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Effects of anisotropic elasticity in the problem of domain formation and stability of monodomain
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We study cubic ferroelectrics films that become uniaxial with a polar axis perpendicular to the film because
of a misfit strain due to the substrate. The main present result is the analytical account for the elastic
anisotropy as well as the anisotropy of the electrostriction. They define, in particular, the orientation of the
domain boundaries and the stabilizing or destabilizing effect of inhomogeneous elastic strains on the single
domain state. We apply the general results to perovskite systems like BaTiO3/SrRuO3/SrTiO3 films and find
that, at least not far from the ferroelectric phase transition, the equilibrium domain structure consists of the
stripes along the cubic axes or at 45◦ to them. We also show that, in this system, the inhomogeneous strains
increase stability with regard to small fluctuations of the metastable single domain state, which may exist
not very close to the ferroelectric transition. The latter analytical result is in qualitative agreement with the
numerical result by Pertsev and Kohlstedt [N. A. Pertsev and H. Kohlstedt, Phys. Rev. Lett. 98, 257603
(2007)] but we show that the effect is much smaller than those authors claim. We find also that under some
conditions on the material constants, which are not satisfied in perovskites but are not forbidden, in principle,
instead of the striped-like domain structure a checkerboard one can be realized and the polarization-strain coupling
decreases the stability of a single domain state instead of increasing it.
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I. INTRODUCTION

The properties of domain structures in thin ferroelectric
films are currently a focus of extensive research. It is expected
that an understanding and an ability to control these properties
will determine the prospects of applications of nanometer-
sized ferroelectrics. It depends critically on the external con-
ditions like the presence or absence of electrodes. In this paper,
we discuss domain structures in a system, which are, perhaps,
the most important for applications: a ferroelectric film with
electrodes. The polar axis of the material is perpendicular to
the film plane and the electrodes are “real,” meaning that the
electric field penetrates into them, although only over tiny
depths <1 Å. This is an adequate model for the perovskite
ferroelectric films on a substrate with a compressive strain,
like BaTiO3/SrRuO3/SrTiO3 (BTO/SRO/STO) (Refs. 1–5),
where the misfit strain drives the ferroelectric (FE) film into
a uniaxial state with a “soft” direction perpendicular to the
plane. We supplement our analytical results with the relevant
numerical estimates for BaTiO3 (BTO), PbTiO3 (PTO), and
Pb(Zr0.5Ti0.5)O3 (PZT) using the material constants available
in the literature.

We shall be interested in properties of the domain structure
close to the phase transition from the paraelectric phase, either
by lowering temperature at a constant film thickness or by
increasing the film thickness at constant temperature. It is
worth mentioning that most theoretical papers are concerned
with the domain structure far from the phase transition (see,
e.g., the references in Ref. 6). The approximations made within
this approach are not valid near the phase transition from
the paraelectric phase and there are two ways to overcome
this difficulty. One, by brute force numerical calculation,
was recently pursued by Stephenson and Elder7 who went

beyond the standard (“linear”) approximation by explicitly
taking into account nonlinear and nonlocal terms in the
constituent equations. They also simplified the elastic part of
the problem by assuming that the strains associated with the
inhomogeneous ferroelectric polarization are homogeneous
over the film volume. Another way to consider the vicinity of
the phase transition was proposed long ago by Suhl,8 Schmidt
et al.,9 and Chensky and Tarasenko,10 whose starting point
was solving the problem of stability of the paraelectric phase
which gives the phase transition temperature (the critical film
thickness) and the form of the inhomogeneous polarization
distribution with respect to which the stability is lost. This
part of the problem involves the solution of a system of linear
differential equations that can be made exactly, without any
approximation. But the information obtained at this stage is
not sufficient for a complete description of the domain structure
in the ferroelectric phase. It is natural to expect that the
form of the inhomogeneous polarization distribution found
from the stability problem also has the functional form of
this distribution in the ferroelectric phase close to the phase
transition, but the problem is that the linear problem of the
stability loss provides the form only, not the amplitude. This
can be found by taking into account the nonlinear terms,
which is possible within an approximation: The form of the
inhomogeneous polarization distribution in the ferroelectric
phase is, of course, different far and close to the transition,
but it is similar to the one obtained from the solution of the
linear problem close enough to the phase transition. The region
where this (“one sinusoid”) approximation is valid is broader
the less the film thickness is and for films of tens of nanometers
thickness, which we are interested in, can be quite broad.7

We shall use this approximation because it allows to take
into account explicitly and within analytical calculations the
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inhomogeneities of the polarization-induced elastic strains that
appeared to be too difficult even for numerical calculations
within the method used in Ref. 7. This account is necessary
for revealing some important features of the domain structure,
specifically, to find out if the equilibrium structure is a stripe-
like or a checkerboard one and how the domain boundaries
are oriented with respect to the crystallographic axes. This
is the main goal of the present paper. Specifically, we
consider the case of cubic crystal anisotropy of elastic and
electrostrictive properties only. This is relevant for films of
cubic perovskites which become tetragonal as a result of
in-plane misfit compressive strains due to cubic substrates like
in the above-mentioned system. The changeover from cubic
to tetragonal anisotropy affects most strongly the dielectric
properties since the crystals are “soft” dielectrically. They
have a much smaller effect on the elastic and electrostrictive
properties, which can be considered to be the same as in the
cubic parent crystals. Importantly, the formation of the domain
structure at the phase transition takes place in our case because
of the incomplete screening of the depolarizing field by the real
electrode (e.g., by the SrRuO3 electrode in the BTO/SRO/STO
system.5,6,11)

It seems that this situation is typical of real electrodes and
we shall consider this case only. In this situation, the single
domain state appears to be absolutely unstable just below
the transition. The presence of the electrode has its effect
that farther from the phase transition the single domain state
becomes metastable instead of being absolutely unstable.6

To find the temperature or the film thickness corresponding
to this change (i.e., to find the limit of the metastability
of the single domain state) one has to take into account
the inhomogeneous strains accompanying the inhomogeneous
polarization. This has been correctly pointed out by Pertsev and
Kohlstedt12–14 although these authors missed several important
points.15 Here, we only mention that they performed numerical
calculations for a specific system, but made a general statement
about the stabilization of single domain states due to the
coupling of inhomogeneous polarization with inhomogeneous
elastic strains. Our analytical treatment shows that as a general
physical phenomenon such a stabilization does not exist and
the polarization-strain coupling can have, in principle, both
stabilizing and destabilizing effects if a certain condition
on the electrostrictive and elastic constants is met. We are
not aware of an experimental realization of these conditions,
but we cannot find arguments prohibiting them. It is worth
mentioning that a qualitative conclusion about the possibility
of both the stabilizing and destabilizing role of inhomogeneous
elastic strains for a single domain state in ferroelectric films
on substrates has been made in our previous paper where
we considered an academic case of a single electrostriction
constant and assumed isotropic elasticity.16 A surprising result
of the present work is that the destabilizing effect of the
inhomogeneous strains may be very large, contrary to the
stabilizing one. For perovskites, this coupling has indeed a
stabilizing effect though it is much more modest compared to
what was claimed in Ref. 13.

Studying the sinusoidal domain structure in BTO, PTO, and
PZT films on SrTiO3, we find that the equilibrium orientation
of the “domain walls” is parallel (perpendicular) to the cubic
axes in the film plane for BTO and PTO and is at 45◦ to these

axes for PZT. In all cases, the free energy of the sinusoidal
domain structure depends very weakly on the domain wall
orientation. This is mainly due to both systems being nearly
isotropic elastically and, additionally, the relevant electrostric-
tion constant is relatively small. This observation may be
important for understanding domain creation at the smallest
thicknesses of the ferroelectric films. Another unexpected
result is the possibility of a checkerboard domain state if some
conditions on the materials constants are met. Let us mention
that without accounting for the anisotropic polarization-strain
coupling such a state is impossible. This conclusion remains
valid for the perovskites, but not in the general case.

