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Electron spin diffusion and transport in graphene
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We investigate the spin diffusion and transport in a graphene monolayer on SiO2 substrate by means of the
microscopic kinetic spin Bloch equation approach. The substrate causes a strong Rashba spin-orbit coupling
field ∼0.15 meV, which might be accounted for by the impurities initially present in the substrate or even
the substrate-induced structure distortion. By surface chemical doping with Au atoms, this Rashba spin-orbit
coupling is further strengthened as the adatoms can distort the graphene lattice from sp2 to sp3 bonding structure.
By fitting the Au doping dependence of spin relaxation from Pi et al. [Phys. Rev. Lett. 104, 187201 (2010)],
the Rashba spin-orbit coupling coefficient is found to increase approximately linearly from 0.15 to 0.23 meV
with the increase of Au density. With this strong spin-orbit coupling, the spin diffusion or transport length is
comparable with the experimental values. In the strong scattering limit (dominated by the electron-impurity
scattering in our study), the spin diffusion is uniquely determined by the Rashba spin-orbit coupling strength and
insensitive to the temperature, electron density, as well as scattering. With the presence of an electric field along
the spin injection direction, the spin transport length can be modulated by either the electric field or the electron
density. It is shown that the spin diffusion and transport show an anisotropy with respect to the polarization
direction of injected spins. The spin diffusion or transport lengths with the injected spins polarized in the plane
defined by the spin-injection direction and the direction perpendicular to the graphene are identical, but longer
than that with the injected spins polarized vertical to this plane. This anisotropy differs from the one given by the
two-component drift-diffusion model, which indicates equal spin diffusion or transport lengths when the injected
spins are polarized in the graphene plane and relatively shorter lengths when the injected spins are polarized
perpendicular to the graphene plane.
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I. INTRODUCTION

Graphene is considered to be a promising candidate for the
spintronic applications recently,1–22 partly due to the perfect
two dimensionality, gate-voltage-tunable charge carrier type
and density,3,4 high mobility,5–7,23,24 as well as the potentially
long spin relaxation time limited by the small intrinsic spin-
orbit and hyperfine couplings.8–12,25,26 From the high mobility
and long spin relaxation time, a long spin relaxation length,
favorable to the spin information transport and manipulation, is
anticipated. However, both the spin relaxation time and trans-
port length were experimentally found to be much smaller than
expected.2,25,27–32 This suggests that the spin relaxation in the
experiments is most likely to be contributed by extrinsic factors
such as the possible impurity-enhanced spin relaxation28,30

via the Elliot-Yafet33 mechanism or the enhanced Rashba
spin-orbit coupling field9,11 from the impurities.26,34,35 The
former case may exist in a highly dirty graphene sample and
causes the spin relaxation time τs to be proportional to the
momentum relaxation time τp.28,30 However, for the latter
case, the Dyakonov-Perel (DP) spin relaxation mechanism36

dominates and the relation τs ∝ τp is absent. In fact, recently
Pi et al. reported that τs increases with decreasing τp in
the surface chemical doping experiment with Au atoms on
graphene,31 indicating that the DP spin relaxation mechanism
is important there. However, the relation τs ∝ 1/τp, valid
when the DP spin relaxation mechanism is dominant and
the scattering is strong enough, is not obeyed in their
experiment.31 Nevertheless, we will show that this deviation
can be understood by taking account of the strengthening of

the Rashba spin-orbit coupling with the increasing coverage
of Au adatoms. The Rashba spin-orbit coupling, referred to
as an extrinsic one, is due to the breaking of the inversion
symmetry which can be caused by either a perpendicular
electric field, the interaction with substrate, or the atoms
adsorbed on the surface.9,11,26,34,35 The contribution of the
electric field to the Rashba spin-orbit coupling is small (∼μeV
under a perpendicular electric field as large as 1 V/nm),
26,32 while the adatoms can effectively enhance the Rashba
spin-orbit coupling to be of the order of 10 meV by distorting
the graphene lattice from sp2 to sp3 bonding structure.26,34,35

In this work, we investigate the spin diffusion and transport
limited by the DP mechanism in a graphene monolayer on
SiO2 substrate as presented by Pi et al.31 To account for
the short spin relaxation time (∼70 ps) before Au doping in
the experiment,31 we assume that the impurities inevitably
present in the substrate, as well as the other effects such
as the substrate-induced structure distortion, cause a strong
Rashba spin-orbit coupling. When the surface chemical doping
by Au atoms31 is performed, the Rashba spin-orbit coupling
coefficient αR is further strengthened. By fitting the chemical
doping dependence of spin relaxation time from the exper-
imental data,31 we obtain the chemical doping dependence
of αR. It is found that αR increases approximately linearly
with the density of adatoms when the latter is not too high.
With this essential information obtained, we then study the
spin diffusion and transport in the graphene layer. The method
utilized in our study is the kinetic spin Bloch equation (KSBE)
approach which has been successfully applied to the study
of spin dynamics in semiconductors.37 In the framework of
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this approach, the spatial spin precession frequency during
the steady-state scattering-free spin diffusion (assumed to be
along the x axis) is37–41

ωk = (2�k + gμBB)/∂kx
εk. (1)

Here �k is the DP term, B is the external magnetic field, and εk
is the electron energy spectrum. The momentum dependence of
ωk leads to the inhomogeneous broadening in spin precession,
with which any scattering (including the Coulomb scattering)
can cause an irreversible spin relaxation along with spin
diffusion and transport.37–41 It is noted that different DP terms
as well as different energy spectra lead to distinct momentum
dependences of ωk. For graphene, εk = h̄vFk with vF =
106 m/s being the Fermi velocity and

�k = αR(− sin θk, cos θk,0), (2)

with θk being the polar angle of momentum k. Therefore in
the absence of any external magnetic field,

ωk = 2αR(− tan θk,1,0)/(h̄vF), (3)

which depends on the angle θk rather than the magnitude
of k. This indicates that the inhomogeneous broadening is
insensitive to temperature and electron density as long as
αR is fixed. Therefore the spin diffusion is only possible to
be modulated effectively by the scattering.42 However, in
this work it is revealed that when the scattering is strong
enough (just as in the graphene layer under study), the spin
diffusion becomes insensitive to the scattering. As a result,
the spin diffusion is uniquely determined by αR. Moreover,
the mean spin precession frequency 〈ωk〉 = 2αR

h̄vF
(0,1,0) shows

a strong anisotropy which can also lead to the anisotropy of
spin diffusion with respect to the spin polarization direction.
This anisotropy is found to be quite different from the widely
believed one predicted from the two-component drift-diffusion
model.43–47 The discrepancy reveals the inadequacy of the
two-component drift-diffusion model, especially for the cases
with spin precession in spatial domain.

This paper is organized as follows. In Sec. II, we present the
model and introduce the KSBEs. In Sec. III, we first investigate
the spin relaxation by fitting the experimental data from
Pi et al.31 to obtain essential parameters and then study the
spin diffusion and transport in graphene. Both the analytical
and numerical investigations are performed. By comparing
the results from the analytical and numerical studies, we find
that the analytical model depicts the zero-electric-field spin
diffusion perfectly and the nonzero-electric-field spin transport
with a small discrepancy which increases with the strength of
the electric field. At last we summarize in Sec. IV.

