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Pattern formation of a step induced by a moving linear source
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By means of Monte Carlo simulation with a square lattice model, we study pattern formation of a step induced
by a moving linear source of adatoms. Incorporation of adatoms, which are released from a linear source in front
of the straight step, causes wandering instability of the step during growth. In contrast to the usual wandering
pattern, a treelike step follows the source so that a steadily growing state is realized. Branching occurs frequently
in growth toward the [01] direction, while branching is suppressed in growth toward the [11] direction. The
characteristic wavelength (period of branches) λ of the pattern is determined by velocity Vp of the linear source
and step stiffness β̃ as λ ∼ √

�lD (lD = Ds/Vp, the diffusion length defined by diffusion coefficient Ds and Vp;
�, the capillary length proportional to β̃). A comblike step pattern is formed in the [11] growth. The pattern is
similar to that observed on a Si(111) surface under Ga deposition. If source velocity Vp is increased, characteristic
length λ becomes shorter to follow the source. With Vp above a critical velocity, the step grows at the critical
velocity independent of Vp and shows a fractal-like pattern. The critical velocity is related to the fractal dimension
of the diffusion-limited aggregation. Similarity of the comblike pattern to a finger pattern observed in graphene
growth is also discussed.
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I. INTRODUCTION

Atomic steps on a crystal surface show various types of
pattern formation during growth, during sublimation, and
under the influence of an external field.1,2 In growth, if the
diffusion barrier at a step edge3–5 is present, a higher flux
of adsorbed atoms (adatoms) attach from the lower side
terrace than from the upper side terrace, and the step becomes
unstable.6 Wandering instability is generally possible with a
supply of adatoms from the forward direction. The motion
of a destabilized step is chaotic7,8 and is characterized by
the Kuramoto-Sivashinsky equation.9,10 With a strong crystal
anisotropy, the chaotic behavior is suppressed, and a regular
periodic pattern appears.11 During growth without evaporation
of adatoms, an array of straight steps shows a regular in-
phase wandering pattern, and the amplitude of wandering is
increased with time.12,13 It is a typical wandering pattern in
conservative systems.14–16 In sublimation, the drift of adatoms
driven by an external field17 also induces step wandering.18,19

The pattern may be either chaotic or regular, depending
on the symmetry of the system determined by the drift
direction.20

Recently, a type of wandering pattern was found on a Ga-
deposited Si(111) vicinal surface.21 When Ga is deposited at
about 580 ◦C, the 7 × 7 structure is transformed to the

√
3 ×√

3 structure first. Further deposition of Ga transforms the√
3 × √

3 structure to the 6.3 × 6.3 structure in which the
density of Si atoms in the top surface layer is about half that
of the former structure. The excess Si atoms are emitted onto
the surface during the transformation at the phase boundary
moving with Ga deposition. The excess adatoms on the terrace
form a growing new layer at the step. The transformation
preferentially occurs in the vicinity of the lower side of the
existing steps. Thus, Si atoms are supplied to the step from
the lower side, and a wandering instability is induced. The

protruding part of the step grows like a finger, and the whole
pattern is like a comb (Fig. 1). In Ref. 21, it is suggested
that the pattern is induced by the moving phase boundary,
which is acting as a linear source of atoms in front of the
step. Although the mechanism of the instability seems similar
to that of the above-mentioned wandering instabilities,6–8 the
resulting pattern is not similar to the known ones at all. Since
similar situations with a moving source of atoms may occur
in other systems, we study pattern formation of a step induced
by a guiding linear source of adatoms.

II. MODEL

We consider a lattice model in Monte Carlo (MC) dynamics.
The original model for a usual growing surface is described
in Ref. 8. The system consists of a square lattice substrate,
adatoms diffusing on the substrate, an inactive layer of solid
atoms on the substrate, and active step atoms that form an edge
of the solid layer (Fig. 2). In the present model, a solid atom
and an adatom are distinguished as different states, and a step
atom is an active solid atom. In this paper, the transformation
from an adatom to a step atom is called solidification, and the
opposite process is called melting.

In Fig. 2, the solid layer is located at the bottom, and
a linear source of adatoms, which represents a straight
phase boundary in the Si system, is at the top. Adatoms
are present on the terrace between the step and the linear
source.