Having indicated the advantages and new possibilities
provided by analytical calculations, we should mention also
their inherent shortcomings. Our analytical method is feasible
within a certain approximation only. This approximation im-
plies that the domain period is less than the film thickness. This
condition is fulfilled for thick enough films, but in very thin
films the two quantities are, in fact, comparable. Therefore,
the accuracy of our calculations should be investigated for
these films, so the new numerical studies are desirable. We do
not expect, however, that the difference between the results
of the approximated and more exact calculations either within
a continuous medium theory or within microscopic theories
will be very large given the close results of continuous and
first principles theories even for films that are just several unit
cell thick (see e.g., Ref. 11).

The paper is organized as follows. We describe the
approximations used and define the terms in the Landau-
Ginzburg-Devonshire (LGD) free energy that can be neglected
within our approximation in Sec. II. This lets us avoid
unnecessary, lengthy formulas in the rest of the paper. We
spell out the constituent equations in Sec. III and then solve
the general problem for the “polarization wave” (embryonic
stripe domains) in the FE film with a full account for the elastic
coupling. This is further used in Sec. V to determine how
the domain walls align with the crystallographic cubic axes
in thermodynamic equilibrium. Then, we find the conditions
when the monodomain state loses its stability with regard
to the stripe domain structure in Sec. VI. One previously
unexplored possibility is that the system can lose stability with
regard to the checkerboard domain structure, but our results
in Sec. VII show that such a structure is absolutely unstable
in perovskites although it is not necessarily so in the general
case. We summarize the present results in the Conclusion.

II. OUTLINE OF THE METHOD AND THE
APPROXIMATIONS USED

The main conclusions of this paper are made by analyzing
the formula for the free energy of the total system as a function
of the amplitude a of the ferroelectric “polarization wave”
presenting the sinusoidal domain structure and the homoge-
neous part of the ferroelectric polarization, p. For the electrode
and the film parameters of a system like BTO/SRO/STO, the
ferroelectric polarization that is perpendicular to the film plane,
a schematic of which is shown in Fig. 1, has the form

Pz(x,y,z) = p + a cos kr cos qz, (1)
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FIG. 1. Schematic of the (perovskite) ferroelectric film with
thickness l and metal electrodes (with screening length λ) on a misfit
substrate. The misfit makes the film a uniaxial ferroelectric with a
spontaneous polarization along the z axis.

where the orientation of k in the x,y plane is not fixed, 2π/k

is the period of the sinusoidal domain structure q = π/l, and
l is the film thickness. To find the desired free energy, F (a,p),
one has to find the elastic strains and the nonferroelectric
polarization P⊥ = (Px,Py) as functions of a and p to present
the total free energy as a function of a and p only. The total
free energy contains contributions of the ferroelectric film, of
the substrate, and of the electrode. In principle, it should also
contain a contribution of the voltage source, but we consider
here a short-circuited system and are not concerned with this
last contribution.

When calculating elastic strains in the ferroelectric, which
accompany the inhomogeneous polarization forming the si-
nusoidal domain structure, we follow the same philosophy as
in our previous work.16 In principle, when calculating these
strains the inhomogeneous strains in the substrate should
be taken into account. However, it is well known that they
propagate into the substrate for about the same distances
as the scale of inhomogeneity (domain width) in the film
(x,y) plane. In our case, these inhomogeneities are due to the
domain structure (i.e., this scale is the period of the domain
structure). Then, it is convenient to consider relatively thick
films since the period of the domain structure is relatively
small, specifically, it is much less than the film thickness,6,10

Fig. 2. The contribution of the substrate is its elastic energy,
which, as we have mentioned above, is concentrated within a
volume that is much smaller than the film volume, as defined by
a small factor q/k = π/kl � 1. Another convenience of the
thick film limit is that it is possible to disregard the boundary
conditions for the inhomogeneous parts of the elastic strains
and stresses at the surfaces of the ferroelectric. Indeed, if
we obtain a solution which does not satisfy the boundary
conditions, we can find corrections to such a solution in a
way that is customarily used in the elasticity theory (see e.g.,
Refs. 18 and 19). First, we apply the external forces to the

FIG. 2. (Color online) Schematic of the ferroelectric film on the
misfit substrate at the onset of sinusoidal polarization wave. The
elastic coupling to the substrate allows inhomogeneous deformations,
but prohibits homogeneous strains in the plane of the film.

surfaces, which are necessary to meet the boundary conditions
with the strains corresponding to our solution making this
solution correct. Second, we apply forces opposite to the
previous ones and find the strains produced by the new forces.
These strains provide the correction to the original solution
we were looking for. Once more, it is sufficient to observe that
in our case the external forces have the period of the domain
structure to understand that the elastic energy associated with
the corrections necessary to satisfy the boundary conditions
can be neglected quite similarly to the elastic energy of the
substrate. This is equivalent to the arguments of Refs. 19 and 16
made in a similar context.

Another convenience of the thick film approximation is
given by the possibility to neglect those terms in the LGD
free energy, which describes the electrostriction but contains
components of a nonferroelectric polarization. According to
Refs. 6 and 10,

P⊥(x,y,z) = (k/k)a⊥ sin kr sin qz, (2)

where a⊥ ≈ aq/k, q/k = π/kl � 1. The electrostriction
terms in the LGD free energy with nonferroelectric compo-
nents of polarization may contain the ferroelectric component,
like PxPzuxz, or may not contain them, like in the term
PxPyuxy . In both cases, they contribute to the a4 and p2a2

terms in the free energy depending on a and p. In the first
case, this contribution is proportional to (q/k)2 and in the
second to (q/k)4. Since there are also the terms a4, p2a2 that
do not contain the small factor q/k, the contribution of these
terms can be neglected.

Taking this into account, we write down the LGD free
energy density in the form

F (P,uik) = F1(P) + F2(uik) + F3(P,uik), (3)

where

F1(P) = A

2
P 2

z + B

4
P 4

z + 1

2
G(∇⊥Pz)

2 + 1

2
κP 2

bz + A⊥
2

P 2
⊥,

(4)
F2(uik) = 1

2λ1
(
u2

xx + u2
yy + u2

zz

) + λ2(uxxuyy + uxxuzz

+uzzuyy) + 2μ
(
u2

xy + u2
zy + u2

xz

)
, (5)

F3(P,uik) = q11uzzP
2
z + q12(uxx + uyy)P 2

z . (6)

Here, q11(12) are the standard piezoelectric coefficients that
should not be confused with the parameter q defining the
transversal profile of the polarization wave (1). In Eq. (4),
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A = γ (T − Tc), B,G = const,
−→∇ ⊥= (∂x,∂y) the gradient in

the plane of the film Pbz is the nonferroelectric (“base”) part of
the polarization perpendicular to the electrodes,17 A⊥ > 0. We
have neglected higher terms in P⊥ because of the smallness
of these components as it follows from Eq. (2). Following
Refs. 6 and 10, we have neglected a term with the gradient in z

direction since it is much smaller than the one in the plane of the
film, which one can write formally as a condition ∂z � −→∇ ⊥.
It is worth mentioning that we have not included the energy
of the electric field into the LGD free energy. The reason is
that we shall use it to write down the constituent equations
only. We shall eliminate uik , P⊥, Pbz as well the electric field
components from the system of constituent and electrostatics
equations to obtain two coupled equations of state for a and p.
We shall obtain F (p,a) from the resulting equations. This
is possible because of the thick films approximation. The
most straightforward method to obtain F (p,a) would be to
substitute Eq. (1) into Eq. (3), supplemented by the electric
field energy and to integrate over the film volume. In general,
the result would not be the same as the one obtained from the
constituent equations because of the approximate character of
Eq. (1). However, for q = π/l the two results coincide and
that makes it possible to use a more convenient method of the
constituent equations.

