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High-field transport and optical phonon scattering in graphene
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The coupled dynamics of electrons and optical phonons in graphene is investigated. For this purpose, a
kinetic model based on space-dependent Boltzmann transport equations for electrons and optical phonons
is established. This system is solved by deterministic methods that provide efficiently accurate results by
dynamically treating nonequilibrium phenomena. The numerical simulations clearly show the importance of
this approach when calculating I–V characteristics over a reasonable voltage range. Optical phonon occupations
surpassing equilibrium values by factors of thousands were found which affect the charge carrier transport
considerably in graphene.
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I. INTRODUCTION

In 2004, the preparation and characterization of the first
free graphene samples1 started a broad research on this
carbon-based material. Right from the start, the high values
measured for the charge carrier mobilities made graphene
a very interesting candidate for applications in future na-
noelectronic devices. The measured values for mobility in
graphene have steadily increased in the years since 2004 and
can be expected to continue to do so. Values higher than 2 ×
105 cm2/V s have been reported at room temperature.2,3 These
values significantly exceed those of conventional semicon-
ductors and other low-dimensional systems. This amazing
progress is owed to improved preparation processes, including
systems of suspended graphene.4 The electric properties of
early samples were mainly determined by charged impurities
within the substrate and adsorbates on the sample. The
graphene sheets themselves show remarkable few defects.
Now it is possible to reduce external effects on the electronic
transport through graphene to a level where phonons make
an important, though inevitable, contribution to the resistivity
at room temperature.5–7 When systematically eliminating all
other sources of charge carrier scattering, electron-phonon
scattering processes seem to determine the maximum achiev-
able room temperature mobility. An accurate understanding
of the fundamental transport processes in such high quality
graphene is essential for possible future applications of
graphene in electronic devices. This motivates to create a
comprehensive transport model for a deeper research on the
charge carrier transport in graphene.

The phonon system of graphene has already been thor-
oughly investigated by means of density functional theory
(DFT) and Raman spectroscopy.8–11 The obtained phonon dis-
persion relations and electron-phonon coupling (EPC) matrix
elements are essential ingredients for kinetic models of carrier
transport in single-wall carbon nanotubes (SWCNTs) and
graphene. The difference between calculated EPC strengths
and those deduced from transport measurements has been
the major indication of an important role of self-heating in
SWCNTs.9,12 Further research13,14 revealed that this effect is
directly linked to nonequilibrium optical phonon distributions
and, therefore, the electron and phonon transport in SWCNTs
has to be treated on a kinetic level. These findings naturally
raise the question if hot phonons are equally important for the

charge carrier transport in graphene, and what a corresponding
kinetic model will look like.

In this work, we will demonstrate the effects of hot
phonons on the charge carrier transport in graphene in the
scope of a kinetic model for electrons and phonons. We
restrict ourselves to the intrinsic graphene phonon modes.
We do not account for surface phonons as their influence
is dependent on the substrate used and can be eliminated
by suspending the graphene samples. Our model is based
on semiclassical Boltzmann transport equations (BTEs) de-
scribing the time evolution of the distribution functions for
electrons and optical phonons.15 With this approach, all
effects of nonequilibrium occupation numbers of electron
and optical phonon states can be treated dynamically.13,16

Therefore, we are not restricted by given assumptions on the
distribution functions. In addition to the simulations presented
in this paper, the kinetic model, together with the numerical
scheme, forms a general framework for the kinetic transport in
graphene that can be easily adopted for additional interaction
processes, such as surface phonons, and more complex device
geometries.

The paper is organized as follows: in Sec. II, we introduce
the BTEs of electrons and optical phonons which govern
the time evolution of the associated distribution functions.
The necessary numerical methods, which allow us to solve the
BTEs deterministically, are introduced in Sec. III. In Sec. IV,
the results of simulating the charge carrier transport in doped
and intrinsic graphene performed with the developed scheme
are discussed. We draw concluding remarks on our work in
Sec. V.

