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Nuclear dynamics during Landau-Zener singlet-triplet transitions in double quantum dots
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We consider nuclear-spin dynamics in a two-electron double dot system near the intersection of the electron
spin singlet S and the lower energy component T+ of the spin triplet. The electron spin interacts with nuclear
spins and is influenced by the spin-orbit coupling. Our approach is based on a quantum description of the electron
spin in combination with the coherent semiclassical dynamics of nuclear spins. We consider single and double
Landau-Zener passages across the S-T+ anticrossings. For linear sweeps, the electron dynamics is expressed in
terms of parabolic cylinder functions. The dynamical nuclear polarization is described by two complex conjugate
functions �± related to the integrals of the products of the singlet and triplet amplitudes c̃∗

S c̃T+ along the
sweep. The real part P of �± is related to the S-T+ spin-transition probability, accumulates in the vicinity of
the anticrossing, and for long linear passages coincides with the Landau-Zener probability PLZ = 1 − e−2πγ ,
where γ is the Landau-Zener parameter. The imaginary part Q of �+ is specific for the nuclear-spin dynamics,
accumulates during the whole sweep, and for γ � 1 is typically an order of magnitude larger than P . P and
Q also show critically different dependences on the shape and the duration of the sweep. Q has a profound
effect on the nuclear-spin dynamics, by (i) causing intensive shakeup processes among the nuclear spins and (ii)
producing a high nuclear spin generation rate when the hyperfine and spin-orbit interactions are comparable in
magnitude. Even in the absence of spin-orbit coupling, when the change in the the total angular momentum of
nuclear spins is less than h̄ per single Landau-Zener passage, the change in the global nuclear configuration might
be considerably larger due to the nuclear-spin shakeups. We find analytical expressions for the back action of the
nuclear reservoir represented via the change in the Overhauser fields the electron subsystem experiences.
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I. INTRODUCTION

Electron-spin states in semiconductor quantum dots are
investigated for their potential use as quantum bits in quantum
computing architectures.1–3 To this end, control of the spin
states and their couplings to the environment is essential. In
GaAs and InAs semiconductors, a major source of electron-
spin decoherence is the coupling to the surrounding nuclear
spins.1,4–8 Since the quantum dots are large compared to the
interatomic spacing, each electron interacts with typically
one million nuclei. Achieving control over this many-body
interaction is a key for manipulating semiconductor quantum
bits.

In two-electron double quantum dots, the singlet S and
triplet T0 states define the elementary qubit. The coupling
between these states is governed by the gradient in the
longitudinal magnetic Zeeman splitting between the two
dots. Controlling this coupling enables singlet-triplet qubit
manipulations. Beyond the two-state S-T0 qubit operation, the
gradient in the transverse magnetic Zeeman splitting between
the two dots defines the coupling of the singlet S to the triplet
T+ and T− states. Finally, the longitudinal magnetic Zeeman
splitting determines the relative energies of the triplet states.
This Zeeman splitting arises from the external field B and
the nuclear-spin background via the Overhauser field, and
by changing the nuclear-spin polarization the basic electron
parameters can be tuned.

Polarization of nuclear spins can be created and destroyed
by flip-flop processes by pumping the electronic states via
time-dependent gate voltages. This has recently been investi-
gated in many interesting experimental9–12 and theoretical13–18

papers in double quantum dots in the regime of Pauli blockade.

Experimentally, it has been demonstrated that an Overhauser
field gradient of several hundred mT can be generated and
sustained.9 The dephasing time of the electron-spin qubits has
been extended to more than 200 μs.11,19 Because the dynamical
interaction of an electron spin with a nuclear-spin reservoir
is enormously complicated, different theoretical efforts were
focused on the various aspects of it. The two aspects most
closely related to our paper are the theoretical modeling of the
connection between the generation of dynamical nuclear-spin
polarization at short- and long-time scales13,15,18 and the
influence of the spin-orbit interaction on the buildup of the
nuclear polarization.16,17

The aim of this paper is to study in detail the electron and
nuclear-spin dynamics as the system passes across a S-T+
anticrossing. In GaAs and InAs quantum dots in an external
magnetic field, T+ is the lowest energy component of the
electron triplet state because of the negative electron g factor,
g < 0. During a S-T+ (or a T+-S) passage, electrons trade
their spin with the nuclear reservoir, and multiple passages
are used in creating a difference (“gradient”) of the effective
nuclear (Overhauser) fields between two parts of the double
dot that are used for qubit rotations. The study of a single
passage (or two passages during a single cycle) provides
a firm basis for investigating events on longer time scales.
Also, the progress in experimental techniques currently allows
us, instead of averaging data over thousands of sweeps,
to perform single-shot measurements,20 and most recently
such measurements have been achieved for double quantum
dots.12 Also, the double dot dynamics during a single sweep
manifests itself explicitly in beamsplitter experiments.21 We
expect the approach developed in our paper to become a
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useful tool in discussing such types of experiments and, more
widely, to facilitate better understanding and utilization of
the nuclear-spin environment in solid-state-based quantum
computing.