III. CONSTITUENT EQUATIONS

For the polarization components one has

APz + BP 3
z − G�2

⊥Pz + 2q11Pzuzz

+ 2q12Pz(uxx + uyy) = Ez, (7)

Pbz = κEz, (8)

P⊥ = A⊥ E⊥. (9)

Before writing down the equations for the strain, we shall
eliminate the electric field from the above three equations.
Assuming Eq. (1) for Pz, Eq. (2) for P⊥, and putting6

E0z = E0 + Ek
z cos kr cos qz,

(10)
E⊥ = (k/k)Ek

⊥ sin kr sin qz,

we can replace Eqs. (7) and (9) with

Ap + [
BP 3

z + 2q11Pzuzz + 2q12Pzu⊥⊥
]

hom = E0, (11)

(A + Gk2)a + [
BP 3

z + 2q11Pzuzz + 2q12Pzu⊥⊥
]

cc = Ek
z ,

(12)

A⊥a⊥ = Ek
⊥, (13)

where u⊥⊥ = uxx +uyy , [· · · ]hom and [· · · ]cc denote the homo-
geneous part (k = 0) and the part proportional to cos kr cos qz

of the expression in the brackets, correspondingly. Of course,
as a result of this replacement, a part of the left-hand side (l.h.s.)
of Eq. (7) is lost, but it corresponds to the higher harmonics
of the sinusoidal distribution of the polarization and these
harmonics can be neglected close to the transition.6,10

The homogeneous part of the electric field E0z can be
calculated as, for example, in Ref. 6 yielding for the short-
circuited case

E0z = − 4πd

εbd + εel
p, (14)

where d is the thickness of the dead layer and εe its dielectric
constant. Recall that real electrodes have finite, albeit small
(Thomas-Fermi) screening length λ, which is completely
analogous6 to the presence of the “dead” nonferroelectric
layers at the interface with thickness d/2 = λ. Using Eqs. (14),
(11) gets the form

A1p + [
BP 3

z + 2q11Pzuzz + 2q12Pz(uxx + uyy)
]

hom = 0,

(15)

where

A1 = A + 4πd

εbd + εel
≈ A + 4πd

εel
, (16)

since usually the dead layer is very thin, εbd � εel. To
transform Eq. (12) we use the electrostatics equation

divD = 0, (17)

where D is the dielectric displacement. For the ferroelectric
material, taking into account that D = (ε⊥ E⊥, εbEz +
4πPz), where ε⊥ = 1 + 4π/A⊥, and εb = 1 + 4π/κ is the
base noncritical dielectric constant,6,17 and together with the
equation curl E = 0, we find that

Ek
z = −4πq2

ε⊥k2
a. (18)

Using this expression for the field Ek
z , we can rewrite Eq. (12)

as the homogeneous one

[A + Gk2 + 4πq2/(ε⊥k2)]a + [
BP 3

z + 2q11Pzuzz

+2q12Pzu⊥⊥
]

cc = 0. (19)

The transition takes place when the first coefficient in
square brackets goes negative for the first time upon lowering
temperature through some T = Td , namely, when (recall that
A ∝ T − Tc)

−A ≡ −A(Td ) = [Gk2 + 4πq2/(ε⊥k2)]min.

This takes place at the wave vector k satisfying the condition
(recall that q = π/l)

4πq2

ε⊥k2
= Gk2, k =

(
4πq2

ε⊥G

)1/4

, (20)

we rewrite Eq. (12) as the homogeneous one

A2a + [
BP 3

z + 2q11Pzuzz + 2q12Pzu⊥⊥
]

cc = 0, (21)

where

A2 = A + 2Gk2. (22)

It is seen from Eq. (6) that the only source of elastic stresses
and strains is P 2

z (x,y,z) in our approximation. Since

P 2
z = p2 + 2pa cos kr cos qz + a2

4
(1 + cos 2qz

+ cos 2kr + cos 2kr cos 2qz), (23)
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we should expect that

uzz = u(0)
zz + u(1)

zz cos 2qz + u(2)
zz cos kr cos qz

+u(3)
zz cos 2kr + u(4)

zz cos 2kr cos 2qz, (24)

while for uxx , uyy, and for u⊥⊥ we shall have similar formulas
with the homogeneous part (first term in the above expression)
absent because of the substrate. The superscripts (0)–(4)
denote contributions with different types of the coordinate
dependencies as defined by Eq. (24). Below, we use the same
superscripts for both the coefficients and the functions.

Substituting Eqs. (23) and (24), and analogous equations
for uxx and uyy into Eqs. (15) and (21), we find

A1p + [
BP 3

z

]
hom + 2q11

(
pu(0)

zz + au(2)
zz

4

)
+ q12

a

2
u

(2)
⊥⊥ = 0,

(25)
A2a + [

BP 3
z

]
cc

+ 2q11

[
pu(2)

zz + a

(
u(0)

zz + u(1)
zz + u(3)

zz

2
+ u(4)

zz

4

)]

+ 2q12

[
pu

(2)
⊥⊥ + a

(
u

(1)
⊥⊥ + u

(3)
⊥⊥

2
+ u

(4)
⊥⊥
4

)]
= 0.

(26)

We shall calculate the values u
(j )
ik in the next section by solving

the elastic problem explicitly.
Importantly, the above equation of state (25) suggests that

the film would tend to transform into a single domain (SD) state
with p 
= 0 and a = 0 at temperature T SD

c such that A1 = 0
or, in other words,

A
(
T SD

c

) = −4πd/(εel). (27)

The second equation of state (26) yields a transition into a
domain state (p = 0 and a 
= 0) at the temperature Td such
that A2 = 0, or

A(Td ) = −2Gk2. (28)

Recall that in the present case, corresponding to
BaTiO3/SrRuO3/SrTiO3 (Ref. 5),

4πd

εel
> 2Gk2 ∼ 4πdat

ε
1/2
⊥ l

, (29)

where dat = √
πG ≈ 1 Å is the small “atomic” length scale

[G = 0.3 Å2 for BaTiO3 (Refs. 5 and 6)]. The above relation
means that the paraphase gives way to the domain phase, with
a 
= 0, thus preventing it from reaching the temperature T SD

c

where it could have transformed into a single domain state.
Obviously, the same is true of the phase transformations in the
film as a function of thickness at constant temperature. There,
one can introduce the critical thickness for domains ld , where

A(ld ) = −2Gk2, (30)

and the “critical thickness for the single domain state” lSD
c ,

such that

A
(
lSD
c

) = −4πd/
(
εel

SD
c

)
. (31)

These introduced critical thicknesses and temperatures are
discussed in detail below in Sec. VI.

IV. ELASTIC PROBLEM

Using Eqs. (5) and (6), we obtain for the diagonal
components of the elastic stress tensor

σxx = λ1uxx + λ2(uyy + uzz) + q12P
2
z , (32)

σyy = λ1uyy + λ2(uxx + uzz) + q12P
2
z , (33)

σzz = λ1uzz + λ2(uxx + uyy) + q11P
2
z , (34)

and formulas of the type

σxy = 2μuxy, (35)

for the off-diagonal components.
We have already mentioned that the only uik component

which has a part is uzz. This part is easily found from the
condition at the free surface σzz = 0 at z = l/2. From Eq. (34),
one finds

u(0)
zz = −q11

λ1

[
P 2

z

]
hom = −q11

λ1

(
p2 + a2

4

)
. (36)

For the parts depending on z only, the equations of elastic
equilibrium take the form

∂σ
(1)
iz /∂z = 0, (37)

that is, σ
(1)
iz = const = 0 since it should vanish at the free

surface (z = l/2). Therefore, Eqs. (34) and (23) yield

u(1)
zz = −q11a

2/(4λ1), (38)

and

u(1)
xx = u(1)

yy = 0, (39)

because of the Saint-Venant’s elastic compatibility conditions
for z-only dependent strains.

When solving the rest of the elastic problem, we shall use
the small parameter q/k � 1. This allows us to neglect the
derivatives with respect to z: formally, ∂/∂z � ∂/∂x,∂/∂y.