II. KINETIC MODEL

To study the charge carrier transport in graphene, we
introduce a semiclassical kinetic model describing the coupled
dynamics of electrons and phonons. This model is based on
a set of coupled semiclassical BTEs which governs the time
evolution of the distribution functions for electrons and optical
phonons.15 With this approach, effects of nonequilibrium
occupation numbers of electron and optical phonon states can
be treated dynamically.13,16 This has been demonstrated for
several problems in the field of carrier transport17 including
metallic CNTs.13
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We adhere to the linear bandstructure approximation of
graphene

εi(k) = ±h̄vF |k|, (1)

with the Fermi velocity vF ≈ 106 m/s, and treat the K and K′
valleys as one effective valley. The index i refers to the π∗ band
(i = 1, ε1 > 0), and the π band (i = 2, ε2 < 0), respectively.
In the framework of the kinetic theory, the electron system is
described by the electron distribution functions fi = fi(x,k,t)
which obey the Boltzmann equation18

∂tfi + vi ∂xfi − e0

h̄
E ∂kfi = Ci (2)

with the group velocity vi(k) = ∂kεi/h̄ = ±vF k/|k|, the
electric field strength E and the elementary charge e0; x
denotes the position vector and k stands for the electron wave
vector. The collision operator

Ci =
∑
η,j

Cη

ij + CEL
i (3)

accounts for scattering of electrons with different optical
phonon modes η in Cη

ij including both intraband (i = j )
and interband (i �= j ) processes, as well as elastic scattering
processes with acoustic phonons in CEL

i . Results of DFT
calculations19 show that only three optical phonon modes
contribute significantly to inelastic scattering of electrons in
graphene. The first two relevant modes are longitudinal optical
(LO) and transversal optical (TO) phonons with wave vectors
close to the � point and energies of h̄ω1 = h̄ω2 = 196 meV.
Because of their short wave vectors, these phonons scatter
electrons within one valley. In addition, it is important to take
into account zone boundary phonons with h̄ω3 = 161 meV
close to the K point, which are responsible for intervalley
processes. We will refer to these three modes as �-LO, �-TO,
and K phonons, and label them with the numerical indices
η = 1, 2, and 3. The electron collision operator Cη

ij for the
interaction of electrons with optical phonons reads

Cη

ij (k) = 1

(2π )2

∫
B

dk′[Wη

k′j ki
f ′

j (1 − fi) − W
η

kik′j (1 − f ′
j )fi

]
(4)

with fi = fi(x,k,t) and f ′
j = fj (x,k′,t). The scattering prob-

abilities

W
η

kik′j = W
EM,η

kik′j + W
AB,η

kik′j (5)

accounting for phonon emission and absorption are given by

W
EM,η

kik′j = s
η

k′j ki
(1 + g−

η ) δ(εi − ε′
j − h̄ωη) (6)

W
AB,η

kik′j = s
η

kik′j g+
η δ(εi − ε′

j + h̄ωη) (7)

with the energies εi = εi(k) and ε′
j = εj (k′). The delta

functions δ(εi − ε′
j ± h̄ωη) in Eqs. (6) and (7) stem from

Fermi’s golden rule, and ensure the conservation of energy.
The scattering elements in Eqs. (6) and (7) are given by s

η

kik′j =
π |Dη

kik′j |2/ρωη, where D
η

kik′j are the EPC matrix elements as

defined in Refs. 8, 9 and 19, and ρ ≈ 7.6 × 10−25kg/nm2 is
the area density of graphene. The phonon distribution functions
g±

η = gη(x,q±,t) are evaluated at q± = ±(k′ − k), ensuring
the conservation of quasimomentum. It is important to note

that for interband (i �= j ) processes |q±| � ωη/vF and for
intraband (i = j ) processes |q±| � ωη/vF . This separates the
optical phonons of each mode (η = 1,2,3) into two separated
groups or subtypes, which we will call inter- and intraband
phonons. The EPCs for �-LO, �-TO, and K phonons are
given by