In a MC trial, we randomly choose one of the active atoms,
i.e., adatoms and step atoms. When an adatom is chosen,
a diffusion trial is performed. The adatom moves randomly
to one of the four neighboring sites if the chosen site is
empty. After the diffusion trial, if the adatom happens to be
in contact with a step atom, a solidification trial is performed.
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FIG. 1. A comblike step pattern on a Si(111) vicinal face under
Ga deposition at 603 ◦C. The view is 3 μm × 3 μm.

The solidification probability p+ is given by

p+ = 1

1 + e(�E−φ)/kBT
, (1)

where �E is the change in step energy (the kink energy, or
half the lateral bond energy, ε times the perimeter length in the
unit of the lattice constant) associated with the solidification,
and φ is the energy gain in solidification.22 When a step atom
is chosen instead of an adatom, a melting trial is performed.
The melting probability p− is given by

p− = 1

1 + e(�E+φ)/kBT
, (2)

where �E is the change in step energy associated with the
melting. Time in the simulation is increased with each diffusion
trial by (4Nad)−1, where Nad is the number of adatoms so that
the diffusion coefficient is set to be unity.

Solid atom
[01]

[11]
Step atom
Adatom

x

y

FIG. 2. (Color online) The lattice model for a (01) step. The blue
(darkest gray) and red (dark gray) squares are solid and step atoms.
The green (gray) circles are adatoms. The yellow (light gray) squares
are the phase boundary.

A step and a straight linear source of adatoms are located
on a square lattice, perpendicular to (01) or (11) orientation.
[See Fig. 2 for a (01) step. For a (11) step, the square lattice is
rotated by 45◦.] Initially, the step is straight, and the position
of the linear source is next to the step in the lower side. For
the motion of the linear source, every time interval (Vp)−1,
a new single row of the lattice with randomly distributed c0

adatoms per site is added at the top of the system. The boundary
condition in the x direction (horizontal direction) is periodic,
and that at the top is reflecting: Adatoms only move between
the source and the step.23 The linear source moves forward in
the y direction at constant velocity Vp, releasing adatoms. The
density of adatoms released at the phase boundary is set to
c0 = 0.525 (we choose the lattice constant as the length unit)
except for Fig. 9. In our simulation, the equilibrium adatom
density is c0

eq = 0.05, which is determined by the energy gain
φ/kBT = 3.0 in solidification as c0

eq = e−φ/kBT . Therefore,
half the system is covered by a solid in the long run.24 The
maximum system size of most simulations is 1024 × 2000, and
all data shown are averaged over at least ten independent runs.

III. SIMULATION RESULT

Figure 3 shows the time evolution of the step pattern
(growing in the [01] direction) induced by the linear adatom
source moving at the velocity Vp = 0.02. From the kink energy,
approximate values of the step stiffness of a (01) step and a
(11) step (for a solid-on-solid model) are calculated as8

β̃[01]

kBT
= (1 − e−ε/kBT )2

2eε/kBT
, (3)

β̃[11]

kBT
=

√
2

(1 − e−2ε/kBT )2

(1 + e−2ε/kBT )2 + 4e−2ε/kBT
. (4)

(The general exact value for a step in the Ising model is
given in Ref. 25.) When the kink energy is set to ε/kBT =
2.0, which is the standard value in our simulation, the
step stiffnesses are β̃[01]/kBT = 2.76 and β̃[11]/kBT = 1.23,
respectively. Initially, the source is close to the step, and
adatoms released from the source almost immediately solidify
and make the step rough. At t = 500, step wandering with
a characteristic wavelength becomes visible [Figs. 3(a) and
3(b)]. As the source leaves the step behind, the density gradient
of adatoms makes the step linearly unstable. Fluctuations of
short wavelengths are stable so that small corrugations decay.
Only fluctuations of linearly unstable modes grow, and the
fingerlike protrusions appear at t = 2500 [Fig. 3(c)]. After
a competition of growing fingers, less than half the growing
fingers seem to survive, and they start to make branches at
t = 5000 [Fig. 3(d)].