II. MODEL AND KSBES

The n-doped graphene monolayer under investigation is on
a SiO2 substrate perpendicular to the z axis. The depth of the
SiO2 substrate is assumed to be a = 300 nm and the electric
field along the z axis is Ez = Vg/a with Vg being the gate
voltage. The spins are injected at x = 0 and diffuse or transport
along the x axis. The external electric field, if applied, is along

the x axis (i.e., E = Ex̂). Under the basis laid out in Refs. 25
and 32, the Hamiltonian of electrons can be written as25

H =
∑
μkss ′

[(εk − λI + eEx)δss ′ + �k · σ ss ′ ]cμks
†cμks ′ + Hint.

(4)

Here μ labels the valley located at K or K ′ point, σ denote the
Pauli matrices, and cμks (cμks

†) is the annihilation (creation)
operator of electron in the μ valley with momentum k (relative
to the valley center) and spin s (s = ± 1

2 ). λI is the intrinsic
spin-orbit coupling constant and −e is the electron charge
(e > 0). The coefficient in the Rashba term �k [Eq. (2)] reads
αR = ζEz + η, with the first term contributed by the electric
field along the z axis and the second term by the substrate
(including the impurities initially present inside) as well as the
adatoms from surface chemical doping. The coefficient ζ is
5 × 10−3 meV nm/V (Refs. 26 and 32). The Hamiltonian Hint

consists of the electron-impurity, electron-phonon, as well
as electron-electron Coulomb interactions.25 We adopt the
minimal model proposed by Adam and Das Sarma48 to depict
the electron-impurity scattering. Within this model, only
the intravalley electron-impurity scattering is important
while the intervalley electron-impurity scattering is negligible
due to the large momentum transfer from one valley to the
other and the finite distance between the impurity layer and the
graphene plane. The intravalley electron-impurity scattering
matrix element reads |Uk−k′ |2 = Ni |Vk−k′ |2e−2d|k−k′ |,48 where
Ni is the effective impurity density, d is the effective distance
of impurities from the graphene layer,48 and Vk−k′ is the
Coulomb potential under the random phase approximation.49

The electron-phonon scattering includes the intravalley
electron-acoustic phonon scattering,50 the intervalley and
intravalley electron-optical phonon scattering,51 as well as
the intravalley electron-optical surface phonon scattering.52

The electron-electron Coulomb scattering includes both the
intervalley and intravalley scattering, with the screening under
random phase approximation given in Ref. 49.

By using the nonequilibrium Green function method,53 the
KSBEs are constructed as37

∂ρμk(x,t)

∂t
= ∂ρμk(x,t)

∂t

∣∣∣∣
dri

+ ∂ρμk(x,t)

∂t

∣∣∣∣
dif

+ ∂ρμk(x,t)

∂t

∣∣∣∣
coh

+ ∂ρμk(x,t)

∂t

∣∣∣∣
scat

. (5)

Here ρμk(x,t) represent the density matrices of electrons with
relative momentum k in valley μ at position x and time t .
∂ρμk(x,t)

∂t
|dri = eE

h̄

∂ρμk(x,t)
∂kx

are the driving terms from the external
electric field (the fluctuation of electron density is neglected
and thus the total electric field is taken to be the external one).
The diffusion terms due to the spatial gradient are

∂ρμk(x,t)

∂t

∣∣∣∣
dif

= − ∂εk

h̄∂kx

∂ρμk(x,t)

∂x
= −vF cos θk

∂ρμk(x,t)

∂x
.

(6)

∂ρμk(x,t)
∂t

|coh and ∂ρμk(x,t)
∂t

|scat are the coherent and scattering
terms, respectively. Their expressions can be found in Ref. 25.
In the steady-state scattering-free spin diffusion, the spatial
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spin precession frequency, given by Eq. (3), is immediately
obtained according to the KSBEs.39–41

III. SPIN RELAXATION AND SPIN DIFFUSION
AND TRANSPORT

In the following, we first study the spin relaxation in
graphene by fitting the experimental data from Pi et al.31

to obtain information on impurities (including the effective
density as well as the distance from the graphene layer) and the
chemical doping dependence of the Rashba spin-orbit coupling
coefficient. We then use the information to study the spin
diffusion and transport in graphene, first analytically for the
case with strong electron-impurity scattering only, and then
numerically with all the scattering explicitly included.

A. Spin relaxation time

We fit the chemical doping dependence of spin relaxation
time and diffusion coefficient from Pi et al. [Fig. 3(a) in
Ref. 31] to establish: (i) the density and typical distance from
the graphene layer of charged impurities initially present in
the substrate and those of the chemical doping adatoms, and
(ii) the dependence of αR on chemical doping. The electron
density Ne is 2.9 × 1012 cm−2 and the temperature T is 18 K.31

The electrons are initially polarized in the x-y plane31 with the
polarization P0 assumed to be 0.05. To perform the fitting,
the KSBEs are solved in the time domain under the spatial
uniform case, as carried out recently by Zhou and Wu in the
ultraclean graphene monolayer.25 (An analytical study of spin
relaxation time in graphene is also given in Appendix A.) The
diffusion coefficient D given by Pi et al. is actually for spin
instead of charge, although it is treated as the charge diffusion
coefficient in the experiment.31 In fact, these two coefficients
are usually close to each other and Józsa et al. found this most
likely to be the case in graphene when the electron density
is high (∼3 × 1012 cm−2)30 due to the weak electron-electron
Coulomb scattering.25 Therefore we fit the experimental data
with the charge diffusion coefficient D =

√
πNe

2e
h̄vFμe, where

μe is the electron mobility obtained under a small in-plane
electric field.25

We first make use of the value of D ≈ 0.059 m2/s for
the case without surface chemical doping given in Ref. 31 to
explore the information of impurities initially present in the
substrate. This single value of D is not sufficient for us to fix
both the effective density and distance from the graphene layer
of these impurities. However, these details are not essential
and we just choose two proper parameters (e.g., Ns = 2.1 ×
1012 cm−2 and ds = 0.7 nm) to ensure D ≈ 0.059 m2/s. The
surface chemical doping deposits Au atoms on the graphene
surface with a growth rate of 5×1011 atom/(cm2 s).31 By fitting
the deposition time (adatom density) dependence of D,31 the
distance of adatoms from the graphene layer dAu is obtained to
be about 0.2 nm. Nevertheless, the fitting does not confirm with
the experimental data well when the deposition time exceeds
4 s [compare the fitting data (chain curve with triangles) to the
experimental data (crosses) in Fig. 1(a)]. This indicates that
the effective density of adatoms does not increase linearly with
time any more when the doping has been performed for several
seconds. Therefore, when the doping time is longer than 4 s,
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FIG. 1. (Color online) (a) Chain curve with triangles: deposition
time dependence of calculated diffusion coefficient, with the Au
density growing linearly with the deposition time with a fixed
rate of 5×1011 atom/(cm2 s).31 Dashed curve with solid squares:
deposition time dependence of calculated diffusion coefficient, with
the deposition time dependence of Au density given by the solid
curve (the scale is on the right-hand side of the frame). Crosses:
experimental data from Pi et al.31 (b) Dashed curve with solid squares:
deposition time dependence of calculated spin relaxation time, with
the deposition time dependence of αR shown by the solid curve with
open squares (the scale is on the right-hand side of the frame). Crosses:
experimental data from Pi et al.31 Inset of (b): dependence of αR on
Au density.

we choose the proper density of adatoms to reproduce the
experimental diffusion coefficient. In Fig. 1(a), the deposition
time dependence of Au density is plotted by the solid curve
with open squares (the scale is on the right-hand side of the
frame) and that of the calculated diffusion coefficient is shown
by the dashed curve with solid squares.