∣∣DLO/TO
kik′j

∣∣2 = D2
�[1 ± cos(θ + θ ′)], (8)

∣∣DK
kik′j

∣∣2 = D2
K (1 ± cos θ ′′), (9)

where θ denotes the angle between k and k′ − k, θ ′ between
k′ and k′ − k as well as θ ′′ between k and k′.8,19 In the
case of LO and K phonons, the plus sign in Eqs. (8) and (9)
refers to interband processes and for TO phonons to intraband
processes. The EPC coefficients are obtained from DFT
calculation,9 and their values are D2

� = 4.560 × 103(eV/nm)2

and D2
K = 9.205 × 103(eV/nm)2. Interactions with acoustic

phonons are treated in a quasielastic way by the operator

CEL
i (k) = 1

(2π )2

∫
B

dk′sac
kk′δ(εi − ε′

i)(fi − f ′
i ), (10)

where sac
kk′ = πD2

ackBT (1 + cos θ ′′)/ρh̄cac, Dac = 16 eV de-
notes the acoustic deformation potential coupling constant,20

cac = 2 × 104 ms−1 is the speed of sound in graphene, and kB

is the Boltzmann constant.
Similar to the electron system, the BTE for the phonon

distribution gη(x,q,t) takes the form

∂tgη + cη(q)∂xgη = COP
η (11)

with the phonon drift velocity cη(q) = ∂qωη. Here we adhere to
the constant energy approximation of optical phonons and thus
neglect the motion of optical phonons. The collision operator

COP
η =

∑
i,j

Cij
η + Cpp

η (12)

on the right-hand side of Eq. (11) consists of two parts. The
operator

Cij
η (q)

= 4

(2π )2

∫
B

dk
[
W

EM,η

kik−j fi(1 − f −
j ) − W

AB,η

kik−j (1 − fi)f
−
j

]
,

(13)

models the interaction with electrons [here k− = k − q and
f −

j = fj (k−,x,t)] and

Cpp
η (q) = − 1

τη

[
gη(q,x,t) − g0

η

]
(14)

accounts for the decay and thermalization of optical
phonons according to a relaxation time approach with
the optical phonon equilibrium distribution function g0

η =
[exp(h̄ωη/kBT ) − 1]−1 at a constant lattice temperature T .21

We take τη = 3.5 ps for all phonon modes, consistent with our
treatment of SWCNTs (Ref. 13) and theoretical values.21 The
factor of 4 in Eq. (13) accounts for spin and valley degeneracy.
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III. NUMERICAL APPROACH

The streaming operator and the collision operators of the
BTEs (2) and (11) must be discretized in such a way that
the conservative properties of the equations do not get lost.
Computational accuracy and efficiency are also important
requirements to the numerical solution scheme. Our procedure
is based on a complete discretization of the phase space of
charge carriers and optical phonons. We restrict ourselves to a
spatially one-dimensional problem by assuming an infinitely
broad graphene sample. This implies a translational symmetry
perpendicular to the electric field which defines the direction
of transport. For the k space of electrons, we introduce a
coordinate system based on the energy ε of the electrons and
an angular variable ϕ measured relative to the direction of the
electric field. The electron wave vector reads

k(ε,ϕ) = ε

h̄vF

(cos ϕ, sin ϕ) (15)

in this new coordinates. We do not explicitly use band indices,
as the π and the π∗ bands can be unambiguously distinguished
by the sign of the electron energy. Note that for negative
energies ε, the definition of the polar angle deviates from the
usual polar coordinates by an angle of π . This, for example,
has the advantage that the angle ϕ directly gives the direction
of the group velocity

vi(ε,ϕ) = vF (cos ϕ, sin ϕ). (16)

The momentum coordinates of optical phonons are trans-
formed into ordinary polar coordinates (q,ϕ) with the modulus
q of the optical phonon wave vector q and the angle ϕ again
measured relative to the direction of the electric field which is
fixed in our setup.