As a result, the equations of the elastic equilibrium acquire the
form

∂σ (2−4)
xx

∂x
+ ∂σ (2−4)

xy

∂y
= ∂σ (2−4)

yz

∂y
+ ∂σ (2−4)

zx

∂x

= ∂σ (2−4)
yy

∂y
+ ∂σ (2−4)

yx

∂x
= 0, (40)

where the superscripts (2–4) denote the part of the stresses that
are due to the three last terms in Eq. (23), which we denote as
P 2(2–4)

z . Explicitly,

λ1
∂2u(2–4)

x

∂x2
+ λ2

∂2u(2–4)
y

∂y∂x
+ μ

∂2u(2–4)
x

∂y2

+μ
∂2u(2–4)

y

∂y∂x
+ q12

∂P 2(2–4)
z

∂x
= 0, (41)

μ
∂2u(2–4)

z

∂y2
+ μ

∂2u(2–4)
z

∂x2
= 0, (42)
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λ1
∂2u(2–4)

y

∂y2
+ λ2

∂2u(2–4)
x

∂y∂x
+ μ

∂u(2–4)
x

∂x∂y
+ μ

∂2u(2–4)
y

∂x2

+ q12
∂P 2(2–4)

z

∂y
= 0. (43)

Analogously to the isotropic case16, we shall put the conditions
u(2−4)

z = 0 that satisfy Eq. (42), but not, of course, the boundary
conditions. They are not important in our approximation, as
we argued above. Therefore, we conclude that

u(2)
zz = u(3)

zz = u(4)
zz = 0, (44)

and we are left with only two equations to solve. It is convenient
to solve them separately for (2) and (3,4) parts, since they
correspond to different spatial harmonics.

Simplifying the remaining equations (41) and (43), we
obtain

λ1
∂2u(2–4)

x

∂x2
+ (λ2 + μ)

∂2u(2–4)
y

∂y∂x
+ μ

∂2u(2–4)
x

∂y2

+ q12
∂P 2(2–4)

z

∂x
= 0, (45)

λ1
∂2u(2–4)

y

∂y2
+ (λ2 + μ)

∂2u(2–4)
x

∂y∂x
+ μ

∂2u(2–4)
y

∂x2

+ q12
∂P 2(2–4)

z

∂y
= 0. (46)

For the terms u(2), we have P 2(2)
z ∝ cos kr,∂x(y)P

2
z ∝

−kx(y) sin kr, meaning that ux(y) ∝ sin kr, ∂2ui/∂x2 =
−k2

xui , and so on. Then,

λ1k
2
xu

(2)
x + (λ2 + μ)kxkyu

(2)
y + μk2

yu
(2)
x + q12kx2pa = 0,

(47)

λ1k
2
yu

(2)
y + (λ2 + μ)kxkyu

(2)
x + μk2

xu
(2)
y + q12ky2pa = 0.

(48)

The terms u(3),(4) correspond to higher spatial harmonics
in Eq. (23), but they should be taken into account since
they contribute to the terms with the main harmonic in the
constituent equation (26). Since for this part P 2

z ∝ cos 2kr ,
we obtain a slightly different set of equations

λ1k
2
xu

(3,4)
x + (λ2 + μ)kxkyu

(3,4)
y + μk2

yu
(3,4)
x + q12kx

a2

8
= 0,

(49)

λ1k
2
yu

(3,4)
y + (λ2 + μ)kxkyu

(3,4)
x + μk2

xu
(3,4)
y + q12ky

a2

8
= 0.

(50)

Note that for the constituent equations we need the combina-
tions

u
(2)
⊥⊥ = u(2)

xx + u(2)
yy = kxu

(2)
x + kyu

(2)
y ,

u
(3,4)
⊥⊥ = u(3,4)

xx + u(3,4)
yy = 2kxu

(3,4)
x + 2kyu

(3,4)
y .

We find

u
(2)
⊥⊥ = −2q12apf (θ ), (51)

where θ is defined by kx = k cos θ , ky = k sin θ , and the
function f (θ ) is

f (θ ) = 2
(λ1 − λ2) sin2 2θ + 2μ cos2 2θ

(λ1 + λ2 + 2μ)(λ1 − λ2) sin2 2θ + 4λ1μ cos2 2θ
.

(52)

For terms, corresponding to cos 2kr and cos 2qz, we obtain

u
(3)
⊥⊥ = u

(4)
⊥⊥ = −q12

a2

4
f (θ ). (53)

Using the results of the solution of the elastic problem,
Eqs. (36), (44), (51) and (53), we can write Eqs. (25) and
(26) as

A1p +
(

B − 2q2
11

λ1

)
p3

+pa2 3

4

[
B − 4

3

(
q2

11

2λ1
q2

12f (θ )

)]
= 0, (54)

A2a + a3 9

16

(
B − 4

3

[
q2

11

λ1
+ q2

12

2
f (θ )

])

+ ap23

(
B − 4

3

[
q2

11

2λ1
+ q2

12f (θ )

])
= 0. (55)

From these two constituent equations corresponding to an
extremum of the free energy, one can easily reconstruct the
free energy F̃ (p,a)

V −1F̃ (p,a)

= A1

2
p2 + A2

8
a2 + B̃

4
p4 + 3B1(θ )

8
a2p2 9B2(θ )

256
a4, (56)

where V is the FE film volume and

B̃ = B − 2q2
11

λ1
, B1(θ ) = B̃ + 4

3

[
q2

11

λ1
− q2

12f (θ )

]
,

(57)

B2(θ ) = B̃ + 2

3

[
q2

11

λ1
− q2

12f (θ )

]
,

are the Landau coefficients before the quartic terms renormal-
ized by the strain. The form of the free energy is the same as
in the isotropic case,6,10,16 but, importantly, the coefficients B1

and B2 depend on the orientation of the “polarization wave”
given by the angle θ .

V. ORIENTATION OF THE DOMAIN STRUCTURE

Consider the domain structure formed close to the
paraelectric-ferroelectric transition. Although the stability of
the paraelectric phase is lost with respect to the polarization
waves with the value of the k vector given by Eq. (20) and
arbitrary orientation in the x-y plane (i.e., for any θ ) the
energy of the sinusoidal domain structure depends on θ and
one has to find the ones corresponding to the equilibrium
domain structure(s). Since we consider here one “polarization
wave” only, we study the competition between the stripe-
type structures. In Sec. VII we shall show that the square
(checkerboard) domain structure is unstable in perovskite
crystals that we study here. The checkerboard structure could,
in principle, be stable or metastable under some conditions
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FIG. 3. Schematic of the sinusoidal domain structure in (a) BTO
and PTO and (b) PZT. While the stripes are oriented along the crystal
axes in case (a), in case (b) the stripes are at 45 degrees with respect
to cubic axes, the difference being due to an opposite sign of elastic
anisotropy in those two cases.

on the material constants, but we are not aware of any
experimental example of this type, so it will be premature
to study such a hypothetical case.

