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Edge states of bilayer graphene in the quantum Hall regime
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We study the low-energy edge states of bilayer graphene in a strong perpendicular magnetic field. Several
possible simple boundary geometries related to zigzag edges are considered. Tight-binding calculations reveal
three types of edge-state behaviors: weakly, strongly, and nondispersive edge states. These three behaviors may
all be understood within a continuum model, and related by nonlinear transformations to the spectra of quantum
Hall edge states in a conventional two-dimensional electron system. In all cases, the edge states closest to zero
energy include a holelike edge state of one valley and a particlelike state of the other on the same edge, which
may or may not cross, depending on the boundary condition. Edge states with the same spin generically have
anticrossings that complicate the spectra, but which may be understood within degenerate perturbation theory.
The results demonstrate that the number of edge states crossing the Fermi level in clean, undoped bilayer graphene
depends both on boundary conditions and the energies of the bulk states.
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I. INTRODUCTION AND PRINCIPAL RESULTS

The integer quantized Hall effect is a generic behavior of
two-dimensional electron systems in a strong perpendicular
magnetic field.1–4 The primary manifestation of the effect is a
precise quantization of the Hall conductance σxy to integer
multiples of e2/h, with the coefficient determined by the
electron density. That this system can carry current at all is in
some ways surprising, because the spectrum of the bulk system
takes the form of Landau levels, highly degenerate states at
discrete energy values, with gaps separating these isolated
sets of states. With chemical potential placed in any of these
gaps, one naively expects the system to be insulating. A basic
explanation for the existence of Hall currents in clean systems
involves edge states:5 the energies of the Landau level states
disperse as their guiding center quantum numbers2 X approach
the physical edge of the sample, and are thus current-carrying
in a particular direction for a given edge. A difference in the
occupation of states at opposite edges of the sample leads
to a net current, with a voltage difference perpendicular to
that current,6 such that their ratio yields a Hall conductivity
quantized at the number of distinct edge state branches that
cross the Fermi level at a given edge.5 When the chemical
potential lies in an energy gap in the bulk of the system, the
only low-energy excitations of the system are present at its
edges. These dominate the low-energy physics of the system.

More recently, it has been recognized that the presence
of gapless edge states in a system with a bulk energy gap
is the defining characteristic of a more general class of
systems, known as topological insulators.7,8 Interestingly, in
such systems, states with different quantum numbers at the
same edge may cross the Fermi energy such that they carry
current in opposing directions, so that there are both holelike
and particlelike currents at the same edge. These states can
be topologically protected from backscattering, and allow the
transport of currents without dissipation. In addition, in such
systems one may observe transport of quantities other than
electric charge (e.g., spin) along their edges while carrying no

electric current. The realization of such currents would be a
major step in the exploitation of degrees of freedom beyond
charge in electronic devices.9,10

One system known to possess this sort of behavior is
graphene. Graphene is a two-dimensional honeycomb lattice
of carbon atoms, which recently has become available in the
laboratory.11–13 Electronic states near the Fermi energy in this
system largely reside in pz orbitals of the carbon atoms, and
when undoped, the low-energy continuum description of the
electron states is best given in terms of the Dirac equation.14,15

With an appropriate spin-orbit coupling term, it was shown that
single-layer graphene could become a topological insulator
even in the absence of a magnetic field.16 However, subsequent
estimates of the strength of this spin-orbit coupling in real
graphene suggested that the effect would be very difficult to
observe.17–19

Crossing of edge states with different quantum numbers
can nevertheless be realized in single-layer graphene in the
quantum Hall regime.20,21 This is due to its unique Landau level
spectrum, which has both positive and negative energy states
(and is particle-hole symmetric), with the former supporting
upwardly dispersing edge states and the latter downward
dispersing edge states. In the absence of interactions and
Zeeman coupling, there are four Landau levels precisely at
zero energy in the bulk, with each spin state supporting a
particlelike and a holelike edge state at each edge. When
Zeeman coupling is included, the two spin states split so that
one holelike state crosses one electronlike state at each edge.
This allows for dissipationless spin transport at the edges.21

The inclusion of electron-electron interactions transforms
the crossing edge states into a magnetic domain wall with
Luttinger liquid properties.22 This structure may explain the
presence of apparently metallic behavior for undoped graphene
in magnetic fields of order ∼10 T,23–25 which gives way to an
insulating state in stronger fields.26,27

The rich physics associated with crossing edge states
suggests that one may expect to find unusual behaviors in
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FIG. 1. (Color online) Energy bands of a Bernal-stacked graphene
bilayer nanoribbon, N = 240 atoms across in each layer, each with
zigzag edges. Perpendicular field is 100 T, interlayer bias V = 0.001t ,
and γ1 = 0.25t , with t the in-plane hopping amplitude.

other systems that support both particle- and holelike edge
states. In this context, bilayer graphene is a particularly
interesting candidate to investigate. Even in the presence of in-
terlayer coupling, bilayer graphene supports (in the absence of
Zeeman coupling) eight zero-energy states.28 Unlike the
single-layer case, this degeneracy can be broken and controlled
using an external, perpendicular electric field.29 This raises the
possibility of controlling the edge-state structure via a combi-
nation of this electric field and the Zeeman coupling (which
may be manipulated using a parallel magnetic field). In what
follows, we investigate the edge-state structure of a bilayer
graphene ribbon using both tight-binding calculations and the
Dirac equation, assuming appropriate boundary conditions for
the latter. We focus on ribbons with zigzag edges,30 as well as
some simple extensions of this involving “bearded” edges31 at
a given edge.

Figure 1 illustrates a typical spectrum for the energy states
of a graphene bilayer nanoribbon in a perpendicular magnetic
field, as a function of ky , the wave vector along the ribbon. One
may see two regions supporting very flat bands in the vicinity
of the ŷ component of the vectors K and K′, the locations
of the Dirac points in the Brillouin zone of a graphene sheet.
These results are consistent with those obtained in previous
studies.29,32 The bulk states for the valley on the left appear at
energies ε1 = V/2, where V is the potential energy difference
between the layers due to a voltage bias, and, in the limit of
small V ,

ε2 ≈ V

2

γ 2
1 − ω2

c

γ 2
1 + ω2

c

. (1)

Here γ1 is the hopping amplitude between overlaid sites of the
Bernal-stacked layers, ωc = √

2h̄vF /� in which � = √
ch̄/eB

is the magnetic length associated with the perpendicular
magnetic field B, and vF is the speed of electrons in the
vicinity of a Dirac point in the absence of interlayer hopping.
Analogous bulk energy states are present around K ′

y at ε′
1 =

−ε1 and ε′
2 = −ε2.