The spatial extension of graphene in the direction of the
electric field is split up uniformly into subintervalls centered
at xn = (n − 1/2)x for n = 1, . . . ,Nx with x = L/Nx .
The length L of the device is the distance between the left
and the right contacts. The energy grid is defined by εn =
(n − Nε − 1/2)ε for n = 1, . . . ,2Nε with a discretization
step size ε. The phonon energies h̄ωη are approximated
by integer multiplies of ε, i.e., h̄ωη ≈ h̄ω̃η = tηε. This
facilitates the numerical evaluation of the collision integral (4),
as the arguments of the delta functions in Eqs. (6) and (7) fit
directly to the energy grid. The angular variable ϕ is discretized
by ϕn = 2(n − 1/2)ϕ for ϕ = 2π/Nϕ and n = 1, . . . ,Nϕ .
We use the same angular discretization for the wave vectors
of the electrons and optical phonons, which is not absolutely
necessary, but greatly simplifies the implementation. Follow-
ing this scheme, the modulus of optical phonon wave vectors
q is discretized by q

η
n = (n − 1/2)η

q for n = 1, . . . ,N
η
q .

The choice of the parameters 
η
q and N

η
q must ensure that

all occurring wave vectors can be handled with sufficient
resolution. This is guaranteed if the conditions 

η
q � 2ε/h̄vf

and N
η
q q � 2Nεε/h̄vf are met.

In this discretized coordinate system, the electron-phonon
collision operator (4) takes the form

Cij,η

klm =
Nϕ∑
n=1

{
B

ij,η−
lmn

[
g

η−
klmnf

j

kl−tηn

(
1 − f i

klm

)

− (
1 + g

η−
klmn

)(
1 − f

j

kl−tηn

)
f i

klm

]}

+
Nϕ∑
l=1

{
B

ij,η+
lmn

[(
1 + g

η+
klmn

)
f

j

kl+tηn

(
1 − f i

klm

)

− g
η+
klmn

(
1 − f

j

kl+tηn

)
f i

klm

]}
(17)

with the discretized electron distribution functions f i
klm =

fi(xk,k(εl,ϕm),t) and f
j

kl±tηn
= fi(xk,k(εl ± h̄ω̃η,ϕn),t) and

the scattering element

B
ij,η±
lmn = 1

(2πh̄vF )2

∣∣εl±tη

∣∣ϕs
η

ij

(
εl,ϕm,εl±tη ,ϕn

)
. (18)

It is easy to see that the electron distribution functions need to
be evaluated only at grid points, as the energy discretization is
adjusted to the optical phonon energies h̄ωη.13 This cannot
be assured for phonon distribution functions gη(q). In the
discrete collision term (17), g

η±
klmn = gη(xk,q

η±
klmn) has to be

evaluated at

qη±
klmn = ±[

k(εl,ϕm) − k
(
εl±tη ,ϕn

)]
(19)

which in general is not a grid point for optical phonons. This
necessitates an interpolation to obtain a value for g

η±
klmn in

terms of the values of the surrounding grid points. We use
a linear interpolation with suitable coefficients to ensure the
conservation of energy and momentum.

The derivatives ∂x and ∂k on the left hand side of
Eq. (2) transform into derivatives with respect to the spatial
variable x, the energy ε, and the angle ϕ. All derivatives are
approximated numerically with a fifth-order weighted essen-
tially nonoscillatory (WENO) finite-difference scheme.22 The
application of the discretization scheme and the approximation
of derivatives leads to a system of (2Nε + 3Nq)NϕNx coupled
ordinary differential equations. The time-dependent deriva-
tives of Eqs. (2)–(11) are approximated by a Runge-Kutta
method of third order with total variation diminishing (TVD)
properties.23

IV. SIMULATION RESULTS

In our simulations, we use the following grid param-
eters: Nε = 80 with ε = 20meV , Nϕ = 8, and Nx = 12.
The parameters for phonon wave vectors are automatically
determined by Nq � Nε and q � 2ε/h̄vf . This ensures
that all occurring wave vectors are covered with sufficient
resolution.