Recall that we discuss the ferroelectric phase transition in
a sample with short-circuited electrodes. Then, p = 0 in the
ferroelectric phase at least not far from the phase transition,
and the phase transition into the inhomogeneous domain phase

occurs at A2 = 0. The free energy is

V −1F̃ (p,a) = A2

8
a2 + 9B2(θ )

256
a4. (58)

At a fixed θ, the minimum of this free energy is realized for

a2 = − 16A2

9B2(θ )
, (59)

with the corresponding free energy

V −1F̃min(p,a) = − A2
2

9B2(θ )
. (60)

We see that the equilibrium domain structure is realized for the
angles θ which minimize the function B2(θ ) or, according to
Eq. (57), maximize the function f (θ ). Let us find the maxima
of this function. It can be written in the form

f (θ ) = 2

λ1 + λ2 + 2μ

(
1 + r − c

tan2 2θ + c

)
, (61)

where

r = 2μ

λ1 − λ2
, c = 4λ1μ

(λ1 + λ2 + 2μ)(λ1 − λ2)
. (62)

One sees that for r > c or

λ2 + 2μ > λ1, (63)

the equilibrium domain structure corresponds to θeq = 0, π/2,
and

f (θ )max = f (0) = 1/λ1,

while in the opposite case θeq = π/4, 3π/4, and

f (θ )max = f (π/4) = 2

λ1 + λ2 + 2μ
. (64)

Throughout the present paper, we use the data for the material
constants of BaTiO3 and PbTiO3 from Refs. 12,20–23 and
of Pb(Zr0.5Ti0.5)O3 from Ref. 12. We see that for BTO and
PTO the condition of Eq. (63) is met and therefore the
equilibrium 180◦ domain structure consists of stripes parallel
(perpendicular) to the cubic axes, see Fig. 3(a), while the
opposite inequality applies to PZT and the stripes make 45◦
with the cubic axes there, Fig. 3(b). For PTO this is in
agreement with the experimental data of Refs. 24 and 25.
For BTO, our conclusion coincides with that of Dvorak and
Janovec26 who defined the equilibrium orientation of the 180◦
domain walls in BTO far from the phase transition. These
authors were surprised by their own conclusion about a very
weak orientational dependence of the domain structure energy
given that the experimental observations27 showed a clearly
preferable orientation, the same as suggested by the theory.

It follows from our results that the weak orientational
dependence of the domain structure energy takes place in the
sinusoidal regime too, and not only for BTO, but for all three
perovskites we have made the numerical estimates for.

Indeed, from Eq. (60) one sees that the orientational
dependence of the domain structure energy comes from the
function B2(θ ). The maximum difference of values in Eq. (57)
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for B2(θ ) can be used to characterize the anisotropy of the
domain structure energy

�B2 = B2 max − B2 min = 2

3
q2

12|f (0) − f (π/4)|

= 4

3

q2
12

λ1

|λ1 − λ2 − 2μ|
λ1 + λ2 + 2μ

. (65)

We found �B2/B2 ∼ 4 × 10−3 for BTO, much smaller
anisotropy ∼ 3 × 10−4 for PTO, and an even smaller one for
PZT where �B2/B2 ∼ 4 × 10−5 (we have used the parameters
listed in Ref. 28). Such a weak angular dependence of
the domain structure energy with respect to the underlying
crystal lattice is in accordance with the phase field results
of Ref. 21, which showed domain walls mainly with ther-
modynamically favorable orientations, but also the domain
wall with strong deviations from thermodynamically favorable
orientations.

Comparing our conclusions with the results of atomic
modeling, we begin with a paper on PZT,29 where the authors
studied PZT films of the same composition, as we do. They
commented on the question of the orientation of the domain
walls: “In the general cases, we find that the direction along
which the stripe domains align is not certain. It may be the
x or the y axis and may also have an angle with the x

or y axis.” This is in complete agreement with our results
about the extremely weak dependence of the domain structure
energy on the domain wall orientation in PZT. Lai et al.30

have considered the same system and made a more definitive
conclusion about the domain wall orientation indicating that
they are perpendicular to the in-plane crystallographic axes.
This is in disagreement with our conclusion, but given the
extremely small anisotropy of the domain structure energy
it can hardly be taken too seriously: it can well be within
the error margin of the numerical method. More serious is a
disagreement in the case of BTO: both in Refs. 31 and 32
it has been found that the stripes make 45◦ with the cubic
axes in variance with our conclusion. In the case of Ref. 32
one could speculate that this is due to the system temperature
being 10 K while we are considering a vicinity of the phase
transition, but this speculation does not apply to Ref. 31, where
a broad temperature interval is considered. It could be that
the smallness of the domain energy anisotropy provides an
explanation of the disagreement in this case as well. We are
unaware about studies of the anisotropy of the domain structure
energy by numerical methods.

VI. LOSS OF STABILITY OF A SINGLE DOMAIN STATE

It is convenient to study the loss of stability of the single
domain state with respect to the formation of a domain
structure using Eq. (56). With this, we mean the loss of stability
with respect to arbitrarily small “polarization waves” so that
the original single domain state may be, in principle, either
stable or metastable. Specifically, in our case, when Eq. (29)
is valid, this state is metastable.6

A solution of the equations

∂F̃ /∂p = 0, ∂F̃ /∂a = 0, (66)

corresponding to a single domain state (p 
= 0, a = 0) is
possible only if A1 < 0 with p2

extr = −A1/B̃, where the
subscript stands for the “extremum.” This extremum is a
minimum (which is relative in our case) if

∂2F̃ /∂p2 > 0, ∂2F̃ /∂a2 > 0, (67)

at the point p = pextr, a = 0 given that ∂2F̃ /∂p∂a is evidently
zero at this point. The first inequality in Eq. (67) is obviously
valid for A1 < 0, while the validity of the second is not
immediately evident.

We find from Eq. (56)

4

(
∂2F̃

∂a2

)
a=0,p=pextr

= A2 + 3B1(θ )p2
extr

= A2 − 3A1 − 3A1(B1(θ ) − B̃)/B̃.

(68)

From the condition (∂2F̃ /∂a2)a=0,p=pextr = 0, we obtain the
value of A corresponding to a loss of stability of the single
domain state with respect to the appearance of a polarization
wave with a given orientation, Apw(θ ). It is convenient to
present it in the form

Apw(θ ) = − 6πd

εbd + εel
+ Gk2 +

(
4πd

εbd + εel
− 2Gk2

)
β(θ ),

(69)

where

β(θ ) = q2
11 − q2

12f λ1

B̃λ1 + 2
(
q2

11 − q2
12f λ1

) . (70)

The last term in Eq. (69) is the result of the polarization-strain
coupling while the first two present the prior case without this
coupling6,10. According to Eq. (67), the corresponding single
domain state will be (meta)stable at low temperatures such that
A < min Apw(θ ).

The actual loss of stability of the single domain state
corresponds to the minimum of Apw(θ ). We have seen in Sec. V
that in perovskites the angular dependencies are very weak and
we can neglect it, putting f λ1 = 1. Then

β = q2
11 − q2

12

B̃λ1 + 2
(
q2

11 − q2
12

) . (71)

Since in BTO, PTO, and PZT q2
11 > q2

12 (Ref. 28), the
last term in Eq. (69) is positive and therefore the region of
metastability of the single domain state in these systems is
broader than according to Refs. 10 and 6, in apparent accor-
dance with Ref. 13. However, there are serious reservations.
First of all, the effect is not very spectacular. Indeed, the
factor β in the last term of Eq. (69) is always less than one
half, β < 1/2, approaching that value when q2

11 − q2
12 → ∞.

Therefore,

Apw < − 4πd

εbd + εel
, (72)

where the right-hand side (r.h.s.) corresponds to a very strong
strain coupling. Recall that A = −4πd/(εbd + εel), or A1 =
0, corresponds to what was calculated in several papers as
a “critical thickness of single-domain ferroelectricity” lSD

c ,
Eq. (31).

045401-8



EFFECTS OF ANISOTROPIC ELASTICITY IN THE . . . PHYSICAL REVIEW B 84, 045401 (2011)

To get the opposite limit of a weak strain coupling for
Apw(0), we put q2

11 − q2
12 = 0 and neglect Gk2, as Pertsev

and Kohlstedt13 did. We see that

− 6πd

εbd + εel
< Apw(0) < − 4πd

εbd + εel
, (73)

that is, because of accounting for the polarization-strain
coupling the value of Apw(0) changes always by less than
1.5 times. In the usual situation when εbd < εel this is also
the interval of change of the thickness corresponding to the
absolute loss of stability of the single domain state at a fixed
temperature.