From the form of ε1, it is clear that the wave functions
corresponding to this band reside in a single sheet [see Eq. (4)
below]. For the right edge, one finds no dispersion in this
energy band, so that this edge state cannot contribute to the Hall
conductivity of the system. Such nondispersive edge states are
one type of behavior that is supported by the bilayer graphene
edge, and are very analogous to those of the zeroth Landau
level of a single graphene layer with a zigzag edge.33

At the same edge, ε2 disperses downward, and we shall see
that its dispersion has the approximate form

ε
edge
2 ≈ V

2

[
γ 2

1 − ω2
cf (X)

]
[
γ 2

1 + ω2
cf (X)

] , (2)

where f (X), which may be determined variationally, grows
monotonically from 1 when X is deep in the system bulk to
large positive values when X is well over the system edge. This
means that one expects the edge state to disperse downward,
from the bulk value ε2 to a value close to −V/2, as is apparent
in Fig. 1. Because the range of energies available to these edge
states is limited, they disperse relatively slowly, and represent
a second type of edge state that is supported by the bilayer
graphene system.

On the left edge of the system, there is an edge state that
originates in the K′ valley at −ε2, and approaches V/2 as X

moves well outside the bulk [in analogy with Eq. (2)]. Rather
than becoming degenerate with ε1, this begins to disperse
downward as the edge is approached, so that ultimately there
are both particlelike and holelike states dispersing from the
vicinity of ε1. This is analogous to the single-layer case,33 for
which a zigzag edge supports both particle-like and hole-like
branches dispersing from the n = 0 Landau level. Note that
these states disperse rapidly toward ±∞ as the wave-function
centers move across the edge, representing a third type of
behavior supported by this system, and is most similar to
behaviors apparent in conventional quantum Hall systems.5

We will see below that these states are most simply understood
in terms of the n = 0 single-layer edge states, coupled together
by γ1, resulting in level repulsion and anticrossings.

This complicated structure suggests interesting possibilities
for the low-energy edge states in bilayer graphene. For Fermi
level precisely at zero energy (ν = 0) and V exceeding the
Zeeman splitting, one finds counterpropagating edge states
for each spin, one from each valley, at a given edge: a
right-moving K valley state (band ε2) and a left-moving K′
valley state (band ε′

2) reside on the left edge (see Fig. 1),
and their symmetric counterparts reside on the right edge.
This contrasts strongly with the ν = 0 state of a conventional
two-dimensional electron system, for which there are no
edge states at all, and an insulator is formed for arbitrarily
small disorder. In principle, the counterpropagating states
will mix and localize due to disorder, but because they are
well-separated in ky , the localization length could be relatively
long. Thus charge transport due to these edge states might
be observable over short distance scales, in relatively clean
samples. It is also possible that they could be observed in
thermal transport.34,35

On the other hand, for large Zeeman splitting EZ and small
V , both electronlike states above (V − EZ)/2 for spin-up
states will cross the holelike states below (EZ − V )/2 at zero
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energy. In the absence of perturbations that can admix different
spin states,27 these channels will remain open so that ν = 0
would become a quantized spin Hall state.16

Finally, it is interesting to note that if the ratio γ1/ωc can be
tuned below 1, ε2 would fall below 0, and no edge states would
cross the Fermi level at all when ν = 0 if the Zeeman coupling
is sufficiently small. In principle, this can be accomplished
with large magnetic fields, but would require values well above
those currently available in the laboratory for the bare value of
γ1. It is possible, however, that the effective value of γ1 could be
decreased by an in-plane magnetic field. Presuming the energy
ε2 can be made to cross through zero energy for the undoped
system, this leads to the possibility of driving a topological
phase transition within the ν = 0 state. The change in the edge-
state structure for such a transition would be accompanied by
a bulk change in the state, from a partially valley-polarized to
an unpolarized state.

The remainder of this paper is organized as follows. In
Sec. II, we describe our tight-binding results for the edge-state
structure in more detail, and show how the results evolve from
the single-layer results33 as interlayer tunneling is turned on
from zero. Section III discusses the continuum representation
of these results. We conclude with a summary and some
speculations in Sec. IV.

II. NUMERICAL RESULTS FOR THE TIGHT-BINDING
MODEL

A. Zigzag edges

Our numerical calculations are based on a simple nearest-
neighbor tight-binding model for graphene, with hopping
amplitude t , which we take as our unit of energy in what
follows. The basic unit for the bilayer crystal structure is
illustrated in Fig. 2, in which there is an upper and lower layer
whose bonding structure is indicated. In addition, there is a
hopping matrix element γ1 connecting sites lying above/below
one another [red (Ã) and yellow (B) atoms in Fig. 2].
The graphene bilayer may also have longer-range interlayer
hopping parameters γ3 and γ4, whose effect we assume to be
negligible in the presence of a perpendicular magnetic field.28

We consider the unit-cell structure, which has width a, to be
infinitely repeated in the ŷ direction, and to be repeated a finite
number of times in the x̂ direction. The resulting structure
has zigzag edges in both layers on both sides of the ribbon.

FIG. 2. (Color online) Unit cell for Bernal-stacked graphene
bilayer nanoribbon, with zigzag edges. Dashed lines indicate bonds
on the lower layer, solid lines are bonds on the upper layer.

Other edge constructions can be generated by removing atoms
at the edge from the top or bottom layer. Removing an odd
number of atoms from one of the layers in this way generates
a “bearded” edge31; removing an even number returns the edge
to a zigzag form. We explore two such constructions below. To
implement the magnetic field, we introduce a vector potential
into the hopping matrix element between neighboring atoms a

and b in the standard way, t → t exp [i e
c

∫ b

a
A · dr], where A is

the vector potential associated with the magnetic field, and we
have taken h̄ = 1. Note that in order to avoid using excessively
large numbers of atoms in a unit cell, we set the magnetic
field to be rather large (B = 100 T), so that our ribbon is
several magnetic lengths across. Although this is beyond what
is typically attainable in the laboratory, our results should be
qualitatively the same as for wider ribbons in lower magnetic
fields.