As a first step, we consider the ballistic charge carrier
transport in graphene. The results are shown in the left plot
of Fig. 1. The most striking feature is a current saturation,
whose value depends on the Fermi level and, therefore, on the
carrier concentration. This is completely different to the case
of metallic SWCNTs, where the current does not saturate, but
shows a linear increase of the current with the applied voltage
U :13 J = 4e2

0U/h. In the case of graphene, saturation is found
at Jsat = e0vF N0/π , with the equilibrium carrier density N0,
for e0U > εF . This limit can be deduced from the boundary
conditions. If the applied voltage is high enough so that all
electrons that enter the sample at the positive contact with
energies up to about εF can invert their direction within the
sample, the current is determined by the electrons entering
at the negative contact. The saturation current is given by all
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LICHTENBERGER, MORANDI, AND SCHÜRRER PHYSICAL REVIEW B 84, 045406 (2011)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

U [V]

I ba
ll.

 [ μ
A

/n
m

]

ballistic

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14
phonon scattering

U [V]

I [
μA

/n
m

]

500 meV

400 meV

300 meV

200 meV
100 meV

ballistic

100 nm

300 nm

L=1000 nm

ε
F
=600 meV

ε
F
=600 meV

FIG. 1. (Color online) (Left panel) Current-voltage characteris-
tics for the ballistic transport in contacted graphene for several Fermi
levels. (Right panel) Current density vs voltage for different sample
lengths at a Fermi energy of 600 meV with a full dynamic treatment of
optical phonons (solid lines). A kink, associated to the optical phonon
emission processes at U ≈ 0.2 V can be noticed. For comparison, the
length-independent case of ballistic transport (dashed line) and the
simplified case of a constant phonon distribution at T = 300 K for
the shortest (L = 100 nm) sample (dash-dotted line) are included.

inflowing electrons due to the equilibrium distribution given
at the boundary weighted by the projection of their velocity
vectors onto the direction of the electric field (x axis).

This is a completely different behavior with respect to
that of metallic SWCNTs because of two reasons. First, in
SWCNTs, there is no way to change the flight direction of
electrons in the ballistic case, as they stay either left or right
moving electrons traveling with the Fermi velocity.24 This
is not true for graphene, as the electric field can change the
direction of the momentum vector and, therefore, the direction
of the motion of the electrons. Second, closely related to the
first reason, in graphene, the π and π∗ electrons are separated
in the semiclassical picture. The electric field cannot move
electrons over the Dirac point, as in SWCNTs. Hence, the
number of free carriers within each band is preserved. These
differences between graphene and SWCNTs originate from
the different dimensionality of the two systems.

In a next step, we study the influence of optical phonons
in a system with εF = 600 meV (N0 = 2.7 × 1013 cm−2) to
clearly separate optical phonon effects from ballistic saturation
phenomena. The calculated I–V characteristics for graphene
samples of different lengths are depicted as solid lines in the
right panel of Fig. 1. A noticeable kink in the characteristics
can be seen at U ≈ 0.2 V. This can be explained by the onset of
optical phonon emission processes when electrons have gained
enough energy to emit optical phonons. The deviation from
ballistic transport at low bias is attributed to acoustic phonons.
For long samples, this effect becomes quite dominant by
scattering many electrons before they reach sufficient energies
to emit an optical phonon.

To estimate the importance of a full dynamical treatment of
optical phonons, we compare the results with those obtained by
keeping the phonons in equilibrium at room temperature (T =
300 K). The corresponding I–V characteristic for a graphene
sample with a length of 100 nm is shown as a dash-dotted
line in the right panel of Fig. 1. It can be clearly seen that
the simplified kinetic model significantly underestimates the
influence of optical phonons on the I–V characteristic.