With the parameters for two kinds of impurities obtained,
we then fit the spin relaxation time τs to obtain αR under
different deposition times. In Fig. 1(b), the deposition time
dependence of fitted αR is shown by the solid curve with open
squares (the scale is on the right-hand side of the frame) and
that of the calculated spin relaxation time is shown by the
dashed curve with solid squares. The crosses represent the
experimental spin relaxation times under different deposition
times. In the inset of Fig. 1(b), we also plot the dependence
of αR on Au density NAu. It is shown that αR increases
approximately linearly with Au density when the latter is
not so high. The fitted value of αR is comparable to the
value estimated by Ertler et al. when taking account of the
adatoms (i.e., 0.3 meV.)32 It is noted that αRτp/h̄ has the largest
value 0.027 	 1 with τp = √

Neπ
h̄

evF
μe = 0.12 ps (Ref. 54)
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when NAu = 0. Therefore, the electron system is in the strong
scattering limit (the electron-impurity scattering is dominant),
let alone when the temperature is increased or the chemical
doping is performed. It is necessary to point out that in the
experiment the gate voltage Vg is adjusted to keep Ne constant
during chemical doping as adatoms also donate electrons to the
graphene layer.31 However, Vg does not exceed 200 V and the
term ζEz = ζVg/a is at least two orders of magnitude smaller
than αR. Therefore αR ≈ η and is solely determined by the
impurities. When NAu = 0, η = 0.153 meV and is contributed
by the substrate.

B. Spin diffusion and transport: analytical study

1. Spin diffusion

In this section we study the spin diffusion in graphene
analytically for the case with only the electron-impurity scat-
tering. No external electric field is present. We first perform the
Fourier transformation of the steady-state KSBEs with respect
to the polar angle θk and then retain the equations involving the
lowest three orders.41 The neglect of the higher orders will not
lose much information in the strong scattering limit where the
electron distribution approaches isotropy in the momentum
space. As a result the following second-order differential
equation about ρ0

μk(x) [ρl
μk(x) = 1

2π

∫ 2π

0 dθkρμk(x)e−ilθk and
ρμk(x) ≡ ρμk(x,+∞)] is obtained:

∂2
xρ0

μk(x) + i
2αR

h̄vF

[
σy,∂xρ

0
μk(x)

] − α2
R

h̄2v2
F

[
σx,

[
σx,ρ

0
μk(x)

]]

− α2
R

h̄2v2
F

[
σy,

[
σy,ρ

0
μk(x)

]] = 0. (7)

It is noted that with only the lowest three orders of ρl
μk(x)

considered from the beginning, the electron-impurity scatter-
ing time is actually absent from the above equation (refer
to Appendix B for detail). This indicates that in the strong
scattering limit the spin diffusion becomes insensitive to
scattering in graphene. We define the “spin vector” as S0

μk(x) =
Tr[ρ0

k (x)σ ] and S0
μk(x) can be solved from Eq. (7) with

boundary conditions (refer to Appendix B for detail). Then
one can calculate the total spin signal contributed by all the
different electron states in two valleys as

S(x) = 1

4π2

∑
μ

∫ +∞

0
dk

∫ 2π

0
dθkkTr[ρk(x)σ ]

= 1

π

∫ +∞

0
dk kS0

μk(x). (8)

In the following we present the solutions of S(x) under three
typical boundary conditions.

For boundary condition (I) S0
μk(0) = (S0

μk(0),0,0) and
S0

μk(+∞) = 0, which corresponds to the case with the injected
spins polarized along the x axis,

S(x) = S(0)e−x/lx

⎛
⎝

√
1 + �2 sin(ωx + φ)

0
c1 sin(ωx)

⎞
⎠ . (9)

For boundary condition (II) S0
μk(0) = (0,S0

μk(0),0) and
S0

μk(+∞) = 0,

S(x) = S(0)e−x/ly

⎛
⎝ 0

1
0

⎞
⎠ . (10)

For boundary condition (III) S0
μk(0) = (0,0,S0

μk(0)) and
S0

μk(+∞) = 0,

S(x) = S(0)e−x/lz

⎛
⎝ c2 sin(ωx)

0
−√

1 + �2 sin(ωx − φ)

⎞
⎠ . (11)

In the above equations,

S(0) = 1

π

∫ +∞

0
dkkS0

μk(0), (12)

and

lx = lz =
√

7

(2
√

2 − 1)
√

1 + 2
√

2

h̄vF

αR
, (13)

ly = h̄vF

2αR
, (14)

ω =
√

1 + 2
√

2
αR

h̄vF
. (15)

c1 = − 4

(1+√
2)
√

1+2
√

2
, c2 = (20

√
2−24)

√
1+2

√
2

7 , � = 8
√

2−11√
7

,

and φ = arctan 1
�

. It is noted that the spin precession frequency
given by the simplified model is ω ≈ 1.96 αR

h̄vF
, a little smaller

than |〈ωk〉| = 2αR
h̄vF

due to the approximations made here.
From Eqs. (9)–(11) one notices that in the strong scattering

limit, the spin diffusion is not only insensitive to the scattering,
but also unrelated to temperature T and electron density Ne.
Nevertheless, the coefficient αR may depend on T and/or Ne,
with the relation unclear so far. For simplicity we assume
αR to be independent of T and Ne in this work. As a result,
the spin diffusion in the strong scattering limit is uniquely
determined by αR, which is only modulated by chemical
doping. Equations (9)–(11) indicate a strong anisotropy of
spin diffusion with respect to the spin-polarization direction.
For the cases with the injected spins polarized along the x

and z axis, both the spin signals show an exponential decay
in the magnitude accompanying with the precession in the x-z
plane. The spin precessions have the same frequency ω except
for a phase difference. However, when the injected spins are
polarized along the y axis, the spin signal decays exponentially
without any precession (i.e., it is bound along the y axis).
The above phenomena are understood by noticing that the
mean effective magnetic field felt by the diffusing electrons
is along the y axis as 〈ωk〉 = 2αR

h̄vF
(0,1,0). In the nonlocal

spin valve experiments, the spin diffusion length is usually
measured from the exponential decay of spin signal with the
increasing spacing between the central spin-injector and- de-
tector ferromagnetic electrodes.27,28 In these experiments, the
ferromagnetic electrodes happen to be magnetized along the y

axis and therefore the injected and detected spin polarizations
are both along the y axis. With such a configuration, the
exponential decay of the spin signal with increasing spacing
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between the electrodes can be well observed. However, if the
injected spins are polarized in the x-z plane, the spatial spin
precession is expected to be detected.