Specifically, we take into account the spatial distribution of
the hyperfine coupling between the electron and nuclear spins
and compute the change in the topography of the nuclear-spin
polarization and the related changes in the gradient and average
Overhauser fields governing the dynamics of the electron spin.
These fields, that the electrons experience in the singlet and
triplet states, depend on the spatial variation of the electron-
nuclear coupling and we take this dependence into account.
We employ the Zener approach22 and find analytically explicit
expressions for the electron and nuclear-spin dynamics during
a single linear sweep and during cycles consisting of two linear
sweeps.

Let us give an overview of the main results. We express
the whole electron and nuclear-spin dynamics in terms of
two complex conjugate functions �±(Ti,Tf ) depending on
the initial and finite times (Ti,Tf ) and the shape of the
path between them. These �± functions are integrals of
the products of the singlet and triplet amplitudes during the
S-T+ passage. The real part P = Re{�±} is the transition
probability between the singlet S and the triplet T+ states. The
imaginary part Q = Im{�+} includes basic information about
the nuclear-spin dynamics including the nuclear shakeups. The
Landau-Zener probability, PLZ = 1 − e−2πγ , where γ is the
Landau-Zener parameter, is the asymptotic value of P (Ti,Tf )
for a single sweep when Ti → −∞ and Tf → ∞. Usually, all
results are expressed in terms of PLZ . Our approach provides
a more detailed information about the nuclear-spin dynamics
away from the S − T+ anticrossing.

Oscillations of the transition probability P (Ti,Tf ) as a
function of its arguments reveal typical interference patterns.
These oscillations are highly anharmonic for small Landau-
Zener transition probabilities PLZ � 1 and might persist
for a long time with a large amplitude for intermediate
Landau-Zener transition probabilities PLZ ∼ 0.5. However, it
is not typically the transition probability P that determines
the nuclear-spin dynamics. Instead, the other S-T+ quantity,
Q, is no less important. While P is constrained to be in
the interval 0 � P � 1, there are no such constraints on Q

and it is typically larger than P . We find that Q controls the
shakeup processes among the nuclear spins. In the absence of
spin-orbit coupling, at most h̄ of the angular momentum can be
transferred to the nuclear-spin bath. Given that there are around
a million nuclear spins in the quantum dots, of which around a
thousand are aligned initially, a change in one out of a thousand
nuclear spins would have only a minor effect. However, the
nuclear spins are allowed to interchange their spins during the
S-T+ passage without violating the conservation of the angular
momentum. Although the interchange does not change the
total nuclear spin angular momentum, the redistribution of the
nuclear spins (“nuclear shakeups”) can lead to considerable
changes in the various gradient and average Overhauser fields
that the electrons experience. This is because the Overhauser
fields depend on weighted average values of the nuclear-spin
distribution with respect to the electron-nuclear couplings and
not just the total nuclear spin. We find that such shakeups
are very sensitive to the initial nuclear-spin distribution and

that they are often much larger than the average nuclear-spin
production because Q is typically ten times larger than P .

Furthermore, when the spin-orbit coupling competes with
the hyperfine interaction and Q is considerably larger than P ,
then the Q-enhanced spin generation dominates for a generic
direction of the nuclear-spin polarization and can become
considerably larger than P . However, after averaging over the
direction of the transverse nuclear-spin polarization, Q cancels
and the results of Refs. 16 and 17 are recovered.

Another finding is that even geometrically symmetric dou-
ble quantum dots acquire asymmetric behavior because of the
spatial inhomogeneity of the hyperfine coupling. The sign of
the asymmetry depends on B, and its magnitude is largest close
to the (0,2) or (2,0) configuration. The consequences of this
B-controlled asymmetry for building nuclear field gradients
are similar to that envisioned in Ref. 15 for geometrically
asymmetric dots.

This paper is organized in the following way. In Sec. II,
we describe the model of a double quantum dot that follows
the lines of Refs. 24, 25, and 15. We introduce the basic
notations related to the electron-nuclear hyperfine interaction
and the nuclear dynamics induced by it in Secs. III and
IV, respectively. In Sec. V, a linear Landau-Zener sweep is
treated analytically and the time dependence of the effective
magnetic fields acting on the nuclei is discussed in detail.
Because Sec. V is rather technical, a reader interested in
experimental applications can skip to Sec. VI, where numerical
data for the linear in time Landau-Zener sweeps and cycles
are discussed. In Sec. VII, the back action of the nuclear-
spin dynamics on the Overhauser fields in the electron-spin
Hamiltonian is estimated. Appendix A outlines the notations
for electron-spin operators. Appendix B discusses the spatial
dependence of the hyperfine interaction. We demonstrate that
even for two symmetric quantum dots, the hyperfine coupling
acquires asymmetries controlled by the overlap integral and the
external magnetic field. Appendix C includes two identities for
parabolic cylinder functions. We conclude and summarize our
results in Sec. VIII.

II. MODEL

We consider two electrons in a double quantum dot. When
the electron spin is conserved, the classification of the electron
states as a singlet state S and three triplet (Tν , ν = 0, ± 1)
states is exact. Spin-orbit interaction and the interaction with
the nuclear spins mixes these states. We use the singlet and
triplet stationary states as our basis. They are

�S(1,2) = ψS(1,2)χS(1,2), (1a)

�Tν
(1,2) = ψT (1,2)χTν

(1,2), (1b)

where 1 and 2 denote the first and second electrons. The
spin-wave functions obey the symmetries χS(1,2) = −χS(2,1)
as well as χTν

(1,2) = χTν
(2,1) and are specified in Appendix B.