Given the form of the tight-binding model, it is clear that
there should be a continuous evolution of the spectra from
that of decoupled layers (γ1 = 0) to the form exhibited in
Fig. 1 for physical values of γ1 [estimated as 0.4 eV (Ref. 14)].
Figure 3 shows an example of this for a series of γ1 values,
from γ1 = 0.05 t to 0.2 t . Note that guiding center coordinates
for the single-particle states connected to the bulk states at K
have the form X = (ky − Ky)�2, up to an overall constant.
Where the bands begin to strongly diverge from their bulk
energies as a function of ky , the guiding center coordinate
comes close to the physical edge of the system. This is easily
confirmed by the form of the wave functions.

For the smallest value [Fig. 3(a)], it is clear that the
basic structure of the spectrum involves particlelike and
holelike edge states, each dispersing from bulk bands around
ε = ±V/2. The two states converging toward zero energy
are admixed by γ1, creating an anticrossing. Note the gap
associated with this anticrossing is relatively large, because
γ1 � V . Thus one sees the spectrum is largely similar to that
of two uncoupled layers at different constant potentials. For
all the results shown in Fig. 3, when X is sufficiently inside
the bulk that the effect of the edge is quite small, one may see
that the two levels closest to zero always initially approach
one another as X moves toward the edge. The two modes then
anticross, and furthermore anticross with the levels closest
to ±V/2. Interestingly, the two modes at ±V/2 persist to
slightly larger values of ky before diverging to large values
of |ε|. Note that of these two modes, the positive energy
one is an edge mode of the bulk band in the K valley at
ε = V/2, while the negative one is the continuation of an
edge state associated with a bulk band at −V/2 for the K′

valley.
Edge states associated with the K valley for the other

side of the ribbon behave relatively smoothly compared to
the above, and are plainly visible in Fig. 1. This consists of
a dispersionless edge state at ε = V/2 associated with the
bulk band ε1, and an edge state dispersing downward from ε2

toward −V/2, where it continuously joins to the particlelike
branch of the edge states (for γ1 → 0) associated with the bulk
state at −V/2 of the K′ valley. As we discuss in Sec. III, the
behavior of these two states can be understood in a relatively
straightforward manner from the continuum description of this
system with appropriate boundary conditions.
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FIG. 3. (Color online) Detail of tight-binding energy bands of zigzag bilayer ribbon, near left edge of system, for state emerging from
Landau levels of the K valley. The unit cell contains 480 atoms, perpendicular field is 100 T, and V = 0.001 (in units of t). Results illustrated
for several values of γ1.

B. Variants on the bilayer zigzag edge

We next discuss the edge-state spectra for two variants of the
zigzag edge, known as the “bearded” edge.31 This structure is
created from a zigzag ribbon edge by removing the outermost
atoms at the edge. The structure can also be created by adding
single atoms to the outermost points of zigzag edge.

In the bilayer, structures involving bearded edges naturally
emerge if one cuts all the bonds along a line in the zigzag
direction. In addition to the zigzag geometry illustrated in
Fig. 1, two other possibilities arise, as illustrated in the insets
of Figs. 4 and 5. The edges in these two latter cases both
involve a single zigzag edge in one layer and a bearded edge
in the other. Unlike the ribbon with two zigzag edges, these
ribbons present atoms on the same sublattice at both edges.
The difference between the two zigzag-bearded edge ribbons
is that in one case the atoms at an edge are uncoupled between
layers, whereas in the other case the two outermost atoms form
an interlayer dimer.

The spectrum of the former case is illustrated in the main
panel of Fig. 4. Prominently visible are bands of constant

energy precisely at ±V/2. Such bands across the Brillouin
zone are also visible when γ1 = 0, the spectra of two single-
layer ribbons at potentials ±V/2, each with one bearded edge
and one standard zigzag edge (see Fig. 6). In terms of a
continuum model, this latter result has a simple interpretation:
for the K′ valley of the bottom (−V/2) layer, the boundary
condition may be taken to be vanishing of the A sublattice
component on both edges, leading to dispersionless edge states
on both sides. In this structure the dispersionless state of the left
edge continues through the K valley. However, it has no simple
interpretation in terms of K valley states within a continuum
description. These states are very localized on the edge atoms
of the bearded edge, and because their hybridization with the
rest of the ribbon is extremely weak, and there is no hopping
directly among them, the energy of the state is essentially
pinned at −V/2.

For the K valley, the boundary condition in the same layer is
a vanishing wave-function component on sublattice B, so that
one finds the pair of dispersing particlelike and holelike edge
states of the zeroth Landau level for a standard zigzag edge33
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FIG. 4. (Color online) Energy states near zero for graphene ribbon
with one layer bearded at each edge. The unit cell contains 474 atoms.
Perpendicular field is 100 T, V = 0.001, and γ1 = 0.25 (in units of
t). Upper inset illustrates edges of the unit cell.

at both edges. Note the unusual situation that three bands are
degenerate at −V/2 near the Ky point; the extra state is most
naturally interpreted as a continuation of the n = 0 Landau
level edge state from the K′ valley.

This situation evolves in a simple way when γ1 is increased
from zero. For the K valley, the bulk mode at ε1 = V/2 is
localized on a single sublattice that is not directly affected by
the boundary conditions, and so remains dispersionless at both
edges. The other two K valley levels, which were degenerate
at −V/2 for γ1 = 0, evolve into a bulk mode at ε2, which
has particlelike edge states due to the boundary condition,
and into an edge mode whose energy remains near −V/2

FIG. 5. (Color online) Energy states near zero for graphene ribbon
with one layer bearded at each edge. Dimer atoms protrude at edges
in this construction. The unit cell contains 478 atoms. Perpendicular
field is 100, V = 0.001, and γ1 = 0.25 (in units of t). Upper inset
illustrates edges of the unit cell.
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FIG. 6. (Color online) Energy states near zero for graphene ribbon
with one layer bearded at each edge. Parameters are identical to those
of Fig. 4, except γ1 = 0.

for ky sufficiently close to Ky , but develops a strong holelike
dispersion away from the valley center. One also observes the
edge state from the K′ valley at −V/2.