Figures 4(a) and 4(b) show developed step patterns with the
source velocity Vp = 0.01. In contrast to the usual wandering
patterns, the step forms fingerlike branches. Since the growth
direction of the (01) step is the stiffest orientation of a step,
frequent tip splitting and branching occur in the [01] growth
[Fig. 4(a)]. The branches tend to grow tilted directions of
smaller stiffnesses. Eventually, a forest pattern consisting of
treelike protrusions is formed. In contrast, since stiffness is
smallest in the [11] direction, branching occurs less frequently,
and most branches grow upward [Fig. 4(b)].
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FIG. 3. (Color online) Time evolution of the step growing in the
[01] direction with the source velocity Vp = 0.02 at (a) t = 500,
(b) a four times magnified view of (a), (c) t = 2500, and (d) t = 5000.
Blue and red (dark area) represent solid and step atoms, and green
(gray) dots represent adatoms.

In most grown areas, the solid layer occupies half the
terrace, which is covered with adatoms of the equilibrium
density, as expected from the conservation law.

IV. SOURCE SPEED AND CHARACTERISTIC LENGTH

In the experiment of Si,21 the velocity of the phase
boundary, i.e., the velocity of the source, decreases with
decreasing the deposition rate of the Ga atoms. Figures 4(c)
and 4(d) show patterns with a slower source velocity. The
patterns do not change much from Figs. 4(a) and 4(b), but
the characteristic length becomes longer. The formation of
side branches in the (11) step hardly occurs, and the pattern
is similar to the pattern observed in the experiment (Fig. 1).
In step wandering instabilities, the period of step pattern is
usually characterized by the wavelength of the fastest growing
mode λmax, obtained from a linear stability analysis. Because
of the conservation of atoms, any steady state of a straight step
with the moving source is not possible unless c0 = 1,26 and
the linear stability analysis cannot be made here.

In a previous study,27 we used another model in which a
linear reservoir with a constant adatom density was introduced.
The distance between the step and the reservoir was controlled
in the MC simulation. The model was intended to make

FIG. 4. (Color online) Step patterns induced by the linear source
(red line on top) of atoms at the velocity Vp = 0.01, (a) in the [01]
direction and (b) in the [11] direction, and Vp = 0.002, (c) in the [01]
direction and (d) in the [11] direction. Blue (dark gray) represents the
solid layer, and green (light gray) dots represent adatoms.

a comparison with the linear stability analysis possible by
keeping the diffusion length lD constant.28 Fingerlike patterns
similar to Fig. 4 were also observed. In this model, the linear
amplification rate ωq of the step fluctuation is obtained as

ωq

Ds
≈ |q|

(
1

lD
− �q2

1 − c0
eq

)
, (5)

where Ds is the diffusion coefficient and � = c0
eqβ̃/kBT is

the capillary length (note that the lattice constant is set to
be unity). The wavelength of the fastest growing mode is
given by

λmax = 2π

√
3�lD

1 − c0
eq

, (6)
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FIG. 5. (Color online) (a) Profiles of the number of steps
as a function of the position at several different times (t =
2000,4000, . . . ,20 000) with Vp = 0.1 and ε/kBT = 2.0. (b) Shifted
profiles of (a) to align the step front. The width of the system is 1024.

which was confirmed in the previous simulation for the initial
stage of the instability. Although the diffusion length is not
controlled, the present model has better correspondence with
the experiment and is much simpler. If we relate the diffusion
length lD and the source velocity Vp as lD = Ds/Vp, the
dependence of the period of the pattern may be the same as that
in the previous model.27 Then, we may compare the typical
period of branches with Eq. (6).

We count the number of steps cut by a horizontal line
over the system width and determine the typical period of
branches. To count the number, we have eliminated both step
atoms that enclose a vacancy in the solid area and projections
or dents comparable to the lattice size. Figure 5(a) shows
profiles of the number of branches as a function of position
y. Although they are changing in time, the shifted profiles
shown in Fig. 5(b) indicate that the step pattern is roughly
steady in the moving frame with the step front (equivalently,
with the source). Note that the pattern cannot be steady if one
looks at the connectivity of the branches since surviving trees
become fewer and fewer as they grow. Only the number of
branches makes the steady profile.
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100
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V − 1|2
p
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400
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[01]|kBT

∼ β̃ 1|2
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β̃
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∼λ

λ

(a)

(b)

FIG. 6. (Color online) (a) Dependence of period λ of the branches
on the source velocity Vp, with ε/kBT = 2.0. The data are averaged
over nine different times for ten independent runs. (b) Dependence
of λ on the stiffness β̃[01] with Vp = 0.0037. �, (01) step; ♦, (11)
step; solid line, λmax with β̃[01]; dotted broken line, λmax with β̃[11];
and other lines, fits to the data with slope 1/2.

