velocity enhancement that occurs in graphene,
are common in the theory of solids. Often, the role of velocity
enhancements is fully canceled in response functions by vertex
corrections. For example, the Fermi velocity of an ordinary
two-dimensional electron gas diverges when screening is
neglected, but the corresponding reduction in density-density
response is absent when vertex corrections such as those that
appear in this paper are included. From this point of view, the
main finding of this paper, supported by an explicit first-order
perturbation-theory calculation, is that no such cancellation
occurs for graphene’s well-known velocity enhancement. The
difference is easy to understand. In the case of an ordinary
two-dimensional electron gas, the velocity enhancement is due
to the rapid variation of the unscreened exchange self-energy
as one goes from occupied states to empty states across the
Fermi surface. When the density changes, the energy at which
the velocity peak occurs also changes, negating its influence
on response. In perturbation theory, this effect is captured
by the vertex correction. In graphene, on the other hand, the
velocity enhancement occurs over a broad range of energies
centered on the Dirac point, not only at the Fermi surface.
Density response is influenced by enhanced velocities that
increase the energy cost of changing the electron density.
In ordinary two-dimensional electron gases, the logarithmic
velocity enhancement vanishes in any event once screening is
accounted for. In graphene, on the other hand, the enhancement
comes from interactions at wave vectors much larger than
the Fermi energy at which only interband screening, which
does not change the long-range 1/r behavior, is relevant.
Neither screening nor vertex corrections fully counter the
enhanced Drude weight due to graphene’s Dirac point velocity
enhancement.

We note that a recent experiment49 has clearly established
the presence of a strong Drude peak, which develops in
graphene as the carrier density is increased. These authors
conclude that the Drude weight is reduced compared to the
noninteracting electron theory instead of being increased as
predicted by this theoretical analysis. It will be interesting
to see whether or not this experimental conclusion changes
as sample quality improves and it becomes possible to more
cleanly separate interband and Drude conductivity contribu-
tions over a wider regime of carrier density.

The Drude weight is related to the real part of the clean-
system density response function as ω approaches zero at large
ω/q. The real part of the low-frequency conductivity is, on the
other hand, related to the imaginary part of the density-density
response function in the same limit. Because velocity factors
cancel in this response-function limit, the substantial Drude
weight enhancement we expect does not have a counterpart in
the undoped limit conductivity.

Before concluding, we would like to mention that a new
theoretical paper reporting a study of the effect of electron-
electron interactions on the conductivity of doped graphene
steets50 has appeared recently. (We refer the reader to Ref. 51

R
e

FIG. 5. (Color online) The real part of the ac conductivity (in units
of σ0) as a function of ω/(2εF) calculated by including only the vertex
correction [i.e., by neglecting self-energy diagrams in Figs. 2(c) and
2(d)] for αee = 0.9 and different values of doping n (corresponding
to  = 100,200, and 1000). These data have been calculated using
long-range (unscreened) interactions, i.e., qTF = 0 in Eq. (15). We
remind the reader that, in the absence of disorder and within first-order
perturbation theory, Reσ (ω) = 0 for ω < 2εF. Notice that Reσ (V)(ω)
converges rapidly in the limit  → ∞ [since, as already stated in
the main text, the integral in the second line of Eq. (14) converges in
the same limit] and that it drops well below the universal value σ0 at
large ω.

for studies of band-structure, disorder, phonon, and strain
effects.) A quantitative comparison between our findings and
theirs is not possible since their study takes disorder into
account, while our study is for clean graphene. However,
we would like to stress that, while the authors of this paper
have treated interactions beyond first-order perturbation theory
(employing a Padé approach for the resummation of the per-
turbative series), they retain only vertex corrections neglecting
self-energy effects. It is well known that this approximation

FIG. 6. (Color online) Same as in Fig. 3, but for Thomas-Fermi
screened interactions.
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(a)

(b)

R
e

FIG. 7. (Color online) Same as in Fig. 4, but for Thomas-Fermi
screened interactions.

is not “conserving”52 (e.g., breaks gauge invariance). We can
mimic this approximation in our calculations and artificially
“switch off” self-energy contributions to Reσ (ω) [diagrams
in Figs. 2(c) and 2(d)]. If this procedure is followed, we find
the results shown in Fig. 5: It is evident from this figure that
the neglect of self-energy insertions might be responsible for
the reduction of Reσ (ω) below σ0 at large frequencies found in
Ref. 50. The neglect of self-energy effects, however, does not
affect qualitatively the ac conductivity close to the interband
absorption edge; also the authors of Ref. 50 have indeed found
an enhancement of Reσ (ω) for ω ≈ 2εF.