The orbital wave functions ψS(1,2) and ψT (1,2) obey the sym-
metries ψS(1,2) = ψS(2,1) and ψT (1,2) = −ψT (2,1), and we
consider only the lowest energy orbital states so there are
no additional quantum numbers labeling the orbital wave
functions.
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The electrons interact with each other, external gate
potentials, an external magnetic field, and with the nuclear
spins predominantly via the hyperfine interaction. The latter
interaction, as well as spin-orbit coupling, induce transitions
between the singlet and triplet states that we compute. The
nuclei interact with the external magnetic field, the electrons
through the hyperfine interaction, and with each other via
the magnetic dipole-dipole interaction. The latter interaction
affects the nuclear-spin dynamics on long-time scales of
around ms, and we disregard it in what follows. However,
we take into account (in a semiclassical Born-Oppenheimer
approach and in the leading order in the large electron
Zeeman splitting) an indirect Ruderman-Kittel-Kasuya-Yosida
(RKKY)-like interaction between nuclear spins originating
from the hyperfine electron-nuclear coupling (see Sec. V D).
Near the ST+ anticrossing it manifests itself at the scale of
about 10 μs.

Of central importance is the hyperfine electron-nuclear
interaction

Ĥhf = A
∑

j

2∑
	=1

δ(Rj − r	)(Îj · ŝ(	)), (2)

where A is the electron-nuclear interaction strength, 	 numer-
ates electrons and j nuclei, ŝ(	) = 1

2 σ̂ (	) are the electron-spin
operators in terms of the vector of Pauli matrices σ̂ (	) for
each electron 	, and Îj are the nuclear-spin operators. The
electron and nuclear-spin operators are dimensionless in our
notations. Carets denote quantum-mechanical operators and
bold variables are vectors.

In the 4 × 4 singlet and triplet space (S,T+,T0, and T−), the
Hamiltonian that describes the electrons and their interaction
with the nuclear spins can be written as

Ĥ =
(

εS v̂T
n

v̂∗
n εT − η̂ · Ŝ

)
, (3)

where the total electron spin Ŝ = ŝ(1) + ŝ(2). Additionally,
the spin-orbit interaction induces terms in Eq. (3) that we
discuss below. The nuclear spins are also affected by the
external magnetic field through the nuclear Zeeman effect
that we take into account below in the description of their
dynamics. However, we disregard the effect of the nuclear
Zeeman energy on the equilibrium spin populations because
of the high temperature of the nuclear-spin bath. The εS and
εT terms in the diagonal matrix elements of Eq. (3) describe
the singlet and triplet energies in the absence of the nuclear
and external magnetic fields. They depend on the electrostatic
gate potentials and the interactions between the electrons. The
off-diagonal operator components v̂T

n = (v̂+
n , − v̂z

n, − v̂−
n ) are

nuclear-spin dependent (a superscript T denotes the transpose
of a vector and the subscript n denotes that this coupling is due
to the nuclear spins),

v̂α
n = A

∑
j

ρj Î
α
j , (4)

with α = (+, −, z), Î±
j = (Î x

j ± iÎ
y

j )/
√

2 are the transverse
nuclear-spin components, and the singlet-triplet electron-
nuclear coupling coefficients

ρj = ρ(Rj ) =
∫

drψ∗
S (r,Rj )ψT (r,Rj ) (5)

dependent on the positions Rj of nuclei j . Roughly, ρj

varies from positive in one quantum dot to negative in
the other. Therefore v̂±

n and v̂z
n represent differences in the

effective nuclear magnetic fields in the two dots in the
directions transverse and parallel to the external magnetic field,
respectively. The effective splitting of the triplet states due to
the external magnetic field B and the nuclei is −η̂ · Ŝ, where

η̂ = ηZez + η̂n = ηZez − A
∑

j

ζj Îj , (6)

ηZ is the electron Zeeman splitting in the field B ‖ ẑ, Ŝ is the
spin-1 operator for the electrons (as defined in Appendix A),
and the position dependent coupling constants of the triplet
states to the nuclei are

ζj =
∫

drψ∗
T (r,Rj )ψT (r,Rj ). (7)

This completes the description of the Hamiltonian that governs
the coupling between the electron- and nuclear-spin dynamics.

The ST+ anticrossings arising due to v̂α
n and also the

ST0 level splittings were investigated by the beam-splitting
technique21 and Rabi-oscillations,9,10,26 respectively.

