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Microscopic modeling of the dielectric properties of silicon nitride
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We investigate the differences between the dielectric properties of bulk silicon nitride and thin films, in both
crystalline and amorphous structures. We show that to correctly account for the decrease of the optical (ε∞) and
static (ε0) dielectric constants at the nanoscale, it is necessary to take into account their spatial variations within
the film and at the surface. A model based on the assumption of abrupt interfaces between vacuum and the film
surfaces predicts the wrong trend of the dielectric properties as a function of the film thickness, i.e., an increase of
ε∞ and ε0 as the dimension of the film decreases. We also show that a first-principles description of the structural
properties of amorphous bulk and thin films is necessary, in order to obtain structural properties in agreement
with experiment, and thus electronic and dielectric properties consistent with available measurements.
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I. INTRODUCTION

The mechanical and electronic properties of silicon nitride
(Si3N4) have been exploited in several technological applica-
tions. For example, because of its strength and hardness, high
decomposition temperature, and good resistance to corrosion
and wear, Si3N4 is used in heat exchangers, turbine and au-
tomotive engine components, and to fabricate cutting tools.1,2

Plasma-enhanced chemical-vapor-deposited Si3N4 films are
used to passivate Si solar cells.3,4 Silicon nitride is also
widely employed in the semiconductor industry for surface
passivation, protection to prevent oxidation and damage, and
as a mask for local oxidation.5–7

In addition to these applications, Si3N4 is receiving at-
tention as a possible candidate material to either replace
or be alloyed with SiO2 and be part of high-κ stack of
dielectric films, which are used to prevent leakage currents
in modern CMOS transistors. Indeed Si3N4 has a higher
dielectric constant than that of SiO2 and thus it may be a good
candidate to prevent or reduce tunneling-induced currents.8–11

Furthermore, compared to SiO2, Si3N4 is more stable in strong
electric fields and at high temperature, and it is more effective
in providing diffusion barriers to impurities such as boron.9–11

It is therefore of interest to investigate how the dielectric
properties of Si3N4 change at the nanoscale, as the thickness
of high-κ dielectrics in devices is constantly shrinking and
already of the order of a few tens of nanometers.

Here we report a theoretical study of the variation of the
dielectric properties of Si3N4 when reducing the material di-
mensions from bulk to thin films, and we study both crystalline
and amorphous systems. While the structural and the electronic
properties of bulk crystalline Si3N4 have been extensively
studied,12–15 our knowledge of the structural and electronic
properties of amorphous Si3N4 is rather limited since data on
thin films with good material characterization are not widely
available, and theoretical modeling for polycrystalline and
amorphous structures are computationally very demanding.

Theoretically, the structure of amorphous Si3N4 has been
studied using classical potentials16–19 and density functional
theory (DFT);20–23 however several open questions remain. For
example, the effect of the size of amorphous samples generated
by computer simulations, on the calculated electronic and
dielectric properties, has not yet been investigated. Therefore
in this paper we have first analyzed in detail the structural
and dielectric properties of bulk a-Si3N4 and compared results
obtained using empirical potentials and ab initio techniques
based on DFT. We have then studied how the dielectric
properties vary at the nanoscale. For both crystalline and
amorphous samples we have adopted a model that takes into
account the spatial variation of the dielectric response, at
the microscopic scale, and we show that an abrupt interface
model yields qualitatively incorrect results for the variation
of the dielectric properties as a function of film thickness.
We note that the electronic structures of crystalline Si3N4

slabs have been investigated using theoretical methods in
Ref. 24 and Ref. 25. In addition, recently there have been
extensive studies of crystalline β-Si3N4 thin films on Si, using
either experimental26 or theoretical techniques.27,28 However
investigations of dielectric properties have been extremely
limited. Dielectric properties of amorphous thin film Si3N4

have been studied in experiment,29–32 and recently we have
provided a theoretical analysis based on DFT.33 Here we build
on our previous work and analyze in detail the relationship
between the structural and electronic properties of amorphous
films and their dielectric properties, and we compare an abrupt-
interface semiclassical model with a microscopic model of
dielectric constants.