The above moderate, less than 50%, range of change is
in striking disagreement with a statement by Pertsev and
Kohlstedt13 who claimed more than an order of magnitude
change due to their nullifying the electrostrictive constants.
They do not report the details of their procedure, but it is
clear from the rest of the paper that their suggestion of putting
the electrostrictive constants to zero implied changes in the
coefficients of the LGD free energy that should have been
renormalized by the misfit strains, while such renormalization
was neglected there. Evidently, it has nothing to do with the
effects of the polarization-strain coupling omitted in Refs. 6
and 10 since this renormalization is automatically taken into
account there, while the effect of the misfit strain on LGD
coefficients was apparently neglected in a gedanken exercise
performed in Ref. 13.

Specifically, we find that for the perovskites BTO and PTO
β = 0.4, while in PZT this parameter is 0.1 (i.e., four times
smaller). We see that BTO and PTO are similar and very close
to the limit q2

11 − q2
12 → ∞, β = 0.5 (i.e., the point of loss of

stability of single domain state is quite close in these materials
to the “critical thickness of single-domain ferroelectricity”).
The latter situation does not acquire, however, a practical
importance because if one fixes the temperature and reduces
the film thickness starting with monodomain ferroelectric
state at low temperatures or large thicknesses, this state
will give way to domains before the thickness determined
by the limit of the single domain state stability is reached.
The matter is that single domain state is metastable, it may
have a large life time at low temperatures and large film
thicknesses but this life time goes essentially to zero (to atomic
times) when the above mentioned temperature or thickness are
approached.

Importantly, it follows from Eq. (69) that if q2
11 < q2

12, the
account for the inhomogeneous strains shrinks the region of
metastability of the single domain state. This shows that, con-
trary to the claim by Pertsev and Kohlstedt, there is no general
physical phenomenon such as the stabilization of a single
domain state because of inhomogeneous strains accompanying
the formation of domains. This may seem surprising because
solids are known to “dislike” the inhomogeneous strains (free
energy usually goes up). Moreover, the expectation of Pertsev
and Kohlstedt is justified for a free-standing film, at least for
elastically isotropic solid.16 But it is not certain for a film on
substrate considered both by them and in the present work. To
explain the physical reason, we recall that the coupling with
strain renormalizes the coefficients before fourth-order terms
in the LGD free energy (this is separate from renormalization
by the misfit strain), in our case we mean the coefficients

before p4 and p2a2 terms. Then, one has to take into account
that the homogeneous strains in the plane of a substrate
are not possible while the inhomogeneous ones are. Both
the homogeneous and inhomogeneous polarizations create a
homogeneous strain, but to a different extent see Eqs. (36)
and (38), while inhomogeneous strains are created, of course,
by the inhomogeneous polarization only. The out-of-plane
and in-plane strains couple with the ferroelectric polarization
Pz by electrostriction terms with different coefficients and
the final result of renormalization of the coefficient of p2a2

term is due to several contributions and it is not clear
upfront. It should be obtained by a consistent analysis, as
it has been done above. No reason is seen to discard the
possibility that the inequality q2

11 < q2
12 can be realized in

some systems, and one cannot exclude, at least for the
moment, the possibility of favoring the multidomain state
by the polarization-strain coupling. Interestingly enough, this
favoring may be very strong: According to Eq. (69), the
increase of the region of absolute instability of single domain
state becomes infinite when q2

12 − q2
11 tends to B̄λ1/2 from

below.
The “phase diagrams” for the epitaxial FE films on a misfit

substrate are plotted in Figs. 4 and 5. The boundaries of the
paraelectric phase, domains, and metastable single domain
region for the BaTiO3/SrRuO3/SrTiO3 system are shown in
the temperature-film thickness (T − l) plane in Fig. 5. They
are found from the conditions that we discussed above and
write down here for a reference:

A(Td ) = −2Gk2 = −2G

(
4π3

ε⊥Gl2

)1/2

= −2

(
4π3G

ε⊥

)1/2 1

ld
,

(74)

A
(
T SD

c

) = − 4πd

εelSD
c

,

A
(
T SD

ms

) = − 6πd

εelSD
ms

,

where d/2 = λ = 0.8 Å, εe = 8.45 for the SrRuO3 electrode,
G = 0.3 Å2, and ε⊥ is the dielectric constant [see its definition
below Eq. (17)] in the plane of the FE film, which has
been found from the Landau coefficients5,6. The arrows in
Fig. 5 show the evolution of the state at either T = const
or l = const.

One should understand that in both illustrations it is
implied that the corresponding critical points have physical
values as solutions to the conditions (74), or, equivalently,
Eqs. (28), (27), (30), and (31). Consider first the lowering
of the temperature at a fixed thickness l (Fig. 4, top panel),
where the paraphase transforms into the domain state below
the temperature Td that is smaller than the critical temperature
of the bulk ferroelectric transition Tc. We see that the single
domain (SD) state would be metastable at low temperatures
T < T SD

ms in the region overlapping with the domain state. Note
that the T SD

ms plotted in Fig. 5 is found without accounting
for the strain coupling. The strain coupling then shifts
the boundary of metastability toward the so-called critical
temperature for a single domain state T SD

c thus broadening
the range of metastability of the SD state, as shown in Fig. 4.
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FIG. 4. (Color online) Regions of (meta)stability of the single domain and polydomain states in the ferroelectric film as a function of
temperature T at fixed thickness (top) and as a function of the film thickness l at fixed T (bottom). Upon lowering the temperature at a fixed
thickness l (top panel), the paraphase gives way to domains that are stable at all temperatures T < Td , where Td is below the critical temperature
of the bulk ferroelectric transition Tc. The single domain (SD) state is metastable at low temperatures T < T SD

ms , when a strain coupling is
neglected. The strain coupling shifts the boundary of metastability toward the so-called critical temperature for a single domain state, T SD

c ,

as marked by the vertical arrows for the perovskites in question. The phase behavior of the films as a function of their thickness l at fixed
temperature (bottom) is qualitatively similar. Very thin films are in a paraelectric phase that is replaced by domains at larger thicknesses l > ld .

The single domain state is metastable at thicknesses l > lSD
ms and becomes suitable for memory applications at even larger (yet to be determined)

thicknesses when the life time of the metastable state becomes sufficiently large. Strain coupling may extend the boundary of the metastability
down to the so-called “critical thickness for SD ferroelectric state” lSD

c .

The phase behavior of the films as a function of their thickness
l at fixed temperature (Fig. 4, bottom panel) is qualitatively
similar. Very thin films remain in a paraelectric phase that
is replaced by the domains at larger thicknesses l > ld . We
see that both T SD

c and lSD
c are actually unreachable in the

present case since the system may get to those points only by
moving from the paraphase down (right to left on the phase
diagram, Fig. 5), but such transitions are preempted by the
domain instability that sets in first. The single domain state
is metastable at thicknesses l > lSD

ms , and becomes suitable
for memory applications at even larger (yet to be determined)
thicknesses where its lifetime becomes sufficiently long.

VII. INSTABILITY OF THE CHECKERBOARD
DOMAIN STRUCTURE

In the previous sections, we have assumed that the domain
structure is stripe-like by taking into account only one
“polarization wave.” This and other possibilities have been
studied by Chensky and Tarasenko10 who considered the
uniaxial ferroelectric isotropic in the x-y plane. Along with
the stripe-like structure they discussed also the checkerboard

FIG. 5. (Color online) The phase diagram for
BaTiO3/SrRuO3/SrTiO3 films in the coordinates temperature
thickness. The line marked ld delineates the para- and domain
phases, while the one marked lms indicates the boundary of the
metastability regions of the single domain state.
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FIG. 6. Schematic of the checkerboard domain structure. It is
absolutely unstable in case of BaTiO3, PbTiO3, and Pb(Zr0.5Ti0.5)O3

typical perovskite ferroelectrics.

and the hexagonal domain structures. The latter can be realized
in the presence of an external field only, which is not a subject
in this paper. However, a checkerboard structure should be
analyzed as an alternative to the stripe structure. In Ref. 10, the
authors stated that the checkerboard structure never realizes,
although, surprisingly, there is no proof of this statement.
In this section, we shall show that this structure is indeed
unstable for the isotropic case treated in Ref. 10 and then show
that this conclusion holds also when one explicitly takes into
account the polarization-strain interaction, apart from mere
renormalization of the LGD coefficients by the misfit strains.