III. ELECTRON- AND NUCLEAR-SPIN DYNAMICS

The Hamiltonian of Eq. (3) defines a many-body problem
of the coupled electron-nuclear dynamics. Our interest is in the
dynamical nuclear polarization that is achieved by changing
the gate voltages in such a way that the electronic subsystem
makes a transition from the singlet S to the lowest energy
triplet T+ state or vice versa. The many-body interaction can be
simplified by employing the Born-Oppenheimer approach.15

The electrons are fast as compared to the nuclei. The electrons
also interact with a large number of nuclei, around one
million. These two features imply that the electron dynamics
is unaffected by the dynamics of a single nucleus and electrons
see only a quasistatic configuration of all nuclei during a
single ST+ crossing. This motivates an ansatz where the wave
function is separable into electronic and nuclei parts.15

The electron dynamics can be solved from the Hamiltonian
of Eq. (3) with the assumption that the nuclear-spin operators
can be approximated by their expectation values before the
transition, v̂n → vn. The detuning energy ε is defined as the
difference between the triplet energy εT0 and the singlet energy
εS , ε = εT0 − εS , and is controlled by the variations in the
gate voltages. We restrict ourselves to the limit of a rather
large external magnetic field so that the splitting between the
triplet states is larger than the magnitude of the off-diagonal
matrix elements that mix the singlet and triplet states. When
the separation between the energy levels is much larger than
the matrix elements that mix the singlet and triplet states, the
singlet and triplet states are well separated. The singlet-triplet
matrix elements produce anticrossings between the singlet
and triplet levels when their energies are tuned to be close

045301-3



ARNE BRATAAS AND EMMANUEL I. RASHBA PHYSICAL REVIEW B 84, 045301 (2011)

S
T

T0

T

S

T

0.8 1.0 1.2 1.4
Detuning a.u.

1.0

0.5

0.5

1.0

1.5

Energy a.u.

FIG. 1. (Color online) Schematics of the singlet and triplet energy
levels as a function of the detuning energy ε = εT0 − εS close to the
S-T+ anticrossing. The Zeeman splitting ηZ = 1 is chosen as the
energy unit, off-diagonal matrix elements are v⊥ = |v±| = 0.07.

to resonance. Our focus is on situations where the system is
tuned close to the S-T+ transition as shown in Fig. 1. There,
the energies of the triplet states T0 and T− are of the order the
electron Zeeman splitting ηZ away from the energies of singlet
S and triplet T+ states, which is a large energy as compared to
the S-T+ anticrossing width. In this case, the electron dynamics
can be approximated by the 2 × 2 dynamics for the singlet S

and triplet T+ amplitudes of the electron wave function. The
reduction of the original 4 × 4 electron dynamics problem to a
2 × 2 problem also facilitates finding an exact solution for the
electron dynamics for linear sweeps and allows us to reveal the
role of the long-time “tails” of the singlet and triplet amplitudes
crucial for the nuclear-spin dynamics. In the 2 × 2 basis, the
electron dynamics is described by the singlet cS and triplet cT+
amplitudes that obey a Schrödinger equation

H (ST+)

(
cS

cT+

)
= ih̄∂t

(
cS

cT+

)
(8)

with the Hamiltonian

H (ST+) =
(

εS v+
v− εT+

)
, (9)

where εT+ = εT − ηZ , and following Refs. 16 and 17 we have
included the spin-orbit matrix elements v±

so that couple S and
T+ states into the total off-diagonal matrix elements,

v± = v±
n + v±

so. (10)

While the coupling between S and T levels in GaAs double
quantum dots is usually attributed to the hyperfine interaction,
spin-orbit coupling is inevitably present while difficult to
evaluate quantitively for specific devices.27 It manifests itself
in spin relaxation,28,29 level anticrossings in InAs single and
double dots,30,31 and in the electric dipole spin resonance
(EDSR),32,33 both in GaAs34,35 and InAs36 double dots. It is
important to emphasize the existence of different mechanisms
that couple the electron spin to the orbital degrees of freedom.
They include the traditional (Thomas) spin-orbit interaction
that couples the electron spin to the electron momentum and
the Zeeman interaction in a inhomogeneous magnetic field
B(r) that couples the electron spin to the electron coordinate.37

In Ref. 34 the first mechanism dominated, while in Refs. 38
and 35 different versions of the second one were important.
We show in what follows that spin-orbit coupling also has a

profound effect on the nuclear-spin polarization production
rate.

By carrying out a unitary transformation of the original
4 × 4 Hamiltonian, it can be shown that the corrections to
the reduced 2 × 2 Hamiltonian of Eq. (9) are quadratic in the
small ratio between v± and the Zeeman splitting ηZ provided
the gate-voltage induced S-T+ transition is slow so that h̄(ε̇S −
ε̇T )/η2

Z � 1. We assume that this criterion is satisfied.
In turn, the dynamics of nuclear spins is driven by

the effective magnetic fields �j arising from the electron
dynamics,

h̄
d Îj

dt
= �j × Îj , (11)

where the components of the fields �j acting on the nuclei
are the transverse �±

j = (�x
j ± i�

y

j )/
√

2 and longitudinal �z
j

fields:

�+
j = AρjcSc

∗
T+ , (12a)

�−
j = Aρjc

∗
ScT+ , (12b)

�z
j = Aζj |cT+|2 − ηj (nZ), (12c)

and ηj (nZ) is the nuclear Zeeman splitting for the nucleus j .
Because the dynamics of electron amplitudes [cS(t),cT+(t)]
depends not only on the potentials on the gates but also on the
nuclear spins through the matrix elements v±, fields �j can
be considered as dynamical RKKY fields.

In the next section we show how the changes in the
electronic states as they pass across the S-T+ anticrossing
change the spatially dependent nuclear polarization.