FIG. 2. (Color online) Maximum of the distribution functions of
�-LO, �-TO, and K phonons at steady state vs the applied voltage
and the position along the transport direction in the sample. The
Fermi level is 600 meV. Additionally, the distribution function of the
K phonons for a voltage of U = 0.8 V at the drain contact x = 0 nm
(corresponding to the circle in the bottom left panel) is given in the
bottom right panel.

A look at the optical phonon distribution functions allows
us to examine this result more closely. In Fig. 2, the maximum
occupation numbers, maxq gη(x,q,ϕ), along the graphene
sample are plotted as a function of the voltage. It is evident that
the distribution functions dramatically exceed the equilibrium
values of g� ≈ 4.4 × 10−4 and gK ≈ 2.1 × 10−3 at T =
300 K and the assumption g � g + 1 no longer holds, which
makes absorption processes equally important. Of course, the
maximum value is not necessarily representative for the whole
distribution. However, looking at the phonon distribution
function depicted in the bottom right panel of Fig. 2, reveals
that a significant number of phonon states become highly
excited highlighting the nonequilibrium character and the
need for a dynamical treatment. The comparison of the plots
for the different phonon modes shows that the K phonons
reach the highest excitation. This can be attributed to their
higher EPC matrix element and to the lower energy of these
phonons. Nevertheless, we find occupation numbers gη � 1
for all optical phonon modes. Bulk calculations show much
lower excitations,5,17 even if exactly the same scattering
processes are considered.17 This highlights the importance of
a space-dependent treatment of the transport equations for
systems close to the ballistic regime.

In a setup with a Fermi level of εF = 600 meV, the
π band does not contribute to the charge carrier transport
and interband processes can be neglected. However, in the
case of intrinsic graphene, these processes become effective
and produce interesting effects. The results obtained for
intrinsic graphene are presented in Fig. 3. We again compare
the I–V characteristics for the cases of ballistic transport,
hot phonons, and a fixed equilibrium phonon background.
The ballistic current saturates well before optical phonon
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FIG. 3. (Color online) Voltage dependencies of the current and
phonon temperatures in intrinsic (εF = 0 meV) graphene. (Left
panel) I–V characteristic for the case of ballistic transport, hot
phonons, and equilibrium phonons for TPH = 300 K. (Right panel)
Temperatures of �-LO phonons with long and short wave vectors in
dependence on the applied voltage.

emission can occur at U ≈ 0.2 V. In the low bias regime,
(U � 0.1 V) the main contribution to the resistivity comes
from the acoustic phonons, and no significant difference is
observed between calculations performed with hot phonons
and phonons in equilibrium at 300 K. In contrast, for high
fields, a significant deviation between the influence of hot and
equilibrium phonons arises. When fixing the optical phonons
to their equilibrium, the current can even surpass the ballistic
current. This unexpected behavior can be explained by the
fact that interband processes, which scatter electrons into the
π∗ band, generate new electron-hole pairs which additionally
contribute to the current. Such a process is always linked
with the absorption of phonons with short wave vectors. This
can be clearly seen, by looking at the right panel of Fig. 3,
where the temperatures of �-LO phonons with long and short
wave vectors, deduced from averaged occupation numbers,
are plotted as a function of the applied voltage. The optical
phonons responsible for the generation of electron-hole pairs
become significantly cooler, which means that they deplete,
and thus reduce the electron-hole pair generation rate. Keeping
the phonons fixed at 300 K leads to higher electron-hole
generation rates, and explains the overestimation of the current
in this case. The peak at U = 0.1 V can be explained by the
emission of phonons when both electrons and holes (vacancies
below the Dirac point) have reached energies of 100 and
−100 meV, respectively, which opens an emission channel.
At higher voltages, this effect is superseded by generation
processes through absorption.