Figure 6(a) shows the relation between the period of
branches (measured at the peak position in profiles, such as
Fig. 5) λ and the source velocity Vp. The apparent relation
λ ∼ V

−1/2
p ∼ l

1/2
D agrees with Eq. (6), but the observed period

is about 2.4 times longer for a (01) step [and 3.6 times longer
for a (11) step] than λmax.

Despite the different appearance in the (11) step compared
with the (01) step, the period of branches is about the same,
as shown in Fig. 6(a). The characteristic wavelength of the
initial instability is probably determined by Eq. (6) as in the
case of a constant diffusion length,27 but the characteristic
wavelength of the developed pattern hardly depends on the
growth direction. In Fig. 6(b), we show the period of branches
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FIG. 7. (Color online) Step patterns with various stiffnesses
(Vp = 0.02). (a) β̃[01] = 1.35 (ε/kBT = 1.5) and (b) β̃[01] = 5.13
(ε/kBT = 2.5) in the [01] direction. (c) β̃[11] = 0.98 (ε/kBT = 1.5)
and (d) β̃[11] = 1.34 (ε/kBT = 2.5) in the [11] direction.

as a function of the stiffness in the [01] direction β̃[01]. The
square-root dependence of λ on β̃[01] agrees with Eq. (6).29 The
corresponding step patterns with small and large stiffnesses
are shown in Fig. 7. The tendency to grow into the less stiff
directions is evident. Thus, among unstable step fluctuations of
various wavelengths, the characteristic wavelength λ selected
is controlled by the capillary length � of the [01] direction and
the diffusion length lD defined by the source velocity Vp. As
a result of competition of branches and local relaxation, the
characteristic length λ becomes more than twice as large as
λmax of Eq. (6).

V. ADJUSTMENT OF VELOCITY AND FRACTAL
PATTERNS

In Figs. 4 and 7, wandering instability is induced by the
gradient of the adatom density in front of the step, and the step

shows a treelike pattern growing steadily. We can interpret
the result as follows: The step changes its shape from the
straight one to the treelike one in order to follow the moving
linear source and realizes the steady state by adjusting the
characteristic length λ. Since the stiffness is large in the [01]
direction, branches tend to grow into the soft directions of
small stiffnesses, i.e., in the 〈11〉 directions. Therefore, for the
(01) step, successive branching of protrusions is inevitable
[Figs. 4(a), 4(c), 7(a), and 7(b)]. For the (11) step, the
stiffness is smaller, and protrusions grow with less branching
[Figs. 4(b), 4(d), 7(c), and 7(d)]. These patterns for the trees
with branch period λ ∼ √

�lD are consistent with the adatom
distribution set by velocity Vp of the source and are selected
in the steady state.

When velocity Vp of the source is increased, the step adjusts
its characteristic length λ to the shorter diffusion length, and
consequently, the step can follow the source. However, this
mechanism breaks down if the source escapes too fast. When
the characteristic length becomes small, relative strength of
random fluctuation increases, and the pattern resembles a
random-growth pattern in a diffusion field:30 such growth from
a finite-density gas is known to make a fractal pattern.31 In the
fractal growth without melting, diffusion length l is related to
an upper cutoff length of the fractal structure. It is controlled
by fractal dimension df of the diffusion-limited aggregation
(DLA) and density c of the adatom gas. It should be noted
that, once the step fails to follow the source, the diffusion
length is no longer related to the source velocity. To realize
a steady state in the fractal growth, the number conservation
requires that the average density of the fractal solid within l

should be the adatom density away from the step, ldf /ld ≈ c

where d is the spatial dimension. Therefore, the growth
velocity of the DLA-like pattern is determined by the diffusion
length as

VDLA ∼ Ds

l
∼ c1/(d−df ). (7)

For the present case of a two-dimensional adatom gas, the
exponent is 3.5 with df = 1.71 and d = 2. Breakdown of the
pattern adjustment occurs when Vp exceeds critical velocity
VD, which is an analog of Eq. (7) so that the step is no longer
able to follow the escaping source.