Finally, let us comment on the broader implications of
our results. Effects similar to those described in this paper
occur in graphene bilayers53 and are also expected in other
few-layer systems. The lack of Galilean invariance also affects
the cyclotron resonance frequency when the 2D sheet of
graphene is placed in a perpendicular magnetic field54–59 since
Kohn’s theorem,60 which asserts the absence of many-body

R
e

FIG. 8. (Color online) Same as in Fig. 5, but for Thomas-Fermi
screened interactions. Note that the scale in the vertical axis in this
figure is completely different from that in Fig. 5.

effects in cyclotron resonance, is not applicable in this case.
(The impact of broken Galilean invariance on the collective
cyclotron motion in graphene has been studied in Ref. 61 in
the high-temperature hydrodynamic regime in which Landau
levels are not well resolved.) Undoubtedly, much interesting
physics, potentially useful for applications in optoelectronics,
has still to be learned from the study of graphene and other62

non-Galilean invariant systems.
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APPENDIX A: CALCULATION OF THE NONINTERACTING CONTRIBUTION TO THE DYNAMICAL
DENSITY-DENSITY RESPONSE FUNCTION

The noninteracting response function χ (0)
ρρ (q,ω), i.e., the empty bubble diagram in Fig. 2(a), reads as

χ (0)
ρρ (q,ω) = 1

S

∑
k

∫ +∞

−∞

dε

2πi
Tr [G(k−,ε)G(k+,ε + ω)] = 2

∫
d2k

(2π )2

∑
μ,ν

nk−,μ − nk+,ν

ω + ξk−,μ − ξk+,ν + iη
Fμν(k−,k+). (A1)

Here, k± = k ± q/2 and Tr = gTrσ , where Trσ is the trace over pseudospin degrees of freedom, and Fμν(k,k′) = 1 +
μν cos (φk − φk′ ), φk being the angle between k and the x̂ axis.
We are interested in the long-wavelength q → 0 limit of the density-density response function; we thus expand Eq. (A1) to
second order in q:

Fμν(k−,k+) = (1 + μν) − μν
q2 sin2(φk)

2k2
, (A2)
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where we have assumed that q is along the x̂ (i.e., that φq = 0). When μ = ν = −1, the “Lindhard ratio” in Eq. (A1) vanishes.
For μ = −ν, Eq. (A2) is already of order q2 and one can just set q = 0 in the Lindhard ratio. For μ = ν = +1, we need instead
to expand the Lindhard ratio to second order in q with the result

nk−,+ − nk+,+
ω + ξk−,+ − ξk+,+ + iη

= q cos(φk)δ(kF − k)

ω
+ vq2 cos2(φk)δ (kF − k)

ω2
. (A3)

Here, we have used nk±,+ 
 nk,+ ∓ q cos(φk)δ(kF − k)/2, and we have dropped iη in the denominator since the expansion on the
right-hand side is always real. The first term in Eq. (A3) gives zero contribution to the response function after angular integration.
Now, replacing Eqs. (A2) and (A3) in Eq. (A1), we find

χ (0)
ρρ (q,ω) = 4vq2

ω2

∫
d2k

(2π )2
cos2(φk)δ(kF − k) + q2

∑
μ

∫
d2k

(2π )2

sin2(φk)

k2

nk,μ − nk,μ̄

ω + 2μvk + iη
, (A4)

where μ̄ = −μ. Performing the integral over k and introducing dimensionless variables, one finds Eqs. (10) and (11) for the real
and imaginary parts of the noninteracting response function, respectively.