The rest of the paper is organized as follows. In Sec. II
we briefly review the methods used to calculate dielec-
tric constants in the framework of DFT. Sections III, IV,
and V discuss the dielectric properties of bulk crystalline, bulk
amorphous, and thin film Si3N4, respectively. The summary
and conclusions of the paper are presented in Sec. VI.
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II. THEORETICAL METHOD

In this section, we describe how the dielectric constant is
computed in extended systems using both density functional
perturbation theory and a finite electric field approach based
on the Berry phase formalism. In addition, we summarize the
concept and calculation of the local dielectric constant, used
in the case of surfaces and interfaces.

A. Extended systems

1. Density functional perturbation theory

The dielectric constant of an extended solid may be
evaluated in the framework of density functional perturbation
theory (DFPT) as described in Refs. 34 and 35. The static
dielectric constant ε0 includes an electronic contribution (ε∞)
and an ionic contribution:35

ε
αβ

0 = εαβ
∞ + 4π

�

∑
m

Sm,αβ

ω2
m

. (1)

Here � is the volume of the unit cell, ωm denotes phonon mode
frequencies, and Sm,αβ are defined in terms of Born effective
charges Z∗, atomic masses M , and normalized eigenmodes
uα

m,s of ion s along the direction α for a given mode m, which
are obtained by diagonalizing the dynamical matrix:

Sm,αβ =
( ∑

s,α′
Z∗αα′

s

uα′
m,s√
Ms

)( ∑
s ′,β ′

Z
∗ββ ′
s ′

u
β ′
m,s ′√
Ms ′

)
. (2)

Therefore, in this approach, in order to evaluate ε0, one needs to
calculate the dynamical matrix, which may be computationally
demanding for large systems.

2. Finite electric field: Berry phase approach

An alternative approach to calculate the dielectric constant
is to use the finite electric field method (FEF) coupled to a
Berry phase formalism,36–38 as described in Ref. 39. In this
approach, an electric enthalpy functional is introduced:39,40

EE = EKS − �E · P, (3)

where EKS is the Kohn-Sham total energy, E is a finite
external electric field, and P = Pion + Pel is the macroscopic
polarization. In Ref. 39, the polarization is computed by
minimizing the electric enthalpy functional using damping
molecular dynamics techniques.41 The system Brillouin zone
(BZ) is sampled with a single k point, e.g., the 	 point, and
the electronic polarization Pel is written using a Berry phase
formalism:37,38

Pel = − 1

�

L

π
Im(lndetS[{ψi}])z, (4)

where z is the unit vector that indicates the direction of the
applied electric field, S[{ψi}] is a matrix defined in term of
doubly occupied wave functions {ψi}: Sij = 〈ψi |e2πiz/L|ψj 〉;
L is the length of the cell in the direction of the applied electric
field. We emphasize that Eq. (4) holds only in the case of BZ
sampling with the 	 point. Both the static and high-frequency
dielectric constants can be calculated from differences of the
polarization evaluated for different values of the electric field.
The advantage of this method is that the dynamical matrix

calculation is avoided. However, size effects due to the 	-point
sampling may be severe and need to be carefully checked.39,42

B. Surfaces and interfaces: theory of local dielectric constants

A first-principles theory of atomic-scale dielectric con-
stants at insulator interfaces was first developed by Giustino
and Pasquarello.43 It has been successfully applied to
several systems such as Si slabs,43–46 Si/SiO2,43,47 and
polypropylene/metal-oxide48 interfaces. Recently, the theory
of local dielectric constants has been extended to study the
dielectric properties of metal-insulator interfaces.49,50 In this
approach43 a finite electric field is applied and a formalism
based on the Berry phase theory of polarization36–38 is adopted.
Then a position dependent local dielectric constant is evaluated
from induced polarizations, which are obtained by the induced
charge densities due to the presence of the electric field.

An alternative way to apply a finite electric field to study
local dielectric constants is to use an electric field derived from
a sawtooth potential.44,51 Consider an interface oriented along
the z direction; we define the dielectric constant across the
interface as the ratio between the projection of the electric
displacement field D along the z direction, and the screened
field E(z):

ε(z) = D

E(z)
. (5)

The screened electric field E(z) can be obtained from the
gradient of the change in the planar-averaged potential due to
the applied electric field:44,51

E(z) = −∂�V (z)

∂z
, (6)

where the planar-averaged potential is defined as

V (z) = 1

LxLy

∫
x,y

V (x,y,z)dx dy. (7)

Lx,Ly are the dimensions of the plane perpendicular to the
interface.