IV. DYNAMICAL NUCLEAR POLARIZATION

We consider a situation where the changes in the gate
voltages can induce a singlet S to triplet T+ transition or
vice versa, so that the total electron angular momentum may
be increased or reduced by 1. In the absence of spin-orbit
coupling, this implies that the change in the z projection of the
total nuclear spin equals the change in the electron spin (but
with the opposite sign). There is no conservation law for the
spatial distribution of the nuclear spin. We are interested in
how this change of angular momentum is distributed among
the nuclei. As already mentioned above, the typical time scale
for nuclei dynamics is long as compared to the time scale for
the electron dynamics, in particular, with the singlet-triplet
transition time. Let us denote the initial time of the sweep
as Ti and the final time as Tf . We assume that the duration
of the Landau-Zener sweep, Tf − Ti , is short as compared to
the typical nuclear-spin precession time and take the nuclear
dynamics into account as a perturbation. Also, since the total
change of the angular momentum is of the order 1, the
typical change in the individual nuclear spins is much less
than 1. With these assumptions, the change of a nuclear spin
�Îj = Îj (Tf ) − Îj (Ti) during a Landau-Zener transition is

�Îj = �j (Tf ,Ti) × Îj (Ti), (13)
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where the total effect of the electrons on the nuclei is the
integrated effect of the magnetic splitting in Eqs. (12a), (12b),
and (12c):

�j (Tf ,Ti) =
∫ Tf

Ti

dt

h̄
�j (t). (14)

In order to find explicit expressions for the dependence
of the electron states on the effective field induced by the
transverse nuclear-spin polarization v±

n , it is convenient to
make a transformation of the singlet and triplet amplitudes,

cS = c̃S cT+ = c̃T+v−/v⊥. (15)

Then the Hamiltonian becomes real, and(
εS v⊥
v⊥ εT+

)(
c̃S

c̃T+

)
= ih̄∂t

(
c̃S

c̃T+

)
, (16)

where v⊥ = ∣∣v±∣∣. Equation (16) depends, in addition to the
external magnetic field, on the absolute value of the combined
effect of the nuclear-spin induced transverse effective field and
spin-orbit interaction, but does not depend on its direction.

In this basis, we can express the total effect of the (x,y)
components of the effective field of Eq. (14) in terms of

�±
j = ±iAρj�

±v±/(2v2
⊥), (17)

where the dimensionless functions �±(Ti,Tf ) are defined as

�− = i2v⊥
∫ Tf

Ti

dt

h̄
c̃∗
S(t)c̃T+(t), (18)

and �+ = (�−)∗. This expression can be transformed by
using the equation c̃T+ = v−1

⊥ [ih̄∂t − εS(t)]c̃S following from
Eq. (16),

�− =−2
∫ Tf

Ti

dt c̃∗
S(t)

∂c̃S(t)

∂t
− i2

∫ Tf

Ti

dt

h̄
εS(t) |cS(t)|2 , (19)

so that

Re{�±} = P = |cS(Ti)|2 − |cS(Tf )|2 (20)

is the transition probability P (Ti,Tf ) from the singlet S to
the triplet T+ state. There is no such simple relation between
the imaginary parts of �± and the transition probability, and
this fact is important for the following discussion of the effect
of the Landau-Zener sweeps on nuclei. However, we observe
that when the Hamiltonian in the Schrödinger equation (16)
is stationary, i.e., when the gate voltages are fixed and εS and
εT+ are constant in time, and the system is in an eigenstate of
the Hamiltonian of Eq. (16), the field c̃∗

S c̃T+ is real implying
a nonvanishing imaginary contribution to �±. The imaginary
part of �± thus includes contributions that can be understood
in terms of RKKY-like static nuclear spin-spin interaction
mediated by the electronic state, but this interaction also
depends on the spin-orbit coupling. We will diagonalize the
stationary Hamiltonian of Eq. (16) in Sec. V D and relate the
imaginary part of �± to the static electronic properties and
show how this influences the dynamical nuclear properties.
The imaginary part of �± is central for the understanding of
the dynamical nuclear polarization and we define

Q = Im{�+} = −Im{�−}. (21)

We also express the total effect of the field along z as

�z
j = Aζj�

z/(2v⊥) − ηj (nZ)(Tf − Ti)/h̄, (22)

where

�z = 2v⊥
∫ Tf

Ti

dt

h̄
|c̃T+ (t)|2. (23)

Using Eqs. (12a), (12b), and (12c), as well as expressing
�±

j and �z
j of Eqs. (17) and (23) in terms of �± and �z, we

arrive at the spin production during a single S → T+ transition
both in the transverse,

�Î±
j = A

2v⊥

[
v±

v⊥
�±ρj Î

z
j ± i�zζj Î

±
j

]

∓ i
ηj (nZ)

h̄
(Tf − Ti)Î

±
j , (24)

and the longitudinal components,

�Îz
j = − A

2v2
⊥

[�−v−ρj Î
+
j + �+v+ρj Î

−
j ]. (25)

Next, substituting operators v̂±
n in Eq. (4) by their semiclassical

values v±
n and using Eq. (10), we find the change in the z

component of the total nuclear spin, �Iz =∑
j

�I z
j ,

�Iz = −P + 1

2v2
⊥

[�−v−v+
so + �+v+v−

so], (26)

or

�Iz = − P

2v2
⊥

(v−v+
n + v+v−

n ) − i
Q

2v2
⊥

(v−v+
n − v+v−

n ). (27)

Note that the change in the z component of the total nuclear
spin is computed under the constraint that the transverse
nuclear fields are v±

n before the sweep.
Remarkably, �Iz of Eq. (26) only depends on the basic

parameters of the Hamiltonian H (ST+) of Eq. (9) and the
shape of the sweep and does not depend on the detailed
topography of nuclear spins. Therefore the result is very
general and convenient to use. In this respect, transfer of
the longitudinal component of the angular momentum differs
from the transfer of its transverse component that, according
to Eq. (24), depends on the specific spin configuration.