APPENDIX B: CALCULATION OF THE VERTEX CORRECTION

The vertex correction [i.e., see Fig. 2(b)] contribution to the density-density response function reads as

χ (V)
ρρ (q,ω) = − 1

S2

∑
k,k′

Vk−k′

∫ +∞

−∞

dε

2πi

∫ +∞

−∞

dε′

2πi
Tr[G(k−,ε)G(k+,ε + ω)G(k′

+,ε′ + ω)G(k′
−,ε′)]

= − 1

16

∫
d2k

(2π )2

∫
d2k′

(2π )2

∑
μ,ν,μ′,ν ′

Vk−k′
nk−,μ − nk+,ν

ω + ξk−,μ − ξk+,ν + iη

nk′
−,μ′ − nk′

+,ν ′

ω + ξk′
−,μ′ − ξk′

+,ν ′ + iη

×Tr[(1σ + μσ k−)(1σ + νσ k+ )(1σ + ν ′σ k′
+ )(1σ + μ′σ k′

−)]. (B1)

The trace in the previous equation can be expanded in powers of q:

Tr[(1σ + μσ k− )(1σ + νσ k+)(1σ + ν ′σ k′
+ )(1σ + μ′σ k′

−)] = 16
∞∑

n=0

wn(k,k′,φq ; μ,ν,μ′,ν ′)qn. (B2)

If we choose q = q x̂, it is straightforward to show that

w0 = (1 + μν)(1 + μ′ν ′)
2

Fμμ′(k,k′) (B3)

and

w1 = (μ − ν)(μ′ + ν ′)
sin(φk) sin(φk′ − φk)

4k
+ Perm, (B4)

where “Perm” is obtained from the first term in Eq. (B4) by interchanging primed with nonprimed variables. The complete
expression of w2 is quite cumbersome and will not be reported here. The only terms that contribute to χ (V)

ρρ (q,ω) up to order q2

are given by

w2|ν=μ̄,ν ′=μ̄′ = sin(φk) sin(φk′)

2kk′ Fμμ′(k,k′). (B5)

Collecting all terms up to O(q2), we can write χ (V)
ρρ (q,ω) in the following form:

χ (V)
ρρ (q,ω) =

2∑
n=0

χ (V−n)
ρρ (q,ω), (B6)

where χ (V−n)
ρρ (q,ω) denotes terms proportional to wn. We find that

χ (V−0)
ρρ (q,ω) = −2

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′ [1 + cos (φk′ − φk)]

nk−,+ − nk+,+
ω + v|k−| − v|k+| + iη

nk′
−,+ − nk′

+,+
ω + v|k′

−| − v|k′
+| + iη

= −2q2

ω2

∫
d2k

(2π )2

∫
d2k′

(2π )2
vk−k′δ(kF − k)δ(kF − k′) cos(φk) cos(φk′) [1 + cos(φk′ − φk)] .

(B7)
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By introducing the Coulomb pseudopotentials Vm, performing the integrations over k and k′, and using dimensionless variable,
we find immediately Eq. (12).
For n = 1, we find

χ (V−1)
ρρ (q,ω) = −2q2

ω

∑
μ

∫
d2k

(2π )2

∫
d2k′

(2π )2

Vk−k′

k
δ(kF − k′) sin(φk) cos(φk′) sin(φk′ − φk)

μ(nk,μ − nk,μ̄)

ω + 2μvk + iη

= − q2kF

8π2ω

∑
μ

P
∫ ∞

kF

dk
V0(k,kF) − V2(k,kF)

ω + 2μvk + iη
. (B8)

Since this contribution vanishes for ω → 0, it does not contribute to the renormalization of the Drude weight. Nevertheless, its
imaginary part for finite positive frequency gives precisely the first term in the r.h.s. of Eq. (14).
Finally, for n = 2, we find that

χ (V−2)
ρρ (q,ω) = −q2

2

∑
μ,μ′

μμ′
∫

d2k
(2π )2

∫
d2k′

(2π )2

Vk−k′

kk′ sin(φk) sin(φk′)
(1 − nk,+)(1 − nk′,+)

(ω + 2μvk + iη)(ω + 2μ′vk′ + iη)
Fμμ′(k,k′)

= − q2

25π2

∑
μ,μ′

P
∫ ∞

kF

dk

∫ ∞

kF

dk′ V0(k,k′) + V2(k,k′) + 2μμ′V1(k,k′)
(ω + 2μvk + iη)(ω + 2μ′vk′ + iη)

. (B9)

It is possible to show that this expression does not scale like ω−2 for ω → 0; thus, it does not contribute to the renormalization
of the Drude weight. The imaginary part of Eq. (B9) at finite frequency gives precisely the second term in the r.h.s. of Eq. (14).
By summing the contributions to Imχ (V)

ρρ (q,ω) coming from the two terms with n = 1 and 2, we find Eq. (13).