The present definition of local dielectric constant is equiv-
alent to that obtained in Ref. 43 but instead of using induced
charge densities, we use the induced electrostatic potential. If
the ions are fixed to their equilibrium positions, Eq. (5) yields
the optical dielectric constant ε∞(z). If the ions are relaxed
in response to a finite electric field, an ionic contribution is
included in the evaluation of the dielectric constant and Eq. (5)
yields the value of ε0(z).

In practice, we are interested in the average dielectric
constant of a finite system, so we define the average dielectric
constant εslab of a slab representing a thin film using the
relation43

lslab

ε∞(0),slab
= x2 − x1

ε∞(0),slab
=

∫ x2

x1

dz

ε∞(0)(z)
, (8)

where x1,x2 define the slab boundaries (which are taken at
the outermost atomic positions in all of our calculations) and
lslab = x2 − x1 is the thickness of the slab. Using this approach,
one is not only able to describe the microscopic variation of the
dielectric constant through a thin film, but one can also obtain
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TABLE I. Computed phonon frequencies (cm−1) compared with
experimental results and previous calculations.

Mode Experiment (Ref. 56) Ref. 14 This work

Raman
E2g 186 181 176
Ag 210 200 196
E1g 229 225 218
E2g 451 444 435
Ag 456 456 453
E2g 619 610 608
Ag 732 725 717
E1g 865 859 854
E2g 928 921 917
Ag 939 930 926
E2g 1047 1067 1030
Infrared
Au 380 378 354
E1u 447 424 414
E1u 580 562 554
Au 910 848 843
E1u 985 886 882
E1u 1040 1021 1017

a quantitative estimate of the average dielectric constant of
slabs representing thin films.

In the next section we discuss our results for the dielectric
properties of the bulk first, and then of thin films.

III. BULK CRYSTALLINE SILICON NITRIDE

Among the three phases of crystalline Si3N4 we focus
on β-Si3N4 since it is the most stable phase at ambient
conditions.15 The hexagonal unit cell of β-Si3N4 contains
14 atoms, and it is described by six structural parameters12

(a,c, and four internal parameters). We first optimized
the structure of β-Si3N4 using DFT within the lo-
cal density approximation (LDA), a 4 × 4 × 10 k-point
grid,55 a plane wave basis with a kinetic energy cut-
off of 80 Ry, in conjunction with norm-conserving pseu-
dopotentials. We carried out calculations with the QUAN-
TUM ESPRESSO code.54 For structural properties, our re-
sults (7.570 Å, 2.892 Å, 0.173, 0.766, 0.330, 0.028) are
in good agreement with experiment (7.607 Å, 2.911 Å,
0.174, 0.766, 0.321, 0.025)12 and previous theoretical work
(7.557 Å, 2.885 Å, 0.174, 0.768, 0.321, 0.030).14 We
also compared selected phonon frequencies with available
measurements56 and DFT calculations14 and obtained a good

TABLE II. Dielectric constant [ε = 1
3 Tr(εαβ ) where εαβ are

elements of the dielectric tensor] of β-Si3N4: Comparison between
our results and those of previous DFT calculations (Ref. 58) and
experiment (Ref. 67).

Dielectric Experiment DFT calculation This
constant (Ref. 67) (Ref. 58) work

ε∞ 4.33 4.23
ε0 8.4–8.66 8.19 8.25

10 20 30 40
Length of supercell (Bohr)

2

4

6

8

D
ie

le
ct

ri
c 

co
ns

ta
nt

s

FIG. 1. Static (filled symbols) and optical (empty symbols)
dielectric constant of β-Si3N4 as a function of the size of supercell
adopted in the finite electric field calculations. Dashed lines are results
obtained using density functional perturbation theory.

agreement with existing data, as shown in Table I. In addition,
the measured band gap of β-Si3N4 (4.6-5.5 eV)57 is reproduced
fairly well by the LDA (we obtain a value of 4.4 eV).