Besides the anisotropy of spin precession, the spin diffusion
length also shows an anisotropy as

lx = lz ≈ 1.48ly, (16)

with ly = h̄vF/(2αR). In fact, when the injected spins are
polarized along any other direction in the x-z plane, the
spin diffusion length is all the same as lx (lz) [for this case
the solution of S(x) is the combination of Eqs. (9) and
(11)]. However, based on the widely utilized two-component
drift-diffusion model43–47 which gives ls = √

Dτs [Eq. (D11)
in Appendix D], one may expect that the spin diffusion lengths
satisfy

lx = ly =
√

2lz = h̄vF/(2αR), (17)

as the spin relaxation times in time domain follow (refer to
Appendix A)

τx = τy = 2τz = h̄2/
(
2α2

Rτp

)
, (18)

and D = v2
Fτp/2. It is noted that only when the injected spins

are polarized along the y axis, for which no spin precession
exists, the two-component drift-diffusion model gives the
result in consistence with that from the KSBEs, that is,

ly = h̄vF/(2αR). (19)

The discrepancy in the anisotropies given by the KSBEs
and the two-component drift-diffusion model strongly indi-
cates the inadequacy of the two-component drift-diffusion
model. Due to the loss of the off-diagonal spin components,
that is, the spin coherence, the two-component drift-diffusion
model not only fails to predict the spin precession in spatial
domain in the absence of an external magnetic field, but also
incorrectly inherits the anisotropy from the spin relaxation in
time domain. We emphasize that the reason for the different
anisotropic properties of spin diffusion in spatial domain and
spin relaxation in time domain is that the inhomogeneous
broadening is quite different in these two cases. In spatial
domain the inhomogeneous broadening governing the spin
diffusion arises from the k dependence of ωk, while in the
time domain from that of �k. Popinciuc et al. reported
the relationship between the in-plane and out-of-plane spin
relaxation times directly from the anisotropy of spin diffusion
via the two-component drift-diffusion model.28 However,
based on the above discussion, one may realize that studying
the anisotropy of spin relaxation time in such a way can
be incorrect. Finally, from another point of view, if the
two-component drift-diffusion model is still used, then in order
to reflect the correct anisotropy of spin diffusion, the spin
diffusion coefficient has to differ from the charge diffusion
coefficient and shows an anisotropy as Dx = 0.5Dz ≈ 2.2Dy

with Dy = v2
Fτp/2.

It should be pointed out that all the above analysis and
conclusion also apply to the electron system where the
energy spectrum is parabolic in momentum and the linear
Rashba spin-orbit coupling term �k ∝ k(− sin θk, cos θk,0)
is dominant, such as that in the asymmetric InAs quantum
wells.42 That is because the steady-state scattering-free spatial

spin precession frequency ωk in this system has the similar
momentum dependence as shown in Eq. (3).42 However, for
the electron system in the absence of the DP term but under
a magnetic field perpendicular to both the spin polarization
and spin transport directions such as in bulk silicon55 and
symmetric silicon quantum wells,41 or with the Dresselhaus
term56 containing the cubic dependence on momentum such
as in GaAs quantum wells,39,40 the situation is quite different
as ωk depends on the magnitude of momentum. In fact, it has
been revealed in the symmetric silicon quantum wells under
an in-plane magnetic field that the scattering can suppress spin
diffusion effectively in the strong scattering limit.41

2. Spin transport

We further take account of the electric field along the
x axis to study the spin transport. Still only the strong
electron-impurity scattering is included. The second-order
differential equation about ρ0

μk(x), corresponding to Eq. (7)
but including the driving term, reads (refer to Appendix C)

∂2
xρ0

μk(x) + i
2αR

h̄vF

[
σy,∂xρ

0
μk(x)

] − α2
R

h̄2v2
F

[
σx,

[
σx,ρ

0
μk(x)

]]

− α2
R

h̄2v2
F

[
σy,

[
σy,ρ

0
μk(x)

]] − eE∂x∂εkρ
0
μk(x)

− i
αReE

h̄vF

[
σy,∂εkρ

0
μk(x)

] = 0. (20)

It should be pointed out that when the electric field is so
large that the electron density matrices ρμk(x, +∞) become
strongly anisotropic due to the driving of the electric field,
retaining only the lowest three orders of ρl

μk(x) to obtain the
above equation of ρ0

μk(x) may not be sufficient. The second-
order differential equation about S0

μk(x) is obtained from the
above equation and that about S(x) can be obtained by further
summing over k and μ (refer to Appendix C). With the same
three different typical boundary conditions presented in the
previous section, S(x) is solved to have the same form as
Eqs. (9)–(11) except that the parameters are now electric-field
dependent. Explicitly,

l′x = l′z = 1

E/2 + F (E)

h̄vF

αR
, (21)

l′y = 1

E/2 +
√

4 + E2/4

h̄vF

αR
, (22)

ω′ = G(E)
αR

h̄vF
, (23)

c′
1 = − 1

2

√
E4 + 48E2 + 512√

E2 + 7F (E) + 5G(E)
, c′

2 = 1
2

√
E4 + 48E2 + 512√

E2 + 7F (E) + 3G(E)
,

�′ = 5F (E)−√
E2 + 7G(E)√

E2 + 7F (E) + 5G(E)
, and φ′ = arctan 1

�′ . In the above equa-
tions,

E = eE

S(0)παRβh̄vF
ln

1 + eβμ↑

1 + eβμ↓
, (24)

F (E) =
√
E4 + 48E2 + 512 + E2 − 8

16
√

2
√
E2 + 7

×
√√

E4 + 48E2 + 512 − E2 + 8, (25)
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G(E) =
√

1 − E2/8 +
√
E4 + 48E2 + 512/8. (26)

Here β = 1/(kBT ) and μ↑ (μ↓) is the chemical potential
of electrons with spin parallel (antiparallel) to the spin-
polarization direction. It is noted that when the electric field
is absent, that is, E = 0, all the above solutions recover those
presented in the previous section.

In most conditions (such as in the present work) electrons in
graphene are highly degenerate. In the degenerate limit with
small spin polarization, E ≈ eE

αRkF
, where kF = √

πNe is the
magnitude of the Fermi momentum of unpolarized electrons
with density being Ne (Appendix C). Differing from the spin
diffusion without electric field, the spin transport becomes
sensitive to electron density as E depends on the electron
density. In the nondegenerate limit, E ≈ eEβh̄vF

αR
(Appendix C)

and the spin transport becomes sensitive to temperature rather
than electron density. Moreover, with this value of E , Eq. (22)
becomes

l′y = [
eEβ/2 +

√
e2E2β2/4 + 1/l2

y

]−1
, (27)

where ly is the spin diffusion length without electric field
[Eq. (14)]. This result recovers that from the two-component
drift-diffusion model, which apparently fails to correctly
reflect the anisotropy of spin transport.13,44 Therefore, our
investigation again indicates that only when the spatial spin
precession is absent, the two-component drift-diffusion model
gives the appropriate depiction of spin transport.