APPENDIX C: CALCULATION OF THE SELF-ENERGY INSERTIONS

We now turn to calculate the two first-order self-energy diagrams in Figs. 2(c) and 2(d). The first diagram reads as

χ (SE−c)
ρρ (q,ω) = −

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′

∫ +∞

−∞

dε

2πi

∫ +∞

−∞

dε′

2πi
Tr[G(k−,ε)G(k+,ε + ω)G(k′

+,ε′ + ω)G(k+,ε + ω)]

= − 1

16

∑
μ,ν,λ,γ

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′nk′

+,γ

×
∫ +∞

−∞

dε

2πi

Tr[(1σ + μσ k− )(1σ + νσ k+)(1σ + γσ k′
+ )(1σ + λσ k+ )]

(ε − ξk−,μ + iηk−,μ)(ε + ω − ξk+,ν + iηk+,ν)(ε + ω − ξk+,λ + iηk+,λ)
. (C1)

It is easy to show that, for λ = ν, the trace becomes

Tr[(1σ + μσ k− )(1σ + νσ k+)(1σ + γσ k′
+ )(1σ + λσ k+ )]|λ=ν = 16Fμν(k+,k−)Fγ ν(k+,k′

+), (C2)

and that the contribution arising from λ = −ν averages to zero after performing the integrations over k and k′. By inserting
Eq. (C2) in (C1), we find that

χ (SE−c)
ρρ (q,ω) = −

∑
μ,ν,γ

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′nk′

+,γ

∫ +∞

−∞

dε

2πi

Fμν(k+,k−)Fγ ν(k+,k′
+)

(ε − ξk−,μ + iηk−,μ)(ε + ω − ξk+,ν + iηk+,ν)2

= ∂ω

∑
μ,ν,γ

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′nk′

+,γFμν(k+,k−)Fγ ν(k+,k′
+)

nk−,μ − nk+,ν

ω + ξk−,μ − ξk+,ν + iη
. (C3)

For the diagram in Fig. 2(d), we find that

χ (SE−d)
ρρ (q,ω) = −∂ω

∑
μ,ν,γ

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′nk′

−,γFμν(k−,k+)Fγ ν(k−,k′
−)

nk−,ν − nk+,μ

ω + ξk−,ν − ξk+,μ + iη
. (C4)

We now sum Eqs. (C3) and (C4) together and separate interband (ν = −μ) from intraband (ν = μ) terms. In the interband
channel, Fμν(k+,k−) is already of order q2, and thus the other factors can be calculated at q = 0:

χ (SE-inter)
ρρ (q,ω) = −q2∂ω

∑
μ

∫
d2k

(2π )2

∫
d2k′

(2π )2
Vk−k′ sin2(φk) cos(φk′ − φk)

(1 − nk′,+)(1 − nk,+)

k2(ω + 2μvk + iη)
. (C5)

The real part of this expression vanishes for ω → 0, but its imaginary part gives Eq. (17). On the other hand, the intraband
contribution is entirely real and gives Eq. (16).

045429-10



DRUDE WEIGHT, PLASMON DISPERSION, AND AC . . . PHYSICAL REVIEW B 84, 045429 (2011)

APPENDIX D: GENERALIZED CONTINUITY EQUATION FOR AN INTERACTING SYSTEM
OF MASSLESS DIRAC FERMIONS

In the presence of a rigid momentum cutoff, the continuity equation (28) needs to be modified. To show this, we start by
introducing field operators �̂k,α in a restricted Hilbert space (RHS):

�̂k,α = �(kmax − k)ψ̂k,α, (D1)

where kmax is the ultraviolet momentum cutoff and ψ̂k,α is the regular field operator. All other operators should be defined in
terms of these new field operators, e.g., the density operator reads as

ρ̂q =
∑
k,α

�̂
†
k−q,α�̂k,α. (D2)

Now, an interesting observation is that the commutator [ρ̂q,ρ̂q ′], which is zero in the regular space, becomes finite in the RHS:

[ρ̂q,ρ̂q ′] =
∑

k,k′,α,β

[�̂†
k−q,α�̂k,α,�̂

†
k′−q ′,β�̂k′,β] =

∑
k,α

[�(kmax − |k − q ′|) − {q ′ → q}]�̂†
k−q−q ′,α�̂k,α. (D3)

This is not zero in general. One can show that its expectation value 〈· · ·〉0 over the noninteracting ground state is zero:
〈[ρ̂q,ρ̂q ′ ]〉0 = 0. It is also straightforward to show that the commutator of the density operator with the kinetic part of the
Hamiltonian ĤD remains unchanged:

[ρ̂q,ĤD] = q · ĵ q = vqσ̂q, (D4)

where the Dirac-Weyl Hamiltonian ĤD, the current-density operator ĵ q , and the longitudinal component of the pseudospin-density
operator σ̂q are also redefined in the RHS.
As a consequence of Eq. (D3), the commutator of ρ̂q with the Coulomb interaction ĤC is nonzero in the RHS:

�̂q = [ρ̂q,ĤC] = 1

2S

∑
q ′ �=0

Vq ′
∑

k,k′, p,α,β,γ

[�̂†
p−q,γ �̂ p,γ ,�̂

†
k−q ′,α�̂

†
k′+q ′,β�̂k′,β�̂k,α]

= 1

S

∑
q ′ �=0

Vq ′
∑
k,α

∑
k′,β

[�(kmax − |k − q ′|) − {q ′ → q}]�̂†
k−q−q ′,α�̂

†
k′+q ′,β�̂k′,β�̂k,α. (D5)

This implies that the continuity equation (29) changes to

i∂t ρ̂q = q · ĵ q + �̂q . (D6)

Again, one can show that the expectation value of �̂q over the noninteracting ground state vanishes: 〈�̂q〉0 = 0.
Now, by applying twice the identity6

〈〈Â; B̂〉〉ω = 1

ω
〈[Â; B̂]〉 + 1

ω
〈〈[Â,Ĥ]; B̂〉〉ω, (D7)

where

〈〈Â; B̂〉〉ω = −i

∫ ∞

0
dt〈[Â(t),B̂(0)]〉e−iωt e−ηt (D8)

is the usual Kubo product,6 to the density-density response function (Â = ρ̂q , B̂ = ρ̂−q), one gets

ω2〈〈ρ̂q ; ρ̂−q〉〉ω = ω〈[ρ̂q,ρ̂−q]〉 + vq〈[σ̂q,ρ̂−q]〉 + 〈[�̂q,ρ̂−q]〉 + v2q2〈〈σ̂q ; σ̂−q〉〉ω + vq〈〈σ̂q ; �̂−q〉〉ω
−vq〈〈�̂q ; σ̂−q〉〉ω − 〈〈�̂q ; �̂−q〉〉ω. (D9)

We remind the reader that the linear-response function χAB(ω) is directly related to the Kubo product by the relation χAB(ω) =
〈〈Â; B̂〉〉ω/S. Thus, when electron-electron interactions and the presence of the ultraviolet cutoff are taken into account carefully,
Eq. (28) becomes

χρρ(q,ω) = v2q2

ω2
χσσ (q,ω) + vq

ω2
〈[σ̂q,ρ̂−q]〉 + 1

ω
〈[ρ̂q,ρ̂−q]〉 + 1

ω2
〈[�̂q,ρ̂−q]〉 + vq

ω2
[χσ�(q,ω)

−χ�σ (q,ω)] − 1

ω
χ��(q,ω). (D10)

In the noninteracting limit, the second term on the right-hand side of Eq. (D10) becomes the anomalous commutator,46 the third
term is identically zero, and all terms involving �̂q vanish. In this limit, one thus recovers Eq. (28).
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Here, we are mainly interested in the imaginary part of Eq. (D10):

Imχρρ(q,ω) = v2q2

ω2
Imχσσ (q,ω) + vq

ω2
[Imχσ�(q,ω) − Imχ�σ (q,ω)] + 1

ω2
Imχ��(q,ω). (D11)

The last term on the right-hand side of Eq. (D11) is at least of second order in the electron-electron interaction. Thus, up to first
order in the Coulomb interaction, we can write

Imχ (1)
ρρ (q,ω) = v2q2

ω2
Imχ (1)

σσ (q,ω) + vq

ω2

[
Imχ

(0)
σ�(q,ω) − Imχ

(0)
�σ (q,ω)

]
,

(D12)

where the superscript “(n)” on the response functions in the previous equation indicates that they have to be evaluated up to the
nth order in the electron-electron interaction.
In order to evaluate χ

(0)
σ�(q,ω) and χ

(0)
�σ (q,ω), we start from the well-known exact-eigenstate representation expression for a

response function at zero temperature6:

χAB(ω) =
∑

n

[
〈0| Â |n〉 〈n| B̂ |0〉

ω − ωn0 + iη
− 〈0| B̂ |n〉 〈n| Â |0〉

ω + ωn0 + iη

]
. (D13)