It is interesting to contrast this edge-state structure with
what is apparent in Fig. 1. In addition to being considerably
simpler, the edge-state structure of Fig. 4 has no slowly
dispersing edge states, as is the case for the other edge
constructions we consider. Moreover, there are no edge states
of any kind crossing the Fermi level when it is at zero energy in
this particular case. This demonstrates that in bilayer graphene,
one may or may not have edge states crossing zero energy for
the same bulk spectrum, depending on boundary conditions. In
the former case, these are counterpropagating, so that no charge
current is present at the edge in equilibrium, although these
may transport energy.34 That the presence or absence of low-
energy edge excitations can depend on boundary conditions
is somewhat unusual for a quantum Hall state, but is allowed
because there are no strict quantum numbers distinguishing
the counterpropagating states. When counterpropagating edge
states carry different quantum numbers (e.g., spin), we expect
their presence to be more robust.22,27

Finally, we consider the situation in which the outermost
atoms at the edge are dimers, tunnel-coupled by γ1. The
corresponding spectrum is illustrated in Fig. 5. In this situation,
there are no dispersionless states because the boundary
conditions involve the sublattices on which the bulk states
at ε1,2 for the K valley (and −ε1,2 for the K′ valley) reside.
Interestingly, we find two edge states that “thread” the gaps
between the bulk states. Unlike the previous case, where each
extra atom of a beard was connected to atoms only through a
single bond, in this case these atoms are coupled to the zigzag
edge of the opposing layer through γ1. Thus it is not surprising
that states localized on these sites would develop a dispersion,
whereas in the previous case there was none. This situation
is rather unique in supporting quasi-one dimensional states at
the edge, which are not directly connected to any bulk state.

The behavior of the dispersive energy levels in each of the
above-mentioned edge structures (Figs. 1, 4, and 5) can be
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understood within a continuum theory with the appropriate
boundary condition. This is described in detail in the next
section.

III. CONTINUUM DESCRIPTION

We consider a Bernal-stacked bilayer graphene ribbon of
finite width L in the x̂ direction, where interlayer hopping
is assumed to be only between the overlaid sites [red
(Ã) and yellow (B) in Fig. 2] with an amplitude γ1, and
an interlayer voltage bias V is applied. Using a basis of
4-spinors (B̃,Ã,B,A), where A, B (Ã, B̃) denote wave-
function components on sublattices A and B of the top
(bottom) layer, and a gauge choice A = Bzxŷ for the vector
potential, the Dirac Hamiltonian projected onto a given ky in
the vicinity of the valley K is given by the 4 × 4 matrix

H =

⎛
⎜⎜⎜⎝

−V/2 ωca 0 0

ωca
† −V/2 γ1 0

0 γ1 V/2 ωca

0 0 ωca
† V/2

⎞
⎟⎟⎟⎠ . (3)

Here a = 1√
2
[∂x + (x − X)] and a† = 1√

2
[−∂x + (x − X)],

where x and the guiding-center coordinate X ≡ �(ky − Ky)
are in units of the magnetic length � (i.e., dimensionless), and
ωc = √

2h̄vF /�. In the vicinity of the other valley (K′ point),
the same Hamiltonian (with V → −V ) applies in the basis of
inverted 4-spinors (A,B,Ã,B̃). As already discussed in Sec. I,
for V 
 γ1,ωc the bulk solution for the energy spectrum of
(3) includes two low-energy levels, ε1 = V/2 and ε2 [Eq. (1)].
The corresponding eigenfunctions are given by32

|	1〉 =

⎛
⎜⎜⎜⎝

0

0

0

|0〉

⎞
⎟⎟⎟⎠ , |	2〉 = 1

N

⎛
⎜⎜⎜⎝

0
|0〉

V γ1

γ 2
1 +ω2

c

|0〉
− γ1

ωc
|1〉

⎞
⎟⎟⎟⎠ , (4)

in which |n〉 = φn(x − X) are the harmonic-oscillator wave
functions, and N is a normalization factor. The dispersion of
εν when X approaches the edge can be found by imposing the
appropriate boundary condition at x = ±L/2. Below we study
separately four distinct boundary conditions, compatible with
the tight-binding calculations of the previous section.

A. Right zigzag edge: B(L/2) = B̃(L/2) = 0

In a bilayer ribbon with zigzag edges including an integer
multiple of unit cells, the boundary conditions at the right
and left edges are fundamentally different. We first consider
the right-hand edge (x = L/2), at which the wave function
is forced to vanish on the B sublattice of both layers.
We therefore look for solutions of the form �edge

ν (x) =
(B̃(x),Ã(x),B(x),A(x)), where B(L/2) = B̃(L/2) = 0. From
Eq. (4) it is obvious that the bulk wave function �1 already
obeys this boundary condition, hence ε1 is nondispersive in
analogy with the monolayer case. In contrast, the component
B(x) of �2 is nonvanishing; however, it is smaller than the
components A(x), Ã(x) in the small V limit. This suggests
that �

edge
2 is given by a smooth deformation of �2, which

dictates a dispersion ε
edge
2 (X) of the corresponding eigenvalue.

An exact analytic evaluation of ε
edge
2 (X) is not possible.

However, as we show next, an approximation based on either
a variational calculation or a perturbation expansion in the
interlayer hopping can explain the right-hand dispersion of ε2

in Fig. 1.
We start with a variational approach, similar to the one

adapted in Ref. 33 for a single-layer graphene. The variational
ansatz on �

edge
2 (x) is taken to be the simplest modification of

the bulk function �2(x), which obeys the boundary condition.
We therefore assume B̃(x) = 0, and apply the variational
principle to the remaining three components, out of which only
B(x) is restricted by the vanishing boundary condition. Note
that since the spectrum of the Dirac Hamiltonian is unbounded,
the standard procedure of minimizing the energy expectation
value ε = 〈H 〉 is not applicable. However, it turns out to be
possible to express it as a monotonic function of an “effective
energy” functional with a well-defined minimum. To see this,
we first impose the extremum condition δε/δA = δε/δÃ = 0,
which yields

Ã(x) = γ1

(ε + V/2)
B(x) , (5)

A(x) = 1

(ε − V/2)
ωca

†B(x) . (6)

Evaluating 〈H 〉 for this state, in the small V limit, produces
an expression for ε as a functional of B(x) only:

ε ≈ V

2

(
γ 2

1 − ω2
c〈aa†〉B

)
(
γ 2

1 + ω2
c〈aa†〉B

) , (7)

where

〈aa†〉B ≡
∫

dxB∗(x)aa†B(x)∫
dx|B(x)|2 = 1 + 〈a†a〉B . (8)

Quite interestingly, the expectation value 〈a†a〉B (implicitly
dependent on X via the definition of a, a†) is equivalent (up
to an additive constant) to the energy of a quantum Hall edge
states in an ordinary two-dimensional (2D) electron gas. In
particular, it is identical to the functional associated with the
square of the energy of edge states in single-layer graphene,33

and can be minimized using a standard variational ansatz for
B(x). Notice that minimizing 〈a†a〉B with respect to B also
minimizes ε2 in Eq. (7), giving estimates for the states closest
to zero energy. The dispersion curve f (X) = 1 + min{〈a†a〉B}
has a known qualitative behavior as a function of X: in the bulk,
B(x) = |0〉, hence f (X) = 1; as X approaches the boundary,
f (X) increases monotonically and acquires large positive
values when X is well beyond the edge. When substituted
in Eq. (8), this yields the dispersive energy band

ε
edge
2 (X) = V

2

[
γ 2

1 − ω2
cf (X)

]
[
γ 2

1 + ω2
cf (X)

] , (9)

which decreases monotonically with X from the bulk value ε2

to the saturated value ε
edge
2 (X) → −V/2 as f (X) → ∞.

An alternative approach to the derivation of the above
dispersion law involves a perturbative expansion in γ1. This
approach turns out to be useful to develop insight about
the prominent qualitative features of the spectrum for more
complicated boundary conditions as well, even in the regime
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where it is not strictly justified to assume γ1 small. To this end,
we define

H′ =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 γ1 0

0 γ1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ (10)

as a perturbation on H0 ≡ Hγ1=0 describing the uncoupled
layers. The eigenstates of H0 are single-layer Landau level
(LL) states. Focusing first on bulk states, the zero LL states
and corresponding energies (split by the interlayer bias V ) are
given by

∣∣	(0)
1

〉 = |�0〉 ≡

⎛
⎜⎜⎜⎝

0

0

0

|0〉

⎞
⎟⎟⎟⎠ , ε

(0)
1 = V

2
, (11)

∣∣	(0)
2

〉 = |�̃0〉 ≡

⎛
⎜⎜⎜⎝

0

|0〉
0

0

⎞
⎟⎟⎟⎠ , ε

(0)
2 = −V

2
. (12)

Since H′|	(0)
1 〉 = 0, the perturbation does not couple the top-

layer state [Eq. (11)] to higher LL’s, so that |	(0)
1 〉 = |	1〉

[Eq. (4)] and ε
(0)
1 remains fixed at ε1 = V/2 for arbitrarily large

γ1. In contrast, H′ couples the bottom-layer state [Eq. (12)] to
the n = ±1 LL states in the top layer,

|�±1〉 = 1√
2

⎛
⎜⎜⎜⎝

0

0

|0〉
±|1〉

⎞
⎟⎟⎟⎠ , ε±1 = V

2
± ωc . (13)

To second order in perturbation theory (and leading order in
V/ωc), the resulting correction to ε2 is

ε
(2)
2 =

∑
n=±1

|〈�n|H1|�0〉|2

ε
(0)
2 − εn

≈ γ 2
1 V

ω2
c

. (14)

To leading order in γ1/ωc, the resulting ε2 = ε
(0)
2 + ε

(2)
2

coincides with Eq. (1).
We next consider edge states where X approaches the right

edge boundary L/2. Since both |�0〉 and |�̃0〉 [Eqs. (11)
and (12)] have vanishing components on the B sublattice, the
boundary condition is obeyed and ε

(0)
1 , ε

(0)
2 do not disperse.

However, higher LL states are modified and consequently so
is the energy eigenvalue ε2 at finite γ1. For γ1 = 0, the wave
functions and energies (13) become

∣∣�R
±1

〉 = 1

NR

⎛
⎜⎜⎜⎜⎝

0

0

|0R〉
± 1√

1+λ(X)
|1R〉

⎞
⎟⎟⎟⎟⎠ ,

(15)

εR
±1 = V

2
±

√
1 + λ(X)ωc,

where |0R〉|x=L/2 = 0 so that a†a|0R〉 = λ(X)|0R〉 with
λ(X) > 0 the dispersion curve of a conventional lowest LL
edge state, |1R〉 ≡ a†|0R〉, and NR is a normalization factor.
Neglecting the contribution of higher LL, we obtain the
second-order correction to ε2,

ε
R(2)
2 (X) ≈ 2γ 2

1 V

N 2
R

|〈0R|0〉|2

ω2
c [1 + λ(X)]

. (16)

Note that Eq. (16) is similar to (14), with the expansion
parameter γ1/ωc replaced by the X-dependent parameter
γ1/ω̃c(X), where

ω̃c(X) ≡ NRωc

√
1 + λ(X)√

2|〈0R|0〉| . (17)

When X is pushed farther toward the edge, ω̃c(X) is mono-
tonically increasing due to a combination of the increase of
λ(X) in the numerator and the suppression of the overlap
|〈0R|0〉| in the denominator. For X far beyond the physical
edge, ω̃c(X) → ∞. Hence, even in the physically relevant
case where γ1/ωc > 1, the effective perturbation expansion
parameter becomes increasingly smaller, i.e., the coupling
between layers effectively weakens. This behavior turns out
to be valid for all types of boundary conditions. In the
present case, we conclude that the dispersion curve ε2(X)
is monotonically decreasing and asymptotically approaches
−V/2 for X → ∞, in agreement with the variational result
Eq. (9).