In Fig. 2 we plot the dependence of l′x,y,z, ω′, and φ′
on E . From Fig. 2(a), one notices that the spin transport
length decreases with increasing E (E ≈ eE

αRkF
). On one hand,

this means that when the electron density is fixed (e.g.,
Ne = 1012 cm−2, for which the variation of E from −8 to 8
corresponds to a variation of E from about −2.2 to 2.2 kV/cm),
the spin transport is suppressed (enhanced) by increasing

(c)

E

φ

86420-2-4-6-8

1.46

1.44

(b)

ω
(α

R
�

v F
)

1.98

1.96

ly

lx (lz)

(a)l s
(
v F
�α

R
)

5

4

3

2

1

0

FIG. 2. (Color online) The dependence of (a) spin transport length
l′x,y,z, (b) spin precession frequency ω′, and (c) phase angle φ′ on E .

the electric field parallel (antiparallel) to the spin injection
direction. On the other hand, this also means that when the
nonzero electric field parallel (antiparallel) to the spin injection
direction is fixed, the spin transport is enhanced (suppressed)
by increasing electron density. Figures 2(b) and 2(c) indicate
that the spin precession frequency ω′ and the phase angle φ′
vary with E marginally (with a variation ∼2%). In fact, when
|E | becomes even larger, both ω′ and φ′ quickly saturate (ω′
approaches 2αR

h̄vF
and φ′ approaches π/2). Therefore, the spin

precession pattern in spatial domain is insensitive to the electric
field or the electron density.

C. Spin diffusion and transport: numerical results

The KSBEs need to be solved numerically in order to take
full account of all the different kinds of scattering as well as
the large electric field. To numerically solve the KSBEs, the
initial conditions are set as

ρμk(0,0) = F 0
k↑ + F 0

k↓
2

+ F 0
k↑ − F 0

k↓
2

n̂ · σ , (28)

ρμk(x > 0,0) = FL
k↑ + FL

k↓
2

, (29)

∑
μk

Tr[ρμk(0,0)n̂ · σ ]

/ ∑
μk

Tr[ρμk(0,0)] = P0, (30)

and the two-side injection boundary conditions39,40 are

ρμk(0,t)|kx>0 = F 0
k↑ + F 0

k↓
2

+ F 0
k↑ − F 0

k↓
2

n̂ · σ , (31)

ρμk(L,t)|kx<0 = FL
k↑ + FL

k↓
2

. (32)

Here the injected spins at left boundary x = 0 are assumed
to be polarized along n̂ with polarization P0 = 0.05. x = L

stands for the right boundary with L much longer than
the spin diffusion or transport length. F

0,L
k↑,↓ are the Fermi

distributions of electrons at the two boundaries when the
external electric field is absent. When the electric field is
present, F

0,L
k↑,↓ then stand for the drifted Fermi distributions of

hot electrons.25 In the previous analytical study the boundary
conditions are in fact approximated as the single-side injection
case. This approximation works well when the scattering
is strong.39 By numerically solving the KSBEs, the steady-
state distribution of spin polarization along n̂ is obtained
as P (x) = ∑

μk Tr[ρμk(x, +∞)n̂ · σ ]/
∑

μk Tr[ρμk(x, +∞)]
and then the spin diffusion or transport length is determined
from the exponential decay of P (x) (or its envelope) along the
x axis.

1. Anisotropic spin diffusion

As revealed by the analytical model, the spin diffusion
shows anisotropic properties with respect to the polarization
direction of injected spins. In Fig. 3, we show the spatial
distribution of the absolute value of the steady-state spin
polarization |P | for the cases with the injected spins polarized
along the x, y, and z axis, respectively. NAu = 0, with which
αR = 0.153 meV. The squares, circles, and triangles are
obtained by numerically solving the KSBEs while the solid,
dashed, and chain curves are calculated by Eqs. (9)–(11).
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T=18 K, Ne=2.9×1012 cm-2
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Numerical: x
y
z
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z

FIG. 3. (Color online) The absolute value of steady-state spin
polarization |P | versus position x with the injected spins polarized
along the x, y, and z axis, respectively. The squares, circles, and
triangles are obtained by numerically solving the KSBEs with T =
18 K, Ne = 2.9 × 1012 cm−2, Ns = 2.1 × 1012 cm−2, and NAu = 0.
The solid, dashed, and chain curves are calculated from Eqs. (9)–(11)
with P (x) = Sx(x)/Ne, Sy(x)/Ne, and Sz(x)/Ne, respectively.

When αR = 0.153 meV the analytical model gives lx = lz ≈
3.18 μm, ly ≈ 2.16 μm, and ω ≈ 0.45 μm−1. The anisotropy
of spin diffusion is clearly shown in this figure. It is noted that
the simplified analytical model almost perfectly recovers the
numerical results [except that the spin precession frequencies
for both cases with the injected spins polarized along the x

and z axis are numerically shown to be closer to 2 αR
h̄vF

rather
than 1.96 αR

h̄vF
given by the analytical study (the difference

is expected from the approximations made in the analytical
analysis)]. In fact, further numerical calculations show that
varying T from 18 to 300 K and/or Ne from 0.5 to 2.9 ×
1012 cm−2 changes the numerical results marginally. This is
consistent with the conclusion from the analytical model (i.e.,
the spin diffusion of electrons in graphene is insensitive to T

and Ne in the strong scattering limit). As a result, in the strong
scattering limit, one can depict the spin diffusion quite well
with the single parameter αR via Eqs. (9)–(11).

2. Chemical doping dependence of spin diffusion

In Fig. 4, we plot the deposition time dependence of
spin diffusion length with n̂ = x̂, ŷ, and ẑ, respectively,
by the solid curves. The spin diffusion lengths are directly
obtained from Eqs. (13) and (14). It is shown that with the
increase of chemical doping time, αR increases and the spin
diffusion length decreases. For comparison, we also plot the
deposition time dependence of spin diffusion length given by
the two-component drift-diffusion model (chain curves), that
is, lx = ly = √

2lz = √
Dτx , with D and τx given in Fig. 1.

The comparison between these two sets of results shows that,
only when the injected spins are polarized along the y axis, the
two-component drift-diffusion model yields the same result as
that from the KSBEs, just as revealed in the analytical study
[refer to Eq. (19) and the discussion there].

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8

l s
 (

μm
)

Au deposition (s)

T=18 K
Ne=2.9×1012 cm-2, Ns=2.1×1012 cm-2

KSBEs: x (z)
y

Drift-Diffusion: x (y)
z

FIG. 4. (Color online) Deposition time dependence of spin
diffusion length with the injected spins polarized along the x, y,
and z axis, respectively. The results from the KSBEs (solid curves)
and the two-component drift-diffusion model (chain curves) are both
plotted for comparison.