Before proceeding further, let us also introduce the following unitary transformation, which diagonalizes the Dirac-Weyl
Hamiltonian ĤD: {

�̂k,α = ∑
μ Uαμ(k)ĉk,μ,

�̂
†
k,α = ∑

μ U†
μα(k)ĉ†k,μ,

(D14)

where

U(k) = 1√
2

(
e−iφk/2 e−iφk/2

eiφk/2 −eiφk/2

)
. (D15)

The full Hamiltonian H after this unitary transformation reads as

Ĥ′ =
∑
k,μ

εk,μĉ
†
k,μĉk,μ + 1

2S

∑
q �=0

Vq

∑
k,k′,μ,ν,μ′,ν ′

I
μν

k,k+qI
μ′ν ′

k′,k′−q ĉ
†
k,μĉ

†
k′,μ′ ĉk′−q,ν ′ ĉk+q,ν , (D16)

where εk,± = ±vk are Dirac-band energies and the matrix elements I
μν

k,k′ are defined as

I
μν

k,k′ = [U†(k)U(k′)]μν = ei(φk−φk′ )/2 + μνe−i(φk−φk′ )/2

2
. (D17)

We also introduce

X
μν

k,k′ = [U†(k)σxU(k′)]μν = μe−i(φk+φk′ )/2 + νei(φk+φk′ )/2

2
. (D18)

Now we can write

χ
(0)
σ�(q,ω)=g

∑
n

[ 〈0| σ̂ x
q |n〉0 〈n| �̂−q |0〉0

ω − ωn0 + iη
− 〈0| �̂−q |n〉0 〈n| σ̂ x

q |0〉0

ω + ωn0 + iη

]
=g

∑
p,γ,λ

X
γλ
p−q, p

〈ĉ†p−q,γ ĉ p,λ�̂−q〉0 − 〈�̂−q ĉ
†
p−q,γ ĉ p,λ〉0

ω + ε p−q,γ − ε p,λ + iη
.

(D19)

By using the expression of �̂q given above in Eq. (D5) and Wick’s theorem,6 and keeping only terms linear in q, we finally find
that

χ
(0)
σ�(q,ω) = qg

S2

∑
λ,ν

∑
k, p<kmax

Xλ̄λ
p, pI

λν
p,kI

νλ̄
k, pV p−knk,ν[2 cos(φk)δ(kmax − k|) + cos(φ p)δ(kmax − p)]

n p,λ − n p,λ̄

ω − 2ε p,λ + iη
. (D20)

In deriving this expression, we have assumed that the Coulomb interaction is screened (i.e., that Vq is not singular for q → 0).
The imaginary part of Eq. (D20) for 0 < ω < 2vkmax reads as

Imχ
(0)
σ�(q,ω) = gπq

S2

∑
k, p<kmax

V p−k(1 − nk,+)(1 − n p,+) sin(φ p) sin(φ p − φk) cos(φk)δ(kmax − k)δ(ω − 2vp)

= qkmaxω

32πv2
�(ω − 2εF)[V0(ω/(2v),kmax) − V2(ω/(2v),kmax)]. (D21)
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Using a similar expression for Imχ
(0)
�σ (q,ω), we finally obtain

Imχ
(0)
σ�(q,ω) − Imχ

(0)
�σ (q,ω) = qkmaxω

24πv2
�(ω − 2εF)[V0(ω/(2v),kmax) − V2(ω/(2v),kmax)]. (D22)

By taking the limit kmax → ∞, the previous equation simplifies considerably to

Imχ
(0)
σ�(q,ω) − Imχ

(0)
�σ (q,ω) = qωαee

8v
�(ω − 2εF). (D23)

Using this result in Eq. (D12), we find

Imχ (1)
ρρ (q,ω) = v2q2

ω2
Imχ (1)

σσ (q,ω) + αeeq
2

8ω
�(ω − 2εF), (D24)

or, in terms of the ac conductivity,

Reσ (1)(ω) = −e2v2

ω
Imχ (1)

σσ (ω) − αee

2
σ0. (D25)

APPENDIX E: NUMERICAL RESULTS FOR THOMAS-FERMI SCREENED INTERACTIONS

In Figs. 6–8, we present numerical results for D, Reσ (ω), and Reσ (V)(ω) obtained by using Thomas-Fermi screened interactions,
i.e., qTF �= 0 in Eq. (15).
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