We have calculated optical and static dielectric constants of
β-Si3N4 using DFPT. In Table II, we summarize the average
value of the dielectric constant [ε = 1

3 Tr(ε)] and compare with
results from available experiments and previous theoretical
work. Our results for ε∞ and ε0 agree very well with the
DFT calculation of Ref. 58. In addition, our computed static
dielectric constant ε0 falls into the range of experimental data
(8.4–8.66).67

One may also compute the dielectric constants of β-Si3N4

using the FEF method in conjunction with a Berry phase
formalism.39 However, size effects due to the use of 	-point
sampling in molecular dynamics calculations are severe. As an
example, in Fig. 1 we show the dielectric constants of β-Si3N4

obtained with the FEF method as functions of the size of the
simulation cell L. Convergence is obtained for large L (L >

40 bohrs), and it is rather slow.39,42,43

IV. BULK AMORPHOUS SILICON NITRIDE

We have generated two amorphous structures of Si3N4. All
the models were generated starting from a molten β-Si3N4

bulk sample at 3000 K, obtained using classical molecular
dynamics (MD) with a modified Tersoff potential.16 The
bulk liquids were then slowly annealed to room temperature.
Starting from classically annealed configurations, we then
conducted ab initio MD simulations to refine our Si3N4

amorphous models. All samples underwent an additional
annealing cycle by being heated up to 2000 K and quenched
down to room temperature for about 2 ∼ 3 ps, using ab initio
MD employing the QBOX code.59 In all of our simulations, the
density was fixed to the experimental value. To understand size
effects on structural and dielectric properties of the amorphous
Si3N4, we generated two models (I and II) containing 56 and
168 atoms, respectively, using the same protocol in both cases.

A. Structural properties

We first discuss the structural properties of our amorphous
models. In Fig. 2 the dotted and solid lines represent the
calculated pair correlation functions (PCFs) of model I and
model II, respectively. The Si-N and N-N PCFs of our two
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FIG. 2. Pair correlation functions [g(r)] of two amorphous Si3N4

samples generated by ab initio MD: Model I with 56 atoms (dotted
line) and model II with 168 atoms (solid line).

amorphous models are very similar. The main peaks in Si-N
and N-N PCFs are located at 1.74 Å and 2.83 Å, and they are
related to the first and second peak at 1.73 Å and 2.81 Å in
the radial distribution function detected experimentally.60 Size
effects can be seen by comparing the Si-Si PCFs obtained for
the two models: The large sample (model II) exhibits only one
peak in the Si-Si PCF, while the smaller one (model I) has
several peaks.

The angle distributions for our models are shown in Fig. 3;
the distribution of N-Si-N angles has a main peak located
at around 110 ◦ which is very close to the ideal tetrahedral
angle of 109.47◦, indicating the presence of SiN4 tetrahedral
units. In addition, our model shows quasiplanar NSi3 units,
as the main peak in the Si-N-Si angle distribution is at 117◦,
consistent with the value of 120◦ for regular planar NSi3 units.
Size effects are also shown in the Si-N-Si angle distribution,
which has a much more pronounced peak at small angles in
model II.

We note that angle distributions of samples generated
classically show significant differences from those obtained
from ab initio calculations. As shown in Fig. 3, in addition
to the main peak, the Si-N-Si and N-Si-N angle distributions
derived ab initio also exhibit a distinct peak at about 90◦, in
agreement with a recent first-principles work on a-Si3N4.23

However, such configurations could not be obtained in models
generated by classical potentials.16–19

To compare with experiment, we have calculated the
neutron structure factor61 of the larger sample with 168
atoms. We used neutron scattering lengths of 4.15 fm and
9.36 fm for Si and N, respectively.62 As seen in Fig. 4, overall
the agreement with experiment is very good. We note that
our results also agree well with those of a recent ab initio
calculation for a model with 152 atoms.23

In Fig. 5 we show the electronic density of states (DOS) of
the model with 168 atoms calculated at the LDA level and we
find a band gap of 2.1 eV, an underestimate of the experimental
value of 4.5–5.3 eV.63,64
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FIG. 3. Angle distribution function of amorphous Si3N4 samples
generated using ab initio MD: Model I with 56 atoms (dotted line)
and model II with 168 atoms (solid line).

B. Dielectric constant

We have calculated the dielectric constants of the two
models of a-Si3N4 using DFPT. The dielectric tensors of
model I are

ε∞ =

⎛
⎜⎝

4.65 −0.08 0.03

−0.08 4.83 −0.01

0.03 −0.01 4.95

⎞
⎟⎠ ,

ε0 =

⎛
⎜⎝

11.88 0.58 0.14

0.58 11.05 0.13

0.14 0.13 10.86

⎞
⎟⎠ ,

with an average value of 4.81 for the optical dielectric constant
and 11.26 for the static dielectric constant. The dielectric
tensors of model II are

ε∞ =

⎛
⎜⎝

5.18 −0.02 0.10

−0.02 5.03 0.01

0.10 0.01 5.09

⎞
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FIG. 4. (Color online) Neutron scattering structure factor of
amorphous Si3N4 calculated for model II (see Fig. 3) at room
temperature (solid line), compared to the experimental data (circle
symbols) (Ref. 60).
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FIG. 5. Electronic density of states of amorphous Si3N4 calcu-
lated for model II.