Once again, we consider a short-circuited sample, that is,
the ferroelectric polarization is described by

Pz = a1 cos k1r cos qz + a2 cos k2r cos qz, (75)

where k1 and k2 are two noncollinear vectors whose modulus is
given by Eq. (20) and whose (mutually orthogonal) directions
remain unspecified for a moment, Fig. 6.

A. Checkerboard domains without elastic coupling
(q11 = q12 = 0)

In this case the solution for the fields is [cf. Eq. (10)]

Ez = Ek1
z cos k1r cos qz + Ek2

z cos k2r cos qz, (76)

Ex,y = Ek1
x,y sin k1r sin qz + Ek2

x,y sin k2r sin qz, (77)

with Eq. (18) still applicable to spatial harmonics (as follows
from the linearity of Maxwell equations) and the equation of
state for the fundamental harmonics is the same as Eq. (12):

A2a1 + [
BP 3

z

]
cc = Ek1

z , (78)

where one retains the terms [BP 3
z ]cc ∝ cos k1r cos qz (sym-

metry dictates the analogous expressions for a2). In the above
equation,

P 3
z = (a1 cos k1r + a2 cos k2r)3 cos3 qz

= 9
16

(
a3

1 + 2a1a
2
2

)
cos k1r cos qz + 9

16

(
a3

2 + 2a2a
2
1

)
× cos k2r cos qz + · · · , (79)

so that we obtain for the fundamental harmonic the following
equations of state:

A2a1 + 9B

16

(
a3

1 + 2a1a
2
2

) = 0, (80)

and the analogous equation for a2. Since these equations are
obtained from the extremum of the free energy, ∂F̃ /∂a1(2) =
0, we again restore the full free energy, accounting for the
symmetric contribution by the a2 harmonic

V −1F̃ = A2

8
(a2

1 + a2
2) + 9

256
B

(
a4

1 + a4
2

) + 9

64
Ba2

1a
2
2 . (81)

The equations of state have the checkerboard solution

a2
1 = a2

2 = −16A2/27B. (82)

Checking what type of extremum for the free energy is this
solution

∂2F

∂a2
1

× ∂2F

∂a2
2

−
(

∂2F

∂a1∂a2

)2

= − 1

12
A2

2 < 0,

we see that the checkerboard solution is the maximum of
the free energy for some directions in the a1,a2 plane and
is absolutely unstable.

B. Checkerboard domains with elastic coupling

We have seen above that the elastic coupling renormalizes
the fourth order coefficients in formulas like Eq. (81) reducing
them by some amounts that are different for different coeffi-
cients. Thus, instead of Eq. (81), we will have

V −1F̃ = A2

8

(
a2

1 + a2
2

) + 9

256

(
B21a

4
1 + B22a

4
2

) + 9

64
B3a

2
1a

2
2,

(83)

where B21 and B22 are given by Eq. (57) for the corresponding
angles and B3 is a new coefficient that depends on both angles
and which can be, in principle, either positive or negative.
Both from Eq. (57) and the cubic symmetry, one realizes that
B21 = B22 = B2. For what follows, it is important to mention
that when B3 is negative it cannot be of large absolute value,
otherwise there will be directions in the (a1,a2) plane along
which the free energy diminishes without limits at large values
of a1,a2, meaning a global instability of the system. By putting
a1 = a2, one sees from Eq. (83) that to avoid this instability
the condition

B2 + 2B3 > 0, (84)

should be fulfilled. Another obvious condition of the global
stability is B2 > 0.

The checkerboard solution is

a2
1 = a2

2 = −16A2

9(B2 + 2B3)
. (85)

045401-11



A. M. BRATKOVSKY AND A. P. LEVANYUK PHYSICAL REVIEW B 84, 045401 (2011)

To analyze the stability of this solution, we calculate the second
derivatives

∂2F

∂a2
1

= ∂2F

∂a2
2

= A2

4
+ 27

64
B2a

2
1(2) + 9

32
B3a

2
2(1)

= −1

2
A2

B2

B2 + 2B3
,

∂2F

∂a1∂a2
= 9

16
B3a1a2 = ± A2B3

B2 + 2B3
,

then find the discriminant

Z ≡
(

∂2F

∂a2
1

)(
∂2F

∂a2
2

)
−

(
∂2F

∂a1∂a2

)2

= 1

4
A2

2
B2 − 2B3

B2 + 2B3
.

(86)

Our further study is aimed at finding out if and when the
condition of positiveness of Z (i.e., B2 > 2B3) is compatible
with the two conditions of the global stability mentioned
above. Thus, we need formulas for the coefficients B2

and B3.
Turning to taking into account explicitly the polarization-

strain coupling, we recall that in our approximation of
sufficiently thick film the only source of the elastic strains
is P 2

z . This function contains now a cross term stemming from

P 2
z = (a1 cos k1r cos qz + a2 cos k2r cos qz)2 (87)

= [
a2

1 + a2
2 + 2a1a2(cos p+r + cos p−r) + a2

1 cos 2k1r

+ a2
2 cos 2k2r

]1 + cos 2qz

4
, (88)

where p± = k1 ± k2. Naturally, the components of the strain
tensor will have terms depending on cos p+r , cos p−r . We
will have for uxx

uxx = u(0)
xx + u(1)

xx cos 2qz + up+
xx cos p+r + up−

xx cos p−r

+uq+
xx cos p+r cos 2qz + uq−

xx cos p−r cos 2qz

+u
(3)
1,xx cos 2k1r + u

(3)
2,xx cos 2k2r + (

u
(4)
1,xx cos 2k1r

+u
(4)
2,xx cos 2k2r

)
cos 2qz,

and the analogous equations for uyy and uzz.

From our previous experience, it becomes immediately
clear that u

p±
xx(yy) = u

q±
xx(yy) since the equations for those

components do not depend on z and we can now drop the
indices p and q from the corresponding terms, leaving only
u

+,−
xx(yy). Also, due to the same reason as above, u

(0)
xx(yy) =

u
(1)
xx(yy) = 0 [cf. Eq. (39)]. Then, one can write

uxx = (u+
xx cos p+r + u−

xx cos p−r)(1 + cos 2qz)

+u
(3)
1,xx cos 2k1r + u

(3)
2,xx cos 2k2r + (

u
(4)
1,xx cos 2k1r

+u
(4)
2,xx cos 2k2r

)
cos 2qz,

and a similar equation for uyy . The “diagonal” terms for the
first (second) k1(2) harmonic are

u
(3)
1(2),xx + u

(3)
1(2),yy = u

(4)
1(2),xx + u

(4)
1(2),yy = −q12

a2
1(2)f (θ1(2))

4
.

All the cross terms satisfy

λ1
∂2u±

x

∂x2
+ (λ2 + μ)

∂2u±
y

∂y∂x
+ μ

∂2u±
x

∂y2
+ q12

∂P 2±
z

∂x
= 0, (89)

λ1
∂2u±

y

∂y2
+ (λ2 + μ)

∂2u±
x

∂y∂x
+ μ

∂2u±
y

∂x2
+ q12

∂P 2±
z

∂y
= 0, (90)

where P 2±
z = 1

2a1a2 cos p±r, in components u±
x(y) ∝ sin p±r,

∂2u±
i /∂x2 = −(p±

x )2u±
i , and so on

λ1p
±2
x u±

x + (λ2 + μ)p±
x p±

y u±
y + μp±2

y u±
x

+ q12p
±
x

1
2a1a2 = 0, (91)

λ1p
±2
y u±

y + (λ2 + μ)p±
x p±

y u±
x + μp±2

x u±
y

+ q12p
±
y

1
2a1a2 = 0. (92)

Then,

u±
xx + u±

yy = p±
x u±

x + p±
y u±

y = −q12
a1a2

2
f (θ±). (93)

where the angle θ± is defined analogously to θ from p±
x =

p cos θ± and p±
y = p sin θ±. For uzz, we conclude, as above,

that only u(0)
zz and u(1)

zz are nonzero and, following the same
reasoning as for the stripe phase, we obtain

u(0)
zz = u(1)

zz = − q11

4λ1

(
a2

1 + a2
2

)
.