In the absence of spin-orbit interaction, v±
so = 0, the total

change in the electron spin equals the transition probability
P , as expected for a (partial) transition between the singlet
S and triplet T+ states. Conservation of the z component
of the angular momentum then dictates that the change in
the z component of the total nuclear spin equals −P . Spin-
orbit coupling breaks the conservation law for the angular
momentum transfer from the electronic to the nuclear-spin
system since angular momentum can be transferred to or
from the lattice as well. Such processes manifest themselves
in the second term in Eq. (26). It depends on the relative
phase between the spin-orbit and hyperfine interaction matrix
elements. Furthermore, this term depends not only on the
transition probability P , but also on the imaginary parts of
�±. Q acquires contributions not only from the part of the
sweep near the anticrossing point but also from its long tails.
As a result, the magnitude of Q can be much larger than P for
certain classes of sweeps. This generic feature suggests that
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Q can be made large, and the spin-orbit coupling can strongly
influence nuclear dynamics even when it is weaker than the
hyperfine coupling.

Our results confirm the prediction of Ref. 17 that the
spin-orbit coupling influences the nuclear-spin generation rate
profoundly. The quantity computed in Ref. 17 is the total
change of the nuclear spin �Iz averaged over the phase of
the transverse nuclear field v±

n . This averaging annihilates the
second term of Eq. (27) while the first term coincides with
Eq. (9) in Ref. 17.39 Since Q can be considerably larger than P ,
we expect enhancement of spin production rate in experiments
performed at fixed (while generic) values of v±

n .

V. LINEAR SWEEPS—LANDAU-ZENER ELECTRON
TRANSITIONS

When the changes in the gate voltages are such that
the difference in the energy between the singlet S and
the triplet T+ varies linearly in time, Eq. (16) reduces
to the standard Landau-Zener problem. Because the Landau
approach based on analytical continuation allows finding only
the transition probabilities,40 we employ in the following the
Zener approach22 allowing finding explicit expressions for
the time dependence of electron wave functions that drives
the coherent nuclear-spin dynamics. In Ref. 23, it has been
applied in describing the results of Ref. 21. We consider a
transition from the singlet S state to the triplet T+ state, but
because of the symmetries of the Hamiltonian the solution
can also be used to find the wave functions that describe the
transition from the triplet T+ to the singlet S state. We derive
this relation in Sec. V C. Defining t = 0 as the time when the
energies εS and εT+ of the singlet S and triplet T+ are equal,
we introduce

εS = β2t/2h̄, εT+ = −β2t/2h̄, (28)

where β is a positive number with dimension of energy. This
representation implies that the singlet state has the lowest
energy at early (negative) times and the triplet state has the
lowest energy for large final (positive) times. A natural time
scale is h̄/β so that Eq. (16) with τ = tβ/h̄ reads(

τ/2
√

γ√
γ −τ/2

)(
c̃S

c̃T+

)
= i∂τ

(
c̃S

c̃T+

)
, (29)

where

γ = (v⊥/β)2 (30)

is the Landau-Zener parameter. When γ is small, the transition
probability from the singlet S to the triplet state T+ is small. In
the opposite limit, when γ is large, the transition probability
is close to 1. As above, we denote the initial time from where
the sweep starts as Ti and the final time where it ends as Tf .
In dimensionless units, we have τi = Tiβ/h̄ and τf = Tf β/h̄.

In order to determine the change in the nuclear-spin
polarization, we need to compute not only the transition
probability P , but also the singlet S and triplet T+ amplitudes,
c̃S and c̃T+ . Because the nuclear dynamics is controlled by the
electron dynamics via the effective fields of Eqs. (12a)–(12c),
explicit expressions for the amplitudes [c̃S(τ ),c̃T+ (τ )] should
be found not only near the anticrossing point τ = 0, but
along the whole sweep, τi � τ � τf . Therefore it is necessary

to employ Zener’s derivation of the Landau-Zener transition
probability22 and complement it with a detailed information
about the asymptotic behavior of the amplitudes and effective
magnetic fields.