ε0 =

⎛
⎜⎝

11.40 0.13 0.50

0.13 11.23 0.00

0.50 0.00 11.31

⎞
⎟⎠ ,

corresponding to an average value of 5.1 for the optical
dielectric constant and 11.31 for the static dielectric constant.
In both cases, we obtain nearly diagonal and isotropic dielectric
tensors. Our results indicate that dielectric constants are
weakly affected by the size of the amorphous sample.

The dielectric constants obtained for the two bulk amor-
phous samples are higher than those reported recently23 using
a FEF technique. The differences are �ε0 = 2.46 (2.51)
and �ε∞ = 0.91 (1.2) for model I (II) and may be due to
convergence issues of the FEF method using a Berry phase
formalism, similar to what we found in the case of crystalline
Si3N4 (see Fig. 1). Direct comparison of calculated dielectric
constants of bulk amorphous Si3N4 with experiment is difficult
because of two reasons: (i) The experimental measurements of
dielectric constants are usually performed with amorphous thin
films; (ii) the sample preparation procedure may vary and result
in amorphous samples with different structural properties.
The values of static dielectric constants of amorphous Si3N4

reported in the literature vary between 7.0 and 11.0,65–69 de-
pending on the preparation condition. Therefore our computed
values are in reasonable agreement with experiments, given
these uncertainties.

V. SILICON NITRIDE SLABS

In this section we first describe the crystalline and
amorphous Si3N4 slab models used in our calculation. We
introduce and apply a classical model for the case of crystalline
Si3N4 slabs and we then show the need for a description of
the dielectric constant at the microscopic level. Finally, we
present microscopic descriptions of dielectric constants for
both crystalline and amorphous Si3N4 slabs.

A. Structural models

To understand the effect of the size reduction on the
dielectric properties of Si3N4, we have built crystalline slabs
with different thicknesses and different growth directions. We
investigated two growth directions, the [0001] direction by
using a hexagonal unit cell,24 and the [010] direction using an
orthorhombic unit cell.70 We terminated the surface dangling
bonds on each side of the slabs by hydrogen atoms, and we

optimized the ionic positions of the whole slab. To avoid the
interaction between slabs in neighboring supercells, we have
used a vacuum region 15 Å thick in our calculations.

In order to understand the difference in dielectric properties
between crystalline and amorphous Si3N4 thin films, we
generated several amorphous slab models by combining
classical and ab initio MD simulations. A Si3N4 crystalline
cell was first melted at 3000 K by using a modified Tersoff
potential.16 About 10 Å vacuum was added along the z axis
to the bulk liquid in order to generate two free surfaces.
Using this structure as the starting configuration, we conducted
a classical MD simulation at 3000 K and collected seven
snapshots along the MD trajectory every 100 ps. This ensures
that the generated snapshots are structurally uncorrelated. Each
of the seven snapshots was then equilibrated at 2000 K and
annealed to room temperature for about 2 ps using ab initio MD
employing the QBOX code.59 Finally, all atoms of the annealed
configurations were fully relaxed to their positions of the
nearest energy minimum. At variance with crystalline slabs,
the surfaces of our amorphous thin films were not hydrogen
terminated.

B. Dielectric constant

1. Abrupt interface model

We first address the question of how to use DFPT and FEF
methods to calculate the dielectric constant of finite systems
such as Si3N4 thin films. The dielectric constant obtained
from supercell calculations is not the dielectric constant of
an isolated slab but rather that of a system consisting of
the slab plus the vacuum regions.71,72 Therefore, in principle
the dielectric constant obtained with supercell calculations
depends on the thickness of the vacuum regions, and in order to
apply directly DFPT or FEF techniques, one needs to introduce
a model to extract the dielectric constant of the slab.