A. Time evolution

We study the transient response of the electron-hole and
phonon gas to the abrupt change of the applied bias. As initial
datum, for t = 0, we assume that the graphene sheet is in the
stationary state for an applied voltage U equal to 0.01 V. For
t > 0, we impose U = 0.1 V. In Fig. 4, we show the evolution
of the total current at the drain contact for the intrinsic (εF = 0)
and doped graphene (εF = 600 meV). The simulations put
in evidence the remarkable difference in the time scale of
the evolution for the current in intrinsic and nonintrinsic
graphene. In particular, a comparison with analogous results
for SWCNTs, reveals that the time scale of the evolution of
the current in graphene agrees with SWCNTs only for the
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FIG. 4. (Color online) Transient current evolution: (left plot)
intrinsic graphene; (right plot) εF = 600 meV.

high-doped case, whereas in the intrinsic case, the evolution
is significantly slower.25 As explained below, the reason for
this difference is connected with the need of a large number
of optical phonons to perform interband transitions in intrinsic
graphene. This is in contrast to the phonon-free excitations
of electron-hole pairs in SWCNTs. A careful analysis of
the Boltzmann collision operator reveals that the reason for
this time scale difference can be attributed to the specific
kind of phonon scattering processes which are responsible
for the dynamics of the particle gas. In particular, for non-
intrinsic graphene, the relatively fast response of the system
to the external stimulus is caused by the activation of a strong
phonon emission process. In this regime, the system is able to
dissipate efficiently the kinetic energy imparted to the particles
by the external field. On the contrary, when dealing with intrin-
sic graphene, the main mechanism that modifies the current
by driving the initial low-biased configuration to the final
high-field state, is the interband transfer of particles caused by
absorbtion of optical phonons. Since the latter is an emission
process, it is proportional to the occupation number of phonons
gη(q) ∝ 10−2 (with |q| < ω�/vF ). This justifies the difference
in the time scale of the current evolution between intrinsic
(mainly adsorption interband processes proportional to gη)
and nonintrinsic graphene (emission processes proportional
to 1 + gη). In order to make this point more clear, in Fig. 5,
we depict the evolution of the phonon distribution function
gK. The plot reveals both the temporal increase of the phonon
occupation numbers induced by thermal dispersion and its
deep depletion around q = 0. The latter marks the strong
phonon adsorption regime which characterizes the strongly
out-of-equilibrium state in the presence of a high potential in
intrinsic graphene.

B. Lattice heating

The phonon modes are the only dissipative channels
through which the electrons can loose the energy imparted
by the external field. High currents may induce a significant
overpopulation of phonons. A considerable heating of the
silicon oxide in FETs with a graphene channel under a
high applied source-drain voltage has been observed. This
indicates the non-negligible Joule effect induced by the strong
current flux.26 Under these conditions, the acoustic phonon
distribution cannot be assumed to remain at a fixed temperature
TL. Furthermore, experiments have shown that the temperature
under the silicon oxide in the silicon substrate is mainly
unaffected by the Joule heating, but this is not true for the
graphene sheet itself.
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FIG. 5. (Color online) Phonon distribution gK for (a) t = 0,
(b) t = 0.3 ps, (c) t = 1 ps, and (d) t = 10 ps.

Experimental evidence has recently confirmed that optical
phonons are significantly heated in high-field regimes which
results in a high nonequilibrium state of optical phonons.27 In
particular, direct measurements of the temperature, preformed
by spatially resolved Raman spectroscopy, showed that at the
interior of biased graphene sheets, hot spots appear, where
the phonon temperature can raise above 1600 K. This con-
firms the presence of a large non-equilibrium population of
phonons.26

For these reasons, in our simulations, we include the
dependence of the lattice heating on the optical phonon decay
process. The microscopic characterization of phonon decays
includes anharmonic effects represented by multiphonon
processes and virtual electron-hole excitations. Although in
the simplest scenario, phonons will decay into two acoustic
phonons, a comprehensive treatment of this process would
require the solution of the Boltzmann equation by including
the phonon-phonon collision operator. The latter becomes a
formidable task for a direct numerical treatment and, since the
details of the scattering are not completely understood, it would
reveal itself to be a probable source of unchecked errors.21 In
our system, the flux of particles and energy between optical and
acoustic phonons is modeled by a simple relaxation process,
where the phonon distribution function tends toward a local
Bose-Einstein distribution at the temperature T [see Eq. (14)].
In the previous simulations, the acoustic phonon temperature
was considered to be equal to the constant lattice temperature
TL (consequently also the relaxation time τη was constant).
Here, according to Ref. 28, we study the effect of lattice heating
by inserting in our model the following empirical dependence
of T upon the total current flowing in the graphene sheet:

T = TL + γ
IU

L
(20)

with γ = 0.3 × 103 W cm−2 K−1. Concerning the phonon
relaxation time, we assume τη(T ) = τc + τh−τc

Th−Tc
(T − Tc) with

τc = 5 ps (Tc = 300 K) and τh = 3 (Th = 800 K). These
linear formulas are in a good agreement with experiments
(see Ref. 21 for the theoretical study and the experiments
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FIG. 6. (Color online) Total current in graphene when the lattice
heating is included phenomenologically by Eq. (20). Continuous blue
line: nonequilibrium phonon solution and dashed red line: optical
phonons at the equilibrium.

concerning the linear dependence of τ vs T ). A look at Eq. (20)
reveals that the temperature of the substrate significantly
increases only for a high applied voltage, giving a contribution
spanning from a few Kelvin for U = 0.1 V until a factor of
the order of hundred Kelvin for higher values (U ∼ 1 V). The
numerical results given in Fig. 6 show that the increase of
the acoustic phonon temperature entails a consequent rise
of the total current. This unexpected result can be easily
explained by noting that a hotter phonon distribution sup-
ports the generation of new particle-hole pairs, which rise
the total number of charged particles in the channel. The
comparison with the assumption of an equilibrium for the
phonon distribution shows that in the latter case, the current
is significantly overestimated. This justifies the need of a full
dynamic treatment of the phonon occupation numbers.

Recently, simulations based on a Boltzmann transport
equation, where optical phonons are considered to be in
thermal equilibrium, have been published.27,30–32 Although
our simulations and experiments show that optical phonons
are out-of-equilibrium, the simpler assumption of a thermal
optical phonon bath can be invoked for reproducing the I–V
characteristics observed. A key role in this discussion is played
by the Joule self-heating of the graphene channel. In fact, as
found by means of our simulations (and that is also confirmed
by the calculations reported in Refs. 30 and 31), the final
value of the current flow depends sensibly on Eq. (20) and
the factor γ . In particular, in Ref. 31, the latter is considered
as a fitting parameter exploited to let the simulations be
conformed with experiments. Our more detailed treatment
of the scattering process tells us that there is an observable
difference between the particle motion in the presence of an
equilibrium phonon gas compared to one characterized by a
fully resolved nonequilibrium phonon distribution. As shown
in Fig. 6, these non-negligible corrections are of the same order
as the modification of the current induced by self-heating. For
that reason, we think that using the value of γ and consequently
the phonon temperature as a fitting parameter can in a certain
way compensate the minor precision of the simplified model
applied in Ref. 31. On the contrary, a clear indication of the
nonequilibrium character of the phonon gas is given by the time
scale of the carrier evolution where, as explained in Sec. IV A,
the phonon density depletion around the Dirac point forces
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the evolution of the system to proceed faster or slower as a
function of the chemical potential.

V. CONCLUSION

The obtained results, in this study, clearly reveal the
important influence of optical phonons on the charge carrier
transport in high-quality graphene at temperatures and applied
voltages highly relevant to future applications in electronic
devices. We clearly show that at room temperature in the
near-ballistic regime, nonequilibrium optical phonons together
with contact effects limit the possible current. Under this con-
dition, we find highly excited optical phonons with significant

impact on the electronic properties of graphene. The effects
caused by nonequilibrium optical phonons are similar to those
found in SWCNTs. These results required a space-dependent
simulation, as these effects are not accessible by numerical
studies of bulk materials.5,17,33 Our kinetic model describes
these phenomena in an efficient and detailed manner.
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