B. Left zigzag edge: A(−L/2) = Ã(−L/2) = 0

The boundary condition on the left edge of the ribbon,
A(−L/2) = Ã(−L/2) = 0, creates a much stronger distur-
bance for both electronic wave functions |	1〉, |	2〉 when
X is close or to the left of −L/2, and changes their
shape significantly. To analyze this case, we implement the
perturbative approach introduced in the previous subsection.
The uncoupled layers states |�0〉, |�̃0〉 and the corresponding
energy levels [Eqs. (11) and (12)] are now split into two
branches each:

|�L
±0〉 = 1

N0

⎛
⎜⎜⎜⎝

0

0

± 1√
λ(X)

|�L〉
|0L〉

⎞
⎟⎟⎟⎠ ,

(18)

εL
±0(X) = V

2
± ωc

√
λ(X) ,

|�̃L
±0〉 = 1

N0

⎛
⎜⎜⎜⎝

± 1√
λ(X)

|�L〉
|0L〉

0

0

⎞
⎟⎟⎟⎠ ,

(19)

ε̃L
±0(X) = −V

2
± ωc

√
λ(X),

where |0L〉|x=−L/2 = 0, a†a|0L〉 = λ(X)|0L〉 [with λ(X) the
same as λ(−X) of Eq. (15)], and |�L〉 ≡ a|0L〉 a wave function
strongly confined to the edge. Note that the holelike dispersive
branch of the top-layer state [εL

−0(X)] and the particlelike
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branch of the bottom layer [ε̃L
+0(X)] cross at zero energy.

When we next turn on a finite but small interlayer hopping
γ1, these two branches mix and a gap will open up, yielding an
avoided crossing as observed in Fig. 3(a). For larger γ1, each
of the mixing branches separately will get modified and the
band structure becomes more complicated. To leading order in
perturbation theory, we consider the corrections due to mixing
with higher LL states,

|�L
±1〉 = 1

NL

⎛
⎜⎜⎜⎝

0

0

± 1√
λ1(X)

|0′
L〉

|1′
L〉

⎞
⎟⎟⎟⎠ ,

(20)

εL
±1 = V

2
± ωc

√
λ1(X) ,

|�̃L
±1〉 = 1

NL

⎛
⎜⎜⎜⎝

± 1√
λ1(X)

|0′
L〉

|1′
L〉
0

0

⎞
⎟⎟⎟⎠ ,

(21)

ε̃L
±1 = −V

2
± ωc

√
λ1(X),

where |1′
L〉|x=−L/2 = 0, a†a|1′

L〉 = λ1(X)|1′
L〉 with λ1(X) >

1, and |0′
L〉 ≡ a|1′

L〉. This yields the following approximations
for the holelike and particlelike branches dispersing from the
bulk energy levels ε1, ε2:

εL
1,±(X)

≈ V

2
± ωc

√
λ(X)

− 2γ 2
1 |〈1′

L|�L〉|2[±ωc

√
λ(X) + V ]

N 2
0 N 2

Lλ(X)
{
ω2

c [λ1(X) − λ(X)] ∓ 2V ωc

√
λ(X)

} ,

(22)

εL
2,±(X)

≈ −V

2
± ωc

√
λ(X)

− 2γ 2
1 |〈0′

L|0L〉|2[±ωc

√
λ(X) − V ]

N 2
0 N 2

Lλ1(X)
{
ω2

c [λ1(X) − λ(X)] ± 2V ωc

√
λ(X)

} .

(23)

In particular, the holelike branch εL
1,−(X) and the particlelike

branch εL
2,+(X) develop a nontrivial (possibly nonmonotonic)

dependence on X, which shifts their crossing away from
zero energy. The gap opening at the avoided crossing point
is given to leading order by degenerate perturbation theory
as

�L(X) ≈ γ1√
λ(X)N 2

0

|〈0L|�L〉| . (24)

As γ1 becomes bigger, the second-order corrections in
Eqs. (22) and (23) become increasingly dominant, and in
particular the negative correction to εL

2,+(X) can lead to the
features observable in the spectrum depicted in Figs. 3(b)–3(d).
However, it should be noted that (as in the previous case of

boundary conditions, and for the same reason) the perturbative
expansion systematically improves for the farthest edge states
(corresponding to X very close to or beyond the left edge). The
lowest-energy levels are then approximated by the particle-
hole symmetric values ±[V/2 − ωc

√
λ(X)], consistent with

Fig. 3.

C. Top-layer bearded edges B(±L/2) = Ã(±L/2) = 0

The next type of boundary condition corresponds to the
edges depicted in Fig. 4. A special feature of this particular
configuration is that an identical (vanishing) boundary condi-
tion is imposed on both wave-function components associated
with the overlaid sites of the interlayer dimer, i.e., B(±L/2) =
Ã(±L/2) = 0. Therefore, one can find a consistent solution
to the Dirac equation H |�〉 = ε|�〉 [where H is given by
Eq. (3)] with Ã(x), B(x) being given by the same function (up
to a constant prefactor).

To see this, we note that the Dirac equation can be cast as
a set of four coupled equations:

ωcaÃ = (ε + V/2) B̃, (25)

ωca
†B̃ + γ1B = (ε + V/2) Ã, (26)

γ1Ã + ωcaA = (ε − V/2) B, (27)

ωca
†B = (ε − V/2) A , (28)

which can be combined to yield two coupled Schrödinger
equations for the components Ã, B:

[
ω2

ca
†a − (ε + V/2)2

]
Ã = −γ1(ε + V/2)B, (29)[

ω2
caa† − (ε − V/2)2

]
B = −γ1(ε − V/2)Ã . (30)

Clearly, there is a solution to Eqs. (29) and (30) of the
form Ã = cA|0e〉, B = cB |0e〉 in which cA, cB are constants
and |0e〉 is an eigenstate of the operator a†a satisfying the
boundary condition. For X close to (or beyond) one of the
edges ±L/2, the function |0e〉 satisfies the boundary condition
|0e〉|x=±L/2 = 0 and the Schrödinger equation

a†a|0e〉 = λ(X)|0e〉 ; (31)

here λ(X) is the same dispersion curve introduced in the
previous subsections, corresponding to the edge dispersion
of a conventional LLL edge state. In fact, |0e〉 coincides
with |0R〉 (Sec. III A) for X > 0, and |0L〉 (Sec. III B) for
X < 0. Substituting this ansatz in Eqs. (29) and (30), we get
an eigenvalue equation for ε:

(ε − V/2)2 − ω2
c [1 + λ(X)]

γ1(ε − V/2)
= γ1(ε + V/2)

(ε + V/2)2 − ω2
cλ(X)

. (32)

For V 
 ωc,γ1, the two lowest-energy solutions are
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ε±(X) ≈ 1