One model used in the literature73,74 is the so-called abrupt
interface model, where one assumes that the dielectric constant
attains an average value εslab that is constant throughout the
slab. At the surface, one assumes that the dielectric constant de-
creases sharply from εslab to the dielectric constant of vacuum
(ε = 1.0). Therefore in this model all the spatial variations of
the dielectric constant inside the slab are neglected, as well
as variations at the interface between the slab and vacuum.
Within these assumptions, one can derive a relation between
the dielectric constant of the slab and that of the supercell,
based on classical electrostatics:(

1

ε∞(0),sc
− 1

)
L =

(
1

ε∞(0),slab
− 1

)
lslab. (9)

In Eq. (9), L and lslab are the thickness of the supercell
and that of the isolated slab, respectively. The dielectric
constant ε∞(0),slab and ε∞(0),sc are the optical (static) dielectric
constants of the slab and the supercell, respectively. In our
calculations the thickness of the slab is computed from the
positions of the outermost hydrogen atoms. We note that in this
model, the quantity that needs to be converged with respect
to the extension of vacuum in the supercell is the product
( 1
ε∞(0),sc

− 1)L. Once convergence is ensured,75 one may extract
the dielectric constant of the slab ε∞,slab (ε0,slab) from ε∞,sc

(ε0,sc).
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FIG. 6. Dielectric constant εslab as function of the thickness of
slabs grown in the [0001] and [010] (inset) directions, computed using
an abrupt interface model. Circles (triangles) represent the results
from FEF (DFPT) calculations. Open (filled) symbols represent
ε∞,slab (ε0,slab).

In principle, ε0,sc could be obtained from DFPT calculations
by adding the ionic contribution to ε∞,sc. However the
calculation of dynamical matrices and phonon vibrational
modes are very demanding for systems with several tens of
atoms. To overcome this problem, we used the FEF method39

to obtain ε0,sc. Since a very large supercell was used in our
calculations, the size effects due to 	-point sampling are not
of concern here. As an additional check, we compared the
results for ε∞,sc obtained with FEF and DFPT calculations
and found a very good agreement, as seen in Fig. 6.

In Fig. 6 we present the computed dielectric constant εslab

as a function of thickness as obtained from Eq. (9). The results
show that both the static and high-frequency dielectric constant
of Si3N4 slabs significantly increase with decreasing thickness.
For the thinnest slab, the dielectric constants of the slab are
almost twice as large as those of bulk Si3N4. For increasing
thicknesses, the dielectric constants decay to the bulk value.
To understand how the surface and the growth direction may
affect the value of the dielectric constant, we considered
different growth directions. Following Ref. 70 we built an
orthorhombic supercell with 28 atoms, then slabs with different
thicknesses (consisting of one to four primitive unit cells) were
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FIG. 7. Spatial variation of the optical (dashed line) and static
(solid line) dielectric constants along the z direction (parallel to the
growth direction) for crystalline Si3N4 slabs grown in the [0001]
and [010] (inset) directions. Vertical lines represent planes of Si3N4

(solid) and the positions of the outermost H atoms (dash-dotted line).
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FIG. 8. (Color online) Spatial variation of the optical dielectric
constants along the z direction (parallel to the growth direction) for
crystalline Si3N4 slabs grown in the [0001] direction. Vertical lines
represent planes of Si3N4 (solid) and the positions of the outermost
H atoms (dash-dotted line). The value of the bulk dielectric constant
ε∞ is 4.23.

generated by cutting the crystal in the [010] direction. In the
inset of Fig. 6 we present εslab as a function of thickness for
orthorhombic slabs. The high-frequency dielectric constant
ε∞,slab again shows good agreement between DFPT and
FEF calculations. Furthermore, both static and high-frequency
dielectric constants significantly increase with decreasing slab
thickness. Therefore, it is reasonable to expect that within the
abrupt interface model the dielectric constant of Si3N4 always
increases as the slab thickness decreases, irrespective of the
growth direction.

These results are not consistent with experimental data
showing that the dielectric constant of Si3N4 thin films is
smaller than that of the bulk.29–32 We now turn to a more
refined model taking into account microscopic variations of
the dielectric constant.