Eliminating c̃S from Eq. (29) by substituting

c̃S = 1√
γ

(
τ

2
+ i∂τ

)
c̃T+ (31)

into its first row, we find

∂2
τ c̃T+ +

(
γ − i

2
+ 1

4
τ 2

)
c̃T+ = 0. (32)

Then, by changing the variable τ to

z = ei3π/4τ, (33)

Eq. (32) transforms to

∂2
z c̃T+ (z) + (n + 1

2 − 1
4z2
)
c̃T+ (z) = 0, (34)

where n = iγ . This is the Weber equation41,42 whose so-
lutions are the parabolic cylinder (Weber) functions Dn(z),
Dn(−z), D−1−n(−iz), and D−1−n(iz), of which only two are
linearly independent. When expressed as functions of the real
argument τ , they correspond to Diγ (ei3π/4τ ), Diγ (−ei3π/4τ ),
D−1−iγ (eiπ/4τ ), and D−1−iγ (−eiπ/4τ ), respectively. In a sim-
ilar way, we find the differential equation that the singlet
amplitude obeys. Eliminating c̃T+ by substituting

c̃T+ = 1√
γ

(
− τ

2
+ i∂τ

)
c̃S, (35)

into the second row of Eq. (29) and taking its complex
conjugate, we find

∂2
τ c̃∗

S +
(

γ − i

2
+ 1

4
τ 2

)
c̃∗
S = 0. (36)

Hence c̃∗
S satisfies the same differential equation (32) as c̃T+ ; its

solutions are the Weber functions listed above. In Sec. V A we
discuss the asymptotic behavior of the singlet S and triplet T+
amplitudes, which is critical for imposing the initial conditions
and finding long-time scale nuclear-spin dynamics.

A. Asymptotic expansions

For the following, the asymptotic behavior of the solutions
in both limits, τ → ±∞, is required. However, because the
solutions appear in pairs, with opposite signs of τ , it is
sufficient to find their τ > 0 asymptotics. We note that the
indices of all above D functions are imaginary or complex
[iγ or (−1 − iγ )] while the asymptotics of Refs. 41 and 42
are valid only for Dn(z) functions with integer indices.43 In
what follows, we employ the asymptotic expressions from
MATHEMATICA 8, which are valid for arbitrary complex indices.
For large positive times τ → ∞, they are

Diγ (ei3π/4τ ) ≈ e−3πγ/4eiτ 2/4τ iγ + eiπ/4

√
2π

�(−iγ )

× e−πγ/4e−iτ 2/4τ−1−iγ + O(τ−2), (37a)

Diγ (−ei3π/4τ ) ≈ eπγ/4eiτ 2/4τ iγ + O(τ−2), (37b)
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D−1−iγ (eiπ/4τ ) ≈ e−iπ/4eπγ/4e−iτ 2/4τ−1−iγ + O(τ−3),

(37c)

D−1−iγ (−eiπ/4τ ) ≈
√

2π

�(1 + iγ )
e−πγ/4eiτ 2/4τ iγ

+ ei3π/4e−3πγ/4e−iτ 2/4τ−1−iγ + O(τ−2).

(37d)

One can see that as τ → ∞ the function D−1−iγ (eiπγ/4τ )
vanishes as τ−1 while the absolute values of the three other D

functions saturate. We note that all asymptotic expressions for
the D functions include two oscillatory factors. The Fresnel-
type factors exp(±iτ 2/4) originate from the accumulation
of the adiabatic Schrödinger phases during a linear sweep, and
the factors τ±iγ depending on γ reflect the nonadiabaticity.

It follows from Eq. (37c) that for a sweep starting from
the singlet S state at large negative initial time τi , the
function D−1−iγ (−eiπγ/4τ ) should be chosen as one of the
basis functions for the triplet T+ state because it vanishes
when τ → −∞. We choose Diγ (ei3πγ/4τ ) as the second basis
function. Then

c̃T+ (τ ) = a
√

γ e−i3π/8D−1−iγ (−eiπ/4τ )

− b√
γ

e−i3π/8Diγ (ei3π/4τ ), (38)

where a and b are coefficients that depend on the initial time τi .
The overall phase factor as well as the factors

√
γ and −1/

√
γ

have been chosen as a matter of convenience in the following
transformation. One can check that b ∝ τ−2

i for |τi | 
 1.
Equation (36) implies that c̃∗

S , the complex conjugate of
the singlet S amplitude, can be expressed in terms of the
same Weber functions as the triplet amplitude c̃T+ . An explicit
connection between them can be found by employing Eq. (31),
and the expression for the singlet component c̃S can be further
simplified by using the standard recurrence relations for D

functions.41,42 As applied to the D functions of Eq. (38), they
read(

τ

2
+ i∂τ

)
Diγ (ei3π/4τ ) = −γ ei3π/4D−1+iγ (ei3π/4τ ) (39)

and(
τ

2
+ i∂τ

)
D−1−iγ (−eiπ/4τ ) = ei3π/4D−iγ (−eiπ/4τ ). (40)

The D functions of the right-hand side of Eqs. (39) and (40)
differ from the D functions of Eq. (38), but are related to them
by complex conjugation,

D−1+iγ (ei3π/4τ ) = [D−1−iγ (−eiπ/4τ )]∗, (41)

D−iγ (−eiπ/4τ ) = [Diγ (ei3π/4τ )]∗. (42)

Therefore the general solution for the singlet amplitudes is

c̃S(τ ) = a[e−i3π/8Diγ (ei3π/4τ )]∗

+ b[e−i3π/8D−1−iγ (−eiπ/4τ )]∗. (43)

As a consequence, the function �− of Eq. (18) depending
on the product c̃∗

S(t)c̃T+(t) and describing the response of
nuclear spins to a Landau-Zener pulse can be expressed in

terms of two functions D−1−iγ (−eiπγ/4τ ) and Diγ (ei3πγ/4τ ).
In Sec. V B, we consider the Landau-Zener scenario when
the initial electron state is prepared at τi → −∞ and the
sweep runs to τf → ∞, as well as the asymptotic behavior
of effective fields c̃∗

S c̃T+ at large but finite times |τ | 
 1.