Having solved the elastic problem, we are now in a position to
write down the constituent equations containing a1 and a2 only.
To this end, we write two equations for a1 and a2 analogous to
Eq. (21) but this time [· · · ]cc would mean the proportionality
to cos k1r cos qz or cos k2r cos qz, respectively. Since both
equations have the same structure, we will discuss that for a1

only and, for the sake of brevity, we will mention only the
terms containing a2, the other terms are the same as for the
one-sinusoid case discussed above.

For clarity sake, we repeat Eq. (21) with a minor change
for the present case:

A2a1 + [
BP 3

z + 2q11Pzuzz + 2q12Pz(uxx + uyy)
]

cc = 0.

(94)

It is straightforward to find that the a2-containing term
stemming from [P 3

z ]cc is 9a1a
2
2/8. From Eq. (26), one sees

that [Pzuzz]cc = a1(u(0)
zz + 1

2u(1)
zz ), recall that now we consider

the case p = 0 , and the contribution of this term is

−3q11

8λ1
a1a

2
2 .

Now,

[Pz(uxx + uyy)]cc = a1

2

(
u

(3)
1,xx + u

(3)
1,yy

) + a1

4

(
u

(4)
1,xx + u

(4)
1,yy

)
+ 3

4
a2(u+

xx + u+
yy + u−

xx + u−
yy),

and the contribution of this term to the equation of state is

−q12
3a1a2

8
[f (θ+) + f (θ−)].

Finally, the constituent equation for a1 takes the form

A2a1 + 9
16a3

1B2(θ1) + 9
8a1a

2
2B3(θ+,θ−) = 0,
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where we have introduced

B3(θ+,θ−) = B − 2

3

q2
11

λ1
− 2

3
q2

12[f (θ+) + f (θ−)]. (95)

Similarly to the case of one sinusoid, we recover the free
energy

F = A2

8

(
a2

1 + a2
2

) + 9

256
B2(θ1)a4

1 + 9

256
B2(θ2)a4

2

+ 9

64
B3(θ+,θ−)a2

1a
2
2 . (96)

Recall that the square symmetry suggests that B2(θ1) = B2(θ2)
and B2(θ ) is given by Eq. (57).

Turning to examining the sign of the discriminant Z, we
should mention that according to Eqs. (57) and (95)

B2 − 2B3 = −B + 4
3q2

12

[
f (θ+) + f (θ−) − 1

2f (θ1)
]
.

One sees that the maxima of Z correspond to the maxima
of f (θ+) and f (θ−) [note that f (θ+

max) = f (θ−
max) because of

the cubic symmetry], which are, automatically, the minima
of f (θ1) as we have seen in Sec. V [since the corresponding
angles are different by π/4]. Then,

[B2 − 2B3]max = −B + 4
3q2

12

[
2f (θmax) − 1

2f (θmin)
]
.

Using the values of f (θmax) and f (θmin) found in Sec. V, we
find that if λ2 + 2μ > λ1,

[B2 − 2B3]max = −B + 4

3
q2

12

(
2

λ1
− 1

λ1 + λ2 + 2μ

)

= −B + 4

3
q2

12
2(λ2 + 2μ) + λ1

λ1(λ1 + λ2 + 2μ)
, (97)

and if λ2 + 2μ < λ1,

[B2 − 2B3]max = −B + 4

3
q2

12

(
4

λ1 + λ2 + 2μ
− 1

2λ1

)

= −B + 4

3
q2

12
7λ1 − λ2 − 2μ

2λ1(λ1 + λ2 + 2μ)
. (98)

To prove that the checkerboard structure can be stable,
at least in principle, with respect to small fluctuations, we
should demonstrate that the positiveness of [B2 − 2B3]max is
compatible with the conditions B2 > 0 and [B2 − 2B3]min > 0
which guarantee the global stability of the system. We do
not intend to perform an exhaustive analysis, but want only
to demonstrate that this is possible under certain conditions,
unlike in the case without the elastic coupling. As an example,
we consider a system with a weak elastic anisotropy, which is
valid for the perovskites (i.e., we shall assume λ2 + 2μ � λ1,
and q11 = 0). Both Eqs. (97) and (98) then give

[B2 − 2B3]max � −B + 2q2
12

λ1
, (99)

and give for the positiveness of [B2 − 2B3]max the same
condition q2

12 > Bλ1/2, while the condition B2 > 0 now reads
q2

12 < 3Bλ1/2. One sees that for a nearly elastically isotropic
ferroelectric with q11 = 0, the checkerboard structure is at

least metastable if

3Bλ1/2 > q2
12 > Bλ1/2.

Of course, the above set of the material coefficients looks
fairly exotic, but it is just an example aimed at nothing more
but a demonstration that the checkerboard domain structures
are allowed due to the elastic coupling when certain conditions
on the material coefficients are met.

In the case of real perovskite films the checkerboard
structure is not stable. To see this, we can rewrite Eq. (99)
in the form

[B2 − 2B3]max � −B̃ − 2

λ1

(
q2

11 − q2
12

)
< 0.

Indeed, we have already mentioned above that for the
perovskites q2

11 > q2
12, while B̃ > 0 there. Therefore, in the

perovskites the checkerboard domain structure is absolutely
unstable.

VIII. CONCLUSION

With the use of the Landau-Ginzburg-Devonshire theory,
we have studied the effects of polarization-strain coupling
when defining the character of equilibrium domain structures
and the limits of absolute instability of a single domain state
in thin films of cubic ferroelectric films on a misfit substrate.
On the compressive substrate, the cubic ferroelectric behaves
substantially as a uniaxial ferroelectric with the polar axis
perpendicular to the film. The film is sandwiched between
the electrodes that do not provide a perfect screening of
the depolarizing field because of the finite Thomas-Fermi
screening length. Such a system is exemplified by the (100)
BaTiO3/SrRuO3/SrTiO3 film and similar perovskite struc-
tures. Quantitative results have been obtained for BaTiO3,
PbTiO3, and Pb(Zr0.5Ti0.5)O3. We have found that close
to the paraelectric-ferroelectric phase transition or at the
film thicknesses close to the minimal thickness compatible
with the ferroelectricity, the equilibrium domain structure in
perovskites is the stripe-wise one with the stripes parallel
(perpendicular) to the cubic axes in BaTiO3, PbTiO3, while
running at 45◦ to the cubic axes in Pb(Zr0.5Ti0.5)O3. The
energy of the domain structure depends very weakly on the
stripe orientation, the maximum change proves to be well
below 1% in all three cases. We found that because of
the polarization-strain coupling a competing checkerboard
domain structure may, at least in principle, be an equilibrium
or a metastable one when certain conditions on the material
constants are met, but we are not aware of any material
system where such conditions are met. The limit of absolute
instability of the single domain state changes due to the
polarization-strain coupling. Thus, the interval where the ab-
solute instability is absent, meaning a metastability in the cases
at hand, widens in perovskites in agreement with the earlier
conclusion by Pertsev and Kohlstedt.13 However, this effect
is much smaller than that claimed by them. The increase of
the metastability range is substantial in BaTiO3 and PbTiO3,
where the absolute instability limit becomes close to what is
often called the “critical thickness for ferroelectricity” lSD

c ,

Fig. 5, but without accounting for the domain formation. The
effect is much smaller in Pb(Zr0.5Ti0.5)O3. We have found also

045401-13



A. M. BRATKOVSKY AND A. P. LEVANYUK PHYSICAL REVIEW B 84, 045401 (2011)

that the polarization-strain coupling can lead to the narrowing
of the region of relative stability of the single domain state
under certain conditions on the material constants, but we are
not aware of an experimental realization of these conditions.
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