2. Microscopic description of dielectric constant

We computed the dielectric constant of a slab as a function
of z, i.e., the growth direction, by applying a sawtooth potential
as described in Sec. II. Since we carried out calculations
with periodic boundary conditions, an artificial planar dipole
potential was added to our simulation cell, following the pre-
scription proposed in Refs. 52 and 53. When ionic relaxations
are allowed, �V (z) has an oscillatory behavior that can be
smoothed out by using Gaussian convolution techniques with
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FIG. 9. Spatial variation of the optical (dashed line) and static
(solid line) dielectric constants along the z direction (perpendicular
to the slab surfaces) of an amorphous slab. Vertical lines represent
the positions of the outermost H atoms.
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a choice of standard deviation σ .76 This is equivalent to the
assumption that the dielectric response of the system is local
over a scale of σ .43

Figure 7 shows ε(z) for a crystalline slab grown in the
[0001] direction. Consistent with previous studies on silicon
slabs,43–46 we find that the dielectric constant decays smoothly
at the surface. The periodic oscillations of the dielectric
constant within the slab originates from the ordered structure
of the crystalline thin film. We also show ε(z) for crystalline
slab grown in the [010] direction in the inset of Fig. 7.
The difference in the dielectric constant profile is due to
the difference of the atomic arrangement in the two films
grown in different directions. We note that for a given slab
configuration, the average value of the dielectric screening
inside the slab is basically constant as a function of size (see
Fig. 8 for ε∞(z) computed for crystalline Si3N4 slabs with
different thicknesses grown in the [0001] direction) and that
the decay at the surface occurs within 2 atomic layers in all
cases.

In Fig. 9 we show the spatial variation of the dielectric
constant along the z axis of one model of an amorphous
silicon nitride slab. As expected, the dielectric constant shows
a nonhomogeneous behavior within the slab, due to the
disordered arrangement of atoms.

We have evaluated the average dielectric constant using
Eq. (8). In Fig. 10 the results for various crystalline slabs of
different thicknesses grown in the [0001] and [010] directions
are represented by circle and square symbols, respectively.
At variance from results obtained with the abrupt interface
model (Fig. 6), crystalline slabs show a substantially reduced
screening with respect to the bulk value below 4 nm (the
bulk value is indicated by dashed lines in Fig. 6). This
reduction is due to the decay of the dielectric constant in
proximity to the surface and it depends on the film growth
direction. As the thickness of the slab becomes smaller, the
ratio of surface to volume increases, inducing a stronger
reduction in the dielectric constant. It is interesting to note
that for both growth directions, while the optical dielectric
constant reaches values close to that of the bulk already
for thicknesses of about 5 nm, ε0,slab remains smaller than
that of the bulk for thicknesses up to 10 nm. In addition,
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FIG. 10. (Color online) Dielectric constant of crystalline slabs
grown in the [0001] (circles) and [010] (squares) direction compared
to that of amorphous slabs (triangles). Open (filled) symbols represent
ε∞,slab (ε0,slab). Dashed lines indicate values of the dielectric constants
for bulk crystalline Si3N4.
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FIG. 11. (Color online) The ratio leff (lslab)−1 as a function of
the physical slab thickness lslab for crystalline slabs grown in the
[0001] direction (see text). Open (filled) circles and squares symbols
represent the results with εslab = ε∞,slab (εslab = ε0,slab) obtained from
Eq. (8) and Eq. (9), respectively.

we find that at the nanoscale, the static dielectric constant
is much more sensitive to the growth direction, as indicated
in Fig. 10.

An alternative way to display our data for the slab dielectric
properties comes from the use of the concept of “effective
dielectric thickness” leff , which is defined as follows:

lslab

εslab
= leff

εbulk
. (10)

Here lslab is the physical slab thickness, as obtained from the
positions of the outermost atoms of the slab; εslab and εbulk

are the dielectric constants of the slab and of bulk crystalline
Si3N4, respectively. We consider two cases: One where the
dielectric constant εslab = ε∞(0),slab is obtained with the abrupt
interface model [using Eq. (9)], and the second one where the
dielectric constant is obtained from a microscopic description
[using Eq. (8)]. The effective dielectric thickness leff is the slab
thickness at which the dielectric properties of bulk Si3N4 are
recovered.