3. Effect of scattering on spin diffusion

The electron system under investigation is always in
the strong scattering limit and therefore the spin diffusion
becomes insensitive to scattering. However, the properties of
spin diffusion in the weak scattering limit can be different.
In order to investigate the spin diffusion with scattering
strength ranging from the weak to strong scattering limit, we
artificially vary the impurity density in the substrate from 0 to
1012 cm−2. At the same time, the chemical doping is absent
(no adatom) and αR is kept as a constant (e.g., 0.153 meV).
We choose T = 50 K, Ne = 5 × 1011 cm−2, and n̂ = ŷ. In
Fig. 5 we plot the dependence of spin diffusion length ly on
the impurity density by the dashed curve. For comparison,
we also plot the corresponding dependence of spin relaxation

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1
 0

 50

 100

l y
 (

μm
)

τ y
 (

ps
)

Ns (1012 cm-2)

T=50 K, αR=0.153 meV 

Ne=5×1011 cm-2, NAu=0

 0  0.05
 2

 7

τ y
 (

ps
)

Ns (1012 cm-2)

FIG. 5. (Color online) The impurity (in the substrate) density de-
pendence of spin diffusion length (dashed curve) and spin relaxation
time (solid curve with the scale on the right-hand side of the frame).
The inset shows the detail of the solid curve in the small density
regime. The injected spins are polarized along the y axis. T = 50 K,
Ne = 5 × 1011 cm−2, and αR = 0.153 meV.
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time τy on the impurity density by the solid curve (the
scale is on the right-hand side of the frame). It is seen
that with the increase in Ns , while ly decreases obviously
in the weak scattering limit (Ns � 0.05 × 1012 cm−2) and
then saturates in the strong scattering limit, τy first decreases
in the weak scattering limit (refer to the inset for detail)
and then increases almost linearly in the strong scattering
limit.37 The two-component drift-diffusion model is able to
capture the dependence of spin diffusion length on Ns by
means of the relation ly = √

Dτy : while D ∝ τp ∝ 1/Ns , τy

decreases with Ns in the weak scattering limit and ∝Ns in
the strong scattering limit; therefore ly first decreases with Ns

and then becomes insensitive to Ns (the insensitivity of ly to
Ns in the strong scattering limit is revealed previously by the
analytical study). It should be emphasized that in Fig. 5 the
results are shown with αR being a constant. In reality, when
one further takes account of the increase of αR with increasing
Ns , ly should always decrease with increasing Ns , from the
weak scattering limit to the strong scattering limit.

4. Spin transport under the electric field

At last we investigate the spin transport under an elec-
tric field along the x axis. T = 300 K, Ne = 1012 cm−2,
Ns = 2.1 × 1012 cm−2, and NAu = 0. The injected spins are
polarized along the z axis. In Fig. 6 the position dependence of
|P | under different electric fields as well as the E dependence
of lz (squares with the scale on the right-hand side and top of the
frame) are plotted. It is shown that while the spin-precession
pattern almost keeps the same with varying E, the spin
transport length is increased (decreased) by increasing the
electric field along the −x (x) direction.39,44 These results
are in consistence with the analytical study presented in
Sec. III B 2. For comparison, we further plot the E dependence
of lz from Eq. (21) by the double-dotted chain curve with the
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Ns=2.1×1012 cm-2, NAu=0

E= − 0.9 kV/cm
− 0.3 kV/cm

0 kV/cm
0.3 kV/cm
0.9 kV/cm

FIG. 6. (Color online) The absolute value of the steady-state spin
polarization |P | versus position x under different electric fields. The
electric field dependence of spin transport length lz is also plotted
with the scale on the right-hand side and top of the frame, where
the squares and double-dotted chain curve are obtained from the
numerical calculation and from Eq. (21), respectively. T = 300 K,
Ne = 1012 cm−2, Ns = 2.1 × 1012 cm−2, and NAu = 0.

 4.2

 4.7

 5.2

 5.7

 0.5  1  1.5  2

l z
 (
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)
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(b) E= − 0.3 kV/cm

T=300 K
Ns=2.1×1012 cm-2, NAu=0

 1.7
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Analytical
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FIG. 7. (Color online) Electron density dependence of spin
transport length lz under electric fields with opposite directions:
(a) E = 0.3 kV/cm and (b) E = −0.3 kV/cm. The squares are
from the numerical calculation while the curves are from Eq. (21).
T = 300 K, Ns = 2.1 × 1012 cm−2, and NAu = 0.

scale also on the right-hand side and the top of the frame. It
is shown that the analytical model depicts the spin transport
in the low electric-field regime well except when the electric
field antiparallel to the spin-injection direction is large (e.g, a
discrepancy reaches 20% when E reaches −2 kV/cm).

The electron density dependence of spin transport is also
investigated. In Fig. 7, we plot the density dependence of
spin transport length under the electric field parallel (E =
0.3 kV/cm) and antiparallel (E = −0.3 kV/cm) to the spin
transport direction in (a) and (b), respectively. The squares
are from the numerical calculation and the curves are from
Eq. (21). It is clearly shown that for the cases with opposite
directions of the electric field, the density dependencies of spin
transport length have opposite tendencies.

IV. CONCLUSION

In conclusion, we have investigated the spin diffusion
and transport in graphene monolayer on SiO2 substrate as
presented by Pi et al.,31 by means of the KSBE approach.
The substrate (including the impurities initially present)
contributes a Rashba spin-orbit coupling field much stronger
than the one modulated by the electric field perpendicular to the
graphene layer. By surface chemical doping with Au adatoms,
the Rashba spin-orbit coupling coefficient αR is increased. By
fitting the chemical doping dependence of diffusion coefficient
and spin relaxation time,31 we obtain the information on
impurities as well as the chemical doping dependence of
αR. Our fitting finds that αR increases linearly from 0.15 to
0.23 meV with increasing Au density when the latter is not so
high. With the necessary parameters obtained from fitting, we
investigate the spin diffusion and transport in graphene both
analytically and numerically.
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The analytical study with only the electron-impurity scat-
tering included reveals that in the strong scattering limit (just
as the situation under investigation in the present work), the
spin diffusion is uniquely determined by αR. When the injected
spins are polarized along the x, y, and z axis, the spin diffusion
lengths are given by the analytical study with an anisotropy
as lx = lz ≈ 0.74h̄vF/αR and ly = 0.5h̄vF/αR. Meanwhile, the
spatial spin precession is present when the injected spins are
polarized in the x-z plane but absent when the injected spins are
polarized along the y axis. Further numerical calculations with
all the scattering explicitly included show that the analytical
model depicts the spin diffusion pretty well.

It is noted that the anisotropy of spin diffusion length from
the KSBEs differs from the one from the two-component drift-
diffusion model where lx = ly = √

2lz = 0.5h̄vF/αR. The
qualitative discrepancy indicates the inadequacy of the two-
component drift-diffusion model due to the neglect of the
off-diagonal spin components (i.e., the spin coherence). In
fact, only when the injected spins are polarized along the y axis
and the spatial spin precession is absent, the two-component
drift-diffusion model gives the same spin diffusion length as
the KSBE approach does.