Figure 8 shows a DLA-like step pattern when the source
moves too fast. The step grows at a constant velocity VD ≈
0.16 independent of Vp, and a large area of the uniform adatom
density c = c0 = 0.525 is left behind the linear source moving
at the top. The pattern is similar to the fractal growth found
in Ref. 31. Actually, if φ → ∞ and Vp → ∞, solidification
becomes irreversible, and the present model is identical to
the fractal growth model of Ref. 31. Figure 9(a) shows the
dependence of growth velocity Vs (velocity of the top of the
step) on Vp with various c0. If Vp is smaller than VD, which
is about 0.16 for c0 = 0.525, as indicated by the squares in
Fig. 9(a), the step follows the source at velocity Vp. If Vp

is larger than VD, the step cannot follow the source, and the
growth velocity is constant Vs = VD. The transition between
the two modes is abrupt. In Fig. 9(b), we show the dependence
of VD on an effective excess density �c0. In order to subtract
the background of the equilibrium density, the effective excess
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FIG. 8. (Color online) Step pattern at Vp = 1 resembles the fractal
growth from a finite-density gas.31 φ/kBT = 3.0 and ε/kBT = 2.0.

density is defined by

�c0 ≡ c0 − c0
eq

1 − c0
eq

, (8)

which is the areal ratio of the solid in the grown area. Finiteness
of φ in the present model allows melting, and branches become
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FIG. 9. (Color online) (a) Dependence of growth velocity Vs on
the velocity of linear source Vp. Excess adatom densities �c0 are �,
0.4; ♦, 0.45; �, 0.5; �, 0.55; and ©, 0.6. (b) Dependence of VD on
�c with φ/kBT = 3.0 (©) and with φ → ∞ (♦).

thicker. As a result, velocity VD [circles in Fig. 9(b)] is slower
than velocity VDLA of the irreversible fractal growth [diamonds
in Fig. 9(b)]. The relation of the growth velocity to the density,
however, shows the same behavior, VD ∼ (�c0)3.5.

VI. SUMMARY

We studied pattern formation of a step induced by a moving
linear source of adatoms. Initially, due to high adatom density
at the step, the step becomes rough, and small projections
and dents are formed at the beginning. The balance between
the destabilizing effect of diffusion and the stabilizing effect
of stiffness selects a characteristic length λ ∼ √

�lD. After
competition of intrusions, survived ones grow and form
branches and trees. Soon a treelike step follows the source,
and a steadily growing state is realized. The branching pattern
depends on the crystal anisotropy. A comblike pattern with
few branches may be formed in the 〈11〉 growth. The pattern
is similar to that observed on a Si(111) surface with Ga
deposition.21 The change in λ as the change in the source
velocity agrees with the change as the deposition rate in the
experiment. The period of branches in the steady state of
simulation is about 2.4 times λmax expected from the linear
stability analysis with the stiffness in the [01] direction for both
(01) and (11) steps. If velocity Vp of the source is increased, the
characteristic length is adjusted to follow the source. Above
critical velocity VD, which is determined by fractal dimension
df of the DLA and adatom density c0, the step grows at the
critical velocity, independent of Vp.

Recently, the comblike step pattern was observed during
epitaxial growth of graphene on SiC. When SiC is heated at a
high temperature, Si atoms are evaporated, and a buffer layer
of a carbon-rich 6

√
3 × 6

√
3 structure is formed. With further

evaporation of Si, a new buffer layer is formed, and the existing
buffer layer becomes graphene. The formation of a fingerlike
graphene pattern is observed in the lower side near the step,
which is the source of the C atoms.32–34 The number of C atoms
in graphene is almost equal to that in three SiC bilayers. There-
fore, if C atoms emitted from a retreating triple-bilayer step
are immediately consumed to form graphene, the growth front
of graphene could follow the retreating step.34 On the other
hand, retreating single- or double-bilayer steps cannot supply
C atoms sufficient to form graphene over the whole retreated
area. Although a detailed mechanism is not clear yet, it seems
that such insufficient C supply causes the fingerlike graphene
pattern.34 Then, the present mechanism may also explain the
formation of the fingerlike pattern of graphene on SiC.

In our simulation, the dependence of the period of branches
λ on � and Vp agrees with the linear stability analysis, but,
owing to competition between branches, coarsening occurs
and period λ is several times larger than λmax. Now, we are
investigating the coarsening process in more detail.
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