In Fig. 11 and Fig. 12 we show how the ratio leff(lslab)−1

varies as a function of the physical slab thickness lslab for
crystalline slabs grown in the [0001] and [010] directions,
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FIG. 12. The ratio leff (lslab)−1 as a function of the physical slab
thickness lslab for crystalline slabs grown in the [010] direction. Open
(filled) circles and squares symbols represent the results with εslab =
ε∞,slab (εslab = ε0,slab) obtained from Eq. (8) and Eq. (9), respectively.
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respectively, with εslab = ε∞,slab (ε0,slab) obtained using either
Eq. (8) or Eq. (9). For both growth directions, within the
abrupt interface model, leff(lslab)−1 decreases with decreasing
physical slab thickness lslab and reaches 1.0 at large lslab.
Therefore at the nanoscale, within the abrupt interface model,
leff , the thickness at which the bulk dielectric properties are
recovered, is even smaller than the physical thickness of the
slab, clearly indicating an unphysical description provided by
the model. On the contrary, using the microscopic description
of dielectric constants, leff(lslab)−1 increases with decreasing
physical thickness of the slabs, reproducing a correct behavior
of dielectric properties as a function of size. While the
two models provide identical results at large physical slab
thickness, by neglecting the variations of dielectric constants
at the interfaces, the abrupt interface model leads to a incorrect
behavior of dielectric properties at the nanoscale (lslab <

6 nm). We note that the behavior of the dielectric screening as
a function of thickness found here using a fully microscopic
model (Fig. 10) is similar to the one reported for Si slabs.43

The results of Ref. 43 have been recently confirmed by
experiment.77,78

Finally we studied the average dielectric constants of
amorphous slabs using a microscopic description. In Fig. 10
the triangular symbols represent the dielectric constant of
amorphous models that have the same thickness as that of
a nine-layer crystalline [0001] slab. We first calculated the
dielectric constants for seven different amorphous slab models,
then the mean value and standard deviations of dielectric
constants were obtained. We note that both optical and static
dielectric constants are very similar for the several amorphous
slab models considered here, with deviations σε∞ = 0.2 and
σε0 = 0.31, respectively. Both the static and optical dielectric
response of the amorphous slabs are smaller than that of the
crystalline [0001] slab with the same thickness. However
they are of the same order as that of the orthorhombic
slab. This indicates that amorphization of thin films may
be an important factor in decreasing the dielectric constant
at the nanoscale. All of our results show that the presence
of a surface in the film greatly affects its average dielectric
properties and indicates that surface and interface effects
play a key role in determining the dielectric response at the
nanoscale. It is interesting to note that for both amorphous
and crystalline Si3N4 slabs with thicknesses of about 1 nm,
the dielectric constant is still larger that of SiO2 (ε0 = 4.6,

ε∞ = 2.46).58

VI. CONCLUSION

In conclusion, we have investigated the dielectric properties
of bulk and thin film silicon nitride by using first-principles
density functional theory calculations. We have calculated the
dielectric constant of bulk crystalline and bulk amorphous
Si3N4 by employing both density functional perturbation
theory and finite electric field techniques. For crystalline
Si3N4, our results (ε0 = 8.25,ε∞ = 4.23) agree well with
experiment and other theoretical work. By considering several
model structures for bulk amorphous Si3N4, generated by
ab initio molecular dynamics, we investigated the dependence
of structural and dielectric properties on the size of the
simulated system. Samples with at least 
150 atoms are
necessary to accurately describe the structural properties of
a-Si3N4. For example, using a system with 168 atoms, we find
very good agreement between computed and measured neutron
structure factors. In addition we found important qualitative
differences between samples generated using classical MD
and ab initio calculations. The computed static and optical
dielectric constants of our amorphous models are higher than
those obtained for the crystalline phase and consistent with
available experimental data.

We also investigated the dielectric properties of crystalline
and amorphous silicon nitride thin films with thickness below
10 nm. By using an abrupt interface model, we showed the
need to take into account the microscopic variation of dielectric
constants at the surface of the films, in order to reproduce the
correct behavior of dielectric properties as a function of size.
We then calculated the dielectric constant of silicon nitride
films as a function of thickness using a detailed microscopic
model. For crystalline films we find nonnegligible variations
of the static dielectric constants with respect to bulk values for
thicknesses up to 10 nm and a reduction as large as factors
of 1.32 and 1.15 for, e.g., 1 and 2 nm slabs grown in the
[0001] direction, respectively. Amorphization, that is, atomic
disorder, may further decrease both the high-frequency and the
static dielectric constants of the films. Work is in progress to
study the dependence of dielectric properties of silicon nitride
thin films on surface and interface geometries.
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