The analytical and numerical study of spin transport under
an electric field parallel or antiparallel to the spin injection
direction is also investigated. In the presence of the electric
field, the analytical model depicts the spin transport with a
small discrepancy which increases with the strength of the
electric field. It is shown that when the electric field is applied,
the spin precession in spatial domain for the cases with the
injected spins polarized along the x and z axis remains almost
unchanged. However, the spin transport length is increased
(decreased) by increasing the magnitude of the electric field
when it is antiparallel (parallel) to the spin transport direction.
Moreover, in the presence of the electric field, the spin
transport becomes sensitive to the electron density, differing
from the case of spin diffusion. The spin transport is enhanced
(suppressed) by increasing electron density when the electric
field is parallel (antiparallel) to the spin injection direction.
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APPENDIX A: SPIN RELAXATION IN GRAPHENE

We consider spin relaxation in graphene under the spatial
uniform case in the absence of the electric field. We only
include the electron-impurity scattering. The KSBEs, Eq. (5),
are then simplified to be

∂tρμk(t) = − i

h̄
[�k · σ ,ρμk(t)] − 2π

h̄

∑
k′

Mk−k′Ikk′

× δ(εk − εk′)[ρμk(t) − ρμk′(t)]. (A1)

Here Mk−k′ = |Us
k−k′ |2 + |UAu

k−k′ |2 is the total electron-
impurity scattering matrix element contributed by impurities
in the substrate and Au adatoms. Ikk′ = 1

2 [1 + cos(θk − θk′)]

is the form factor.25 By expanding ρμk(t) as ρμk(t) =∑
l ρ

l
μk(t)eilθk , one comes to

∂tρ
l
μk(t) = −αR

2h̄

[
σ+,ρl+1

μk (t)
] + αR

2h̄

[
σ−,ρl−1

μk (t)
] − ρl

μk(t)

τ l
k

,

(A2)

where σ± = σx ± iσy , and

1

τ l
k

= k(1 − δl0)

4πh̄2vF

∫ 2π

0
dθMq(1 + cos θ )(1 − cos lθ ), (A3)

with Mq depending only on |q| = 2k sin θ
2 . It is noted that

1
τ l
k

= 1
τ−l
k

.

Retaining the lowest three orders of ρl
μk(t), that is, l = 0,

±1, and using the initial conditions ρl
μk(0) = δl0ρ

0
μk(0), one

obtains the second-order differential equation about ρ0
μk(t) as

∂2
t ρ0

μk(t) + 1

τ 1
k

∂tρ
0
μk(t) + α2

R

2h̄2

[
σx,

[
σx,ρ

0
μk(t)

]]

+ α2
R

2h̄2

[
σy,

[
σy,ρ

0
μk(t)

]] = 0, (A4)

with an affiliated initial condition ∂tρ
0
μk(0) = 0. Defining

the spin vector as S0
μk(t) = Tr[ρ0

μk(t)σ ], one can obtain an
equation satisfied by S0

μk(t) directly from the above one, which
reads [

∂2
t + 1

τ 1
k

∂t + 2α2
R

h̄2 (1 + δαz)

]
S0

μkα(t) = 0, (A5)

with α = x,y,z. With the initial condition ∂tS
0
μkα(0) = 0,

S0
μkα(t) is solved to be

S0
μkα(t) = S0

μkα(0)

2

[(
1 + 1√

1 − c2
α

)
e
− t

2τ1
k

(1−
√

1−c2
α )

+
(

1 − 1√
1 − c2

α

)
e
− t

2τ1
k

(1+
√

1−c2
α )
]

, (A6)

where cα = 2
√

2(1 + δαz)αRτ 1
k /h̄. When the scattering is

strong enough and hence cα 	 1,

S0
μkα(t) ≈ S0

μkα(0)e
− t

4τ1
k

/c2
α ≡ S0

μkα(0)e− t
τα . (A7)

As a result, for spins polarized along the x and y axis
the spin relaxation times are τx = τy = h̄2/(2α2

Rτ 1
k ), while

for spins polarized along the z axis τz = h̄2/(4α2
Rτ 1

k ). From
Eq. (A3) one notices that τ 1

k is in fact the momentum relaxation
time τp(k). For the highly degenerate electron system in
graphene, τp(k) ≈ τp(kF) ≈ τp. Therefore we have τx = τy =
2τz = h̄2/(2α2

Rτp).

APPENDIX B: SPIN DIFFUSION IN GRAPHENE

The spin diffusion in the absence of an electric field is
also investigated for the case with only the electron-impurity
scattering included. Performing angle expansion on the steady-
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state KSBEs in a way similar to that shown in Appendix A,
one arrives at

∂x

∑
l0=±1

ρ
l+l0
μk (x) + γ

[
σ+,ρl+1

μk (x)
] − γ

[
σ−,ρl−1

μk (x)
]

+ 2

vF

ρl
μk(x)

τ l
k

= 0, (B1)

with γ = αR/(h̄vF). Retaining the lowest three orders of ρl
μk(x)

one obtains three equations involving ρ
0,±1
μk (x) as

∂x

∑
l0=±1

ρ
l0
μk(x) + γ

[
σ+,ρ1

μk(x)
] − γ

[
σ−,ρ−1

μk (x)
] = 0, (B2)

∂xρ
0
μk(x) − γ

[
σ−,ρ0

μk(x)
] + 2

vF

ρ1
μk(x)

τ 1
k

= 0, (B3)

∂xρ
0
μk(x) + γ

[
σ+,ρ0

μk(x)
] + 2

vF

ρ−1
μk (x)

τ 1
k

= 0. (B4)

From these equations one immediately arrives at Eq. (7) with
τ 1
k being irrelevant. By multiplying σ and performing trace on

both sides of Eq. (7), one gets the equation satisfied by S0
μk(x)

which can be written as⎛
⎜⎝

∂2
x − 4γ 2 0 −4γ ∂x

0 ∂2
x − 4γ 2 0

4γ ∂x 0 ∂2
x − 8γ 2

⎞
⎟⎠

⎛
⎜⎝

S0
μkx(x)

S0
μky(x)

S0
μkz(x)

⎞
⎟⎠ = 0. (B5)

With specified boundary conditions, S0
μk(x) is solved and the

total spin signal S(x) is obtained by Eq. (8), as presented in

Sec. III B 1. Explicitly, taking the boundary condition (I) given
in Sec. III B 1 as an example, one obtains S0

μk(x) as

S0
μk(x) = S0

μk(0)e−x/lx

⎛
⎝

√
1 + �2 sin(ωx + φ)

0
c1 sin(ωx)

⎞
⎠ , (B6)

with the parameters lx , ω, �, φ, and c1 given in Sec. III B 1.
By further summing over k and μ one arrives at Eq. (9).

APPENDIX C: SPIN TRANSPORT IN GRAPHENE

The analytical study of spin transport is carried out analogly.
The driving term from the electric field in the steady state is
approximated as

eE

h̄

∂ρμk(x)

∂kx

= eE

h̄

∂ρμk(x)

∂εk

∂εk

∂kx

≈ eEvF cos θk
∂ρ0

μk(x)

∂εk
. (C1)

Then the Fourier transformation of the steady-state KSBEs
reads

∂x

∑
l0=±1

ρ
l+l0
μk (x) + γ

[
σ+,ρl+1

μk (x)
] − γ

[
σ−,ρl−1

μk (x)
]

− eE
∂ρ0

μk(x)

∂εk
(δl−1 + δl1) + 2

vF

ρl
μk(x)

τ l
k

= 0. (C2)

From this equation one comes to Eq. (20) by retaining the
lowest three orders of ρl

μk(x). The equation satisfied by S0
μk(x)

is then

⎛
⎜⎝

∂2
x − eE∂x∂εk − 4γ 2 0 −4γ ∂x + 2eEγ ∂εk

0 ∂2
x − eE∂x∂εk − 4γ 2 0

4γ ∂x − 2eEγ ∂εk 0 ∂2
x − eE∂x∂εk − 8γ 2

⎞
⎟⎠

⎛
⎜⎝

S0
μkx(x)

S0
μky(x)

S0
μkz(x)