�2 + 1 + 2λ(X)

[
−V

2
±

√
V 2

(
�4

4
− λ(X)[1 + λ(X)]

)
+ ω2

cλ(X)[1 + λ(X)][�2 + 1 + 2λ(X)]

]
, (33)

where � ≡ γ1/ωc.
We first note that the above calculation recovers the known

bulk solution for λ(X) = 0 and |0e〉 = |0〉. Indeed, Eq. (33)
then yields ε+(X) = ε2 [Eq. (1)]. The apparent second solution
ε− = −V/2 does not correspond to a valid solution of the
original Dirac equation: inserting Ã = cA|0〉, B = cB |0〉 in
Eqs. (25) and (26) gives an ambiguous expression for the
B̃ component. (This can be traced back to an assumption
that a†a|0e〉 �= 0, which is not the case when |0e〉 is a bulk
lowest Landau level state.) We therefore conclude that ε±(X)
converges to a single bulk energy level ε2, which (as noted
earlier) has evolved from the zero Landau level bulk state
of the uncoupled bottom layer. However, as soon as λ(X)
is finite, Eq. (33) dictates that the bulk state splits into two
dispersive bands: ε+(X) is particlelike, and steeply deviates
upward from ε2 as X approaches the edge, i.e., with increasing
λ(X); ε−(X) is holelike, and steeply deviates downward from
−V/2 as λ(X) increases. This behavior is clearly seen in
Fig. 4.

We finally comment that in addition to the above-mentioned
dispersive energy bands, there exists a trivial solution to this
boundary problem where Ã = B = 0. Similarly to the case
discussed in Sec. III A, this corresponds to the bulk wave
function |	1〉 [see Eq. (4)], which is not affected by the
boundary. As a consequence, there is no dispersion of the bulk
energy level ε1 and it is maintained fixed at V/2 for arbitrarily
large |X|. The other valley (K′ point) contributes another
nondispersive state at energy −V/2, which corresponds to
an eigenfunction |	 ′

1〉 localized on the B̃ component only.
Together with ε±(X), this explains the entire spectrum depicted
in Fig. 4.

D. Bottom-layer bearded edges
A(±L/2) = B̃(±L/2) = 0

The boundary condition corresponding to the edge structure
depicted in Fig. 5 can be cast as A(±L/2) = B̃(±L/2) = 0.
Similar to the case discussed in Sec. III B, this imposes a
strong perturbation on the low-energy states as both |�1〉 and
|�2〉 [see Eq. (4)] have to be modified from their bulk form.
We study this case using the perturbative approach introduced
above. The unperturbed (γ1 = 0) states satisfying the boundary
conditions are given by edge states of the form |�L

±0〉 [Eq. (18)]
(with |0L〉, |�L〉 replaced by |0R〉, |�R〉 for right-edge states, i.e.,
X > 0) and the bulk state |�̃0〉 [Eq. (12)]. Note that the lower-
energy branch of the edge states, εe

−0(X) = V/2 − ωc

√
λ(X)

(e = R,L), is holelike and crosses the unperturbed bulk level
ε

(0)
2 = −V/2. Turning on the interlayer hopping γ1 leads to a

shift of the latter bulk level and its dispersion at the edge, and
in addition to mixing of the crossing levels and an opening of
a gap. As in Sec. III B, we first evaluate the dispersive energy
bands εe

1,±(X), εe
2,±(X) resulting due to mixing with the higher

LL n = ±1 to leading order in γ1. The n = ±1 states of the

uncoupled layers are given in this case by

∣∣�e
±1

〉 = 1

N ′
e

⎛
⎜⎜⎜⎝

0

0

± 1√
λ1(X)

|0′
e〉

|1′
e〉

⎞
⎟⎟⎟⎠ ,

(34)

εe
±1 = V

2
± ωc

√
λ1(X) ,

∣∣�̃e
±1

〉 = 1

Ne

⎛
⎜⎜⎜⎝

|0e〉
± 1√

1+λ(X)
|1e〉

0

0

⎞
⎟⎟⎟⎠ ,

(35)

ε̃e
±1 = −V

2
± ωc

√
1 + λ(X),

where |1′
e〉|x=±L/2 = 0, |0′

e〉 ≡ a|1′
e〉, and λ(X), λ1(X) are the

same as in Sec. III B. The resulting perturbative expressions
for the edge bands dispersing from ε1, ε2 are

εe
1,±(X) ≈ V

2
± ωc

√
λ(X)

− 2γ 2
1 |〈1e|�e〉|2[V ± ωc

√
λ(X)]

N 2
0 N 2

e λ(X)[1 + λ(X)]
[
ω2

c ∓ 2V ωc

√
λ(X)

] ,

(36)

εe
2(X) ≈ −V

2
+ 2γ 2

1 V |〈0′
e|0〉|2

(N ′
e)2ω2

cλ
2
1(X)

. (37)

The band εe
2(X) exhibits the same behavior as ε2(X) obtained

in Sec. III A [see Eq. (16)], which arises in both cases
from the dominant boundary condition on the component B̃.
This corresponds to a moderate holelike dispersion, which
interpolates between the bulk energy ε2 and −V/2 as X is
pushed farther and beyond the edge. From Eq. (36), the lower
branch εe

1,−(X) is also holelike and disperses more steeply.
As a result, εe

2(X) and εe
1,−(X) tend to cross at X satisfying

εe
2(X) = εe

1,−(X). As in the case discussed in Sec. III B, this
crossing is avoided and a gap is opening, given (to leading
order in γ1) by

�e(X) ≈ − γ1√
λ(X)N0

|〈0|�e〉| . (38)

The resulting edge spectrum is characterized by two separate
holelike bands: one interpolating between the bulk state
ε1 = V/2 and a saturated value −V/2, and one starting at
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ε2 and steeply dispersing downward without bound. On top
of these, the branch εe

1,+(X) is largely particlelike and steeply
disperses upward for X near or beyond the edge. This behavior
is consistent with Fig. 5. It should be noted that the above
analysis, based on a perturbative expansion in γ1, appears to
be qualitatively valid even if γ1 is not small. As we have
argued in Secs. III A and III B, the perturbative expansion in
fact becomes increasingly more justified as X is pushed farther
over the edge.

IV. CONCLUSION

In this paper we have studied edge states of bilayer graphene
systems in the quantum Hall regime. Our results show that a
variety of edge-state energy structures are possible depending
on precise boundary conditions. In some cases, we found
that for a continuum model, edge states can disperse from
a bulk energy value ±V/2 to ∓V/2, while in other cases they
may disperse to ±∞. In yet other cases the edge states may
not disperse at all. All these behaviors could be understood
qualitatively within the framework of perturbation theory, and
in the first of these cases a variational approach allows us
to relate the edge-state dispersion to the problem of edge
states in single-layer graphene and to the edge dispersion of
conventional quantum Hall states.

The complicated dispersions discussed in this paper yield a
variety of possible crossings and anticrossings, particularly
when spin is included as a degree of freedom and the
effects of Zeeman coupling are considered. This rich set of
possible spectra for the edge states of bilayer graphene in a
magnetic field suggest a variety of possibilities for physical
phenomena at the edge, including counterpropagating edge
states, spin-filtering,21 and multicomponent Luttinger liquids.
These possibilities will be explored in future research. We
note that the phenomenology associated with the predicted
edge-state structure is likely to be observable in relatively clean
bilayer nanoribbon flakes with straight edges: local impurities
and rough edges are expected to localize the edge channels,36

yielding an insulating state close to zero doping.

ACKNOWLEDGMENTS

We acknowledge useful discussions with R. Moessner,
V. G. Pai, and C.-W. Huang. The authors acknowledge the
hospitality of KITP-UCSB where this work was initiated,
and the Aspen Center for Physics. This work has been
financially supported by the US–Israel Binational Science
Foundation (BSF) through Grant No. 2008256, the Israel
Science Foundation (ISF) Grant No. 599/10, and the NSF
through Grant No. DMR1005035.

1R. E. Prange and S. M. Girvin, The Quantum Hall Effect (Springer-
Verlag, New York, 1987).

2D. Yoshioka, The Quantum Hall Effect (Springer-Verlag, New York,
2002).

3S. Das Sarma and A. Pinczuk, Perspectives in Quantum Hall Effects
(Wiley, New York, 1997).

4J. K. Jain, Composite Fermions (Cambridge University Press, New
York, 2007).

5B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
6M. Buttiker, Phys. Rev. B 38, 9375 (1988).
7Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
8X. L. Qi and S. C. Zhang, e-print arXiv:1008.2026.
9I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

10A. Fert, Rev. Mod. Phys. 80, 1517 (2008).
11 K. S. Novoselov, A. K. Geim, S. V. Mozorov, D. Jiang, Y. Zhang,

S. V. Dubonos, I. V. Gregorieva, and A. A. Firsov, Science 306, 666
(2004).

12 K. S. Novoselov, D. Jiang, T. Booth, V. Khotkevich, S. M. Morozov,
and A. K. Geim, Nature (London) 438, 197 (2005).

13 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

14A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

15 T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
16C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
17D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74,

155426 (2006).
18H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and

A. H. MacDonald, Phys. Rev. B 74, 165310 (2006).
19Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Phys. Rev. B 75,

041401 (2007).

20L. Brey, Bull. Am. Phys. Soc. 51, 459 (2006).
21D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96,

176803 (2006).
22H. A. Fertig and L. Brey, Phys. Rev. Lett. 97, 116805 (2006).
23D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim,

and L. S. Levitov, Phys. Rev. Lett. 98, 196806 (2007).
24J. G. Checkelsky, L. Li, and N. P. Ong, Phys. Rev. Lett. 100, 206801

(2008).
25J. G. Checkelsky, L. Li, and N. P. Ong, Phys. Rev. B 79, 115434

(2009).
26Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99,

106802 (2007).
27E. Shimshoni, H. A. Fertig, and G. V. Pai, Phys. Rev. Lett. 102,

206408 (2009).
28E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805

(2006).
29E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres,

J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and
A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).

30We note that within present fabrication techniques, e.g., the
chemical vapor deposition (CVD) process, graphene nanoribbons
with zigzag edges were found to be more abundant: see Q. Yu et al.,
Nat. Mater. 10, 443 (2011).

31 S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
32M. Nakamura, E. V. Castro, and B. Dora, Phys. Rev. Lett. 103,

266804 (2009).
33L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
34G. Granger, J. P. Eisenstein, and J. L. Reno, Phys. Rev. Lett. 102,

086803 (2009).
35H. A. Fertig, Physics 2, 15 (2009).
36H. Xu, T. Heinzel, and I. V. Zozoulenko, Phys. Rev. B 80, 045308

(2009).

045405-10

http://dx.doi.org/10.1103/PhysRevB.25.2185
http://dx.doi.org/10.1103/PhysRevB.38.9375
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://arXiv.org/abs/arXiv:1008.2026
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.80.1517
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1143/JPSJ.74.777
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevB.75.041401
http://dx.doi.org/10.1103/PhysRevB.75.041401
http://dx.doi.org/10.1103/PhysRevLett.96.176803
http://dx.doi.org/10.1103/PhysRevLett.96.176803
http://dx.doi.org/10.1103/PhysRevLett.97.116805
http://dx.doi.org/10.1103/PhysRevLett.98.196806
http://dx.doi.org/10.1103/PhysRevLett.100.206801
http://dx.doi.org/10.1103/PhysRevLett.100.206801
http://dx.doi.org/10.1103/PhysRevB.79.115434
http://dx.doi.org/10.1103/PhysRevB.79.115434
http://dx.doi.org/10.1103/PhysRevLett.99.106802
http://dx.doi.org/10.1103/PhysRevLett.99.106802
http://dx.doi.org/10.1103/PhysRevLett.102.206408
http://dx.doi.org/10.1103/PhysRevLett.102.206408
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1103/PhysRevLett.99.216802
http://dx.doi.org/10.1038/nmat3010
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1103/PhysRevLett.103.266804
http://dx.doi.org/10.1103/PhysRevLett.103.266804
http://dx.doi.org/10.1103/PhysRevB.73.195408
http://dx.doi.org/10.1103/PhysRevLett.102.086803
http://dx.doi.org/10.1103/PhysRevLett.102.086803
http://dx.doi.org/10.1103/Physics.2.15
http://dx.doi.org/10.1103/PhysRevB.80.045308
http://dx.doi.org/10.1103/PhysRevB.80.045308