⎞
⎟⎠ = 0. (C3)

Having the experience of solving Eq. (B5), we assume that
S0

μk(x) has the solution as S0
μk(x) = S0

μk(0)T(x) and therefore
S(x) = S(0)T(x). Performing summation over μ and k on both
sides of the above equation and using the trick,

∫ +∞

0
dk k

[
∂εkS

0
μk(0)

]
T(x) = −

∫ +∞
0 dεkS

0
μk(0)

h̄2v2
F

T(x)

= −
1
β

ln 1+e
βμ↑

1+e
βμ↓

S(0)h̄2v2
F

S(x), (C4)

one obtains the equation satisfied by S(x) as⎛
⎜⎝

∂2
x + γ E∂x − 4γ 2 0 −4γ ∂x − 2γ 2E

0 ∂2
x + γ E∂x − 4γ 2 0

4γ ∂x + 2γ 2E 0 ∂2
x + γ E∂x − 8γ 2

⎞
⎟⎠

×

⎛
⎜⎝

Sx(x)

Sy(x)

Sz(x)

⎞
⎟⎠ = 0, (C5)

in which E is given by Eq. (24). With the three different typical
boundary conditions presented in Sec. III B 1, S(x) is solved to
have the same form as Eqs. (9)–(11) except that the parameters
are now given in Sec. III B 2.

We now calculate E in both the degenerate and
nondegenerate limits. In the degenerate limit, ln 1+e

βμ↑
1+e

βμ↓ ≈
ln eβ(εF↑−εF↓) = βh̄vF(kF↑ − kF↓) = βh̄vF

√
πNe(

√
1 + P0 −√

1 − P0) ≈ βh̄vF
√

πNeP0. Making use of the relation
S(0) = NeP0, one has

E ≈ eE√
πNeαR

= eE

αRkF
, (C6)

where kF = √
πNe, the magnitude of Fermi momentum of

unpolarized electrons with density being Ne. In the nondegen-
erate limit, ln 1+e

βμ↑
1+e

βμ↓ ≈ eβμ↑ − eβμ↓ and

S(0) ≈ 1

π

∫ +∞

0
dk k

[
e−β(εk−μ↑) − e−β(εk−μ↓)

]
= 1

π (βh̄vF)2
(eβμ↑ − eβμ↓ ), (C7)
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therefore

E ≈ eEβh̄vF

αR
. (C8)

APPENDIX D: DERIVATION OF TWO-COMPONENT
DRIFT-DIFFUSION EQUATION FROM KSBES

The two-component drift-diffusion equation can be derived
from the KSBEs in the collinear spin space57 with the
z axis along the initial spin-polarization direction n̂, by ne-
glecting the spin coherence (i.e., the off-diagonal components
of the density matrices). The density matrices then have
the diagonal form as 1

2 [fμk↑(x,t) + fμk↓(x,t) + (fμk↑(x,t) −
fμk↓(x,t))σz]. In the following we present a brief deriva-
tion of the two-component drift-diffusion equation from the
KSBEs with only the strong electron-impurity scattering
considered. Other kinds of scattering can also be incorporated
similarly under elastic scattering approximation. The spin
relaxation time is τn̂ and the momentum relaxation time is
τp (both are given in Appendix A) and we neglect their
momentum dependence hereafter. The two-component drift-
diffusion equation is obtained from the equation of continuity
and the equation of current, both to be derived from the
KSBEs.

The equation of continuity is derived as follows. By
multiplying the KSBEs [Eq. (5)] with 1

2 (1 ± σz) and then
performing the trace, one obtains the simplified KSBEs for
each spin band (σ =↑, ↓) as

∂fμkσ (x,t)

∂t
− eE

h̄

∂fμkσ (x,t)

∂kx

+ vF cos θk
∂fμkσ (x,t)

∂x

= −fμkσ (x,t) − fμk−σ (x,t)

2τn̂
. (D1)

The right-hand side of the above equation comes from the term
Tr{ 1

2 (1 ± σz)[∂tρμk(x,t)|coh + ∂tρμk(x,t)|scat]}, which can be
calculated with the aid of the KSBEs in the time domain
[Eq. (A1)] and the corresponding solution [Eq. (A7)]. Per-
forming summation over μ and k on both sides of Eq. (D1) in
the steady state, one comes to

−eE

h̄

∑
μk

∂fμkσ (x)

∂kx

+ ∂

∂x

∑
μk

vF cos θkfμkσ (x)

= −Nσ (x) − N−σ (x)

2τn̂
, (D2)

where Nσ (x) is the electron density with spin σ at position
x. Up to the first order of the electric field E, the first
summation over k in the above equation leads to zero when
fμkσ is approximated by f 0

μkσ , the distribution in equilibrium.
Defining the charge current along the x axis with spin σ as

Jσ (x) = −
∑
μk

evxfμkσ (x), (D3)

with vx = vF cos θk, one has the equation of continuity,

−1

e

∂Jσ (x)

∂x
= −Nσ (x) − N−σ (x)

2τn̂
. (D4)

We then calculate the current Jσ from the diagonal part of
the KSBEs,

∂fμkσ (x,t)

∂t
− eE

h̄

∂fμkσ (x,t)

∂kx

+ vF cos θk
∂fμkσ (x,t)

∂x

= −fμkσ (x,t) − f 0
μkσ (x,t)

τp

, (D5)

where the right-hand side of the equation comes from the
electron-impurity scattering (Appendix A). In the steady state,
multiplying −evx on both sides of the equation and then
summing over μ and k, one comes to

e2EvF

h̄

∑
μk

cos θk
∂fμkσ (x)

∂kx

− ev2
F

∑
μk

cos2 θk
∂fμkσ (x)

∂x

= −Jσ (x)

τp

. (D6)

Again, up to the first order of the electric field, one has

Jσ (x) = eμσ ENσ (x) + eD∂xNσ (x), (D7)

where the mobility μσ = evFτp

h̄
√

2πNσ
and the charge diffusion co-

efficient D = 1
2v2

Fτp. For the case with small spin polarization,
μ↑ ≈ μ↓ = μe ≡ evFτp

h̄
√

πNe
in which Ne = N↑ + N↓ is the total

electron density.
Finally, the two-component drift-diffusion equation is

obtained by combining Eqs. (D4) and (D7):

−μeE
∂Nσ (x)

∂x
− D

∂2Nσ (x)

∂x2
= −Nσ (x) − N−σ (x)

2τn̂
. (D8)

This equation is consistent with that in the literature.44–47 The
equation of �N = N↑ − N↓ then reads

−μeE
∂�N (x)

∂x
− D

∂2�N (x)

∂x2
= −�N (x)

τn̂
. (D9)

With boundary condition �N (+∞) = 0, �N (x) is
solved as �N (x) = �N (0)e−x/ln̂ where the spin transport
length44 is

ln̂ =
[
μeE

2D
+

√(
μeE

2D

)2

+ 1

Dτn̂

]−1

. (D10)

When the electric field is zero,

ln̂ =
√

Dτn̂. (D11)

As indicated by Eqs. (D10) and (D11), in the frame of the
two-component drift-diffusion model, the anisotropy of the
spin transport or diffusion is solely determined by that of
the spin relaxation and no spatial spin precession can be
obtained.
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