B. Infinite limits and asymptotics

When the system is in the singlet state at early times,
|c̃S(τ → −∞)| = 1 and c̃T+ (τ → −∞) = 0, then b = 0 and
|a|2eπγ/2 = 1, as follows from Eq. (37b), and

c̃S(τ ) = eiϕe−πγ/4[e−i3π/8Diγ (ei3π/4τ )]∗, (44a)

c̃T+ (τ ) = eiϕe−πγ/4√γ [e−i3π/8D−1−iγ (−eiπ/4τ )], (44b)

where ϕ is an arbitrary phase. For a finite but large initial time
−τi (τi > 0), this description remains satisfactory with the
accuracy to the terms of the order τ−2

i in the singlet amplitude
of Eq. (44a) and of the order τ−1

i in the triplet amplitude of
Eq. (44b).

For completeness, let us also consider the situation when
the system is in the triplet state T+ at early times τ → −∞.
Then it follows from Eqs. (37b) and (37c) that a = 0 and
eπγ/2|b|2/γ = 1, so that

c̃S(τ ) = eiϕ′
e−πγ/4√γ [e−i3π/8D−1−iγ (−eiπ/4τ )]∗, (45a)

c̃T+ (τ ) = −eiϕ′
e−πγ/4[e−i3π/8Diγ (ei3π/4τ )], (45b)

where ϕ′ is an arbitrary phase.
We can now find the transition probability for the S → T+

transition of Eq. (20). It is

PLZ = |c̃S(τ → −∞)|2 − |c̃S(τ → ∞)|2 = 1 − e−2πγ , (46)

which is the celebrated Landau-Zener result. The transverse
components of the effective field acting on the nuclear spins
are controlled by the product

c̃∗
S c̃T+ = √

γ e−πγ/2e−i3π/4Diγ (ei3π/4τ )D−1−iγ (−eiπ/4τ ).

(47)

Its asymptotic behavoir following from Eqs. (37b) and (37d)
is

c̃∗
S c̃T+ ≈

√
γ

τ
+ O(τ−2) (48)

for the early times τ → −∞ and

c̃∗
S c̃T+ ≈ −

√
γ

τ
[1 − 2e−2πγ ]

+√
γ e−i3π/4

√
2π

�(1 + iγ )
e−3πγ/2eiτ 2/2τ 2iγ + O(τ−2)

(49)

for the late times τ → ∞; � is the � function. The absolute
value of the second term of Eq. (49) is e−πγ

√
1 − e−2πγ

as can be checked by using the identity | �(1 + iγ ) |2=
πγ/ sinh(πγ ). This result is easy to understand since it
equals |c̃S ||c̃T+| in the asymptotic regime τ → ∞, where
|c̃T+|2 = 1 − e−2πγ and |c̃S |2 = e−2πγ . The second term of
Eq. (49) exhibits very fast Fresnel-like oscillations eiτ 2/2 when
τ → ∞ and does not contribute significantly to the integral
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�− of Eq. (18) describing the total effective field applied to the
nuclei as a result of the sweep. This factor originates from the
accumulation of the phase exp{∫ [εS(t) − εT+ (t)]dt/h̄} along
the sweep.

The origin of the coefficients in the 1/τ terms in Eqs. (48)
and (49) can also be made quite transparent. By using the
time-dependent Schrödinger equation (29), we find

(i∂τ + τ )
(
c̃∗
S c̃T+

) = √
γ [|c̃S(τ )|2 − |c̃T+ (τ )|2]· (50)

Knowing that for early times, τ → −∞, the amplitudes
approach |c̃S |2 = 1 and |c̃T+|2 = 0, we recover Eq. (48).
For late times, |c̃S |2 − |c̃T+|2 → −1 + 2 exp(−2πγ ), which
explains the 1/τ term in Eq. (49). Furthermore, we note that in
the leading order the operator (i∂τ + τ ) annihilates the second
term of Eq. (49).

The integrals of Eqs. (48) and (49) diverge logarithmically
when the integration limits approach ±∞. This means that
while PLZ of Eq. (46) and the total spin transfer �Iz of Eq. (26)
(for vso

± = 0) are controlled by the vicinity of the anticrossing
point, the effective fields �j and shake up processes in the
nuclear subsystem produced by them are controlled by the
global shape of the pulse. The same is true for �Iz when
vso

± �= 0. We note that while the presence of logarithmic terms
is a general property of linear sweeps, they contribute to �Iz

only in the presence of spin-orbit coupling.

C. Reverse sweep from the triplet T+ to the singlet S.

Let us relate the reverse sweep, starting in a triplet state
T+ and sweeping to a singlet state S, to the S → T+ sweep
elaborated above. Since now the rates of the change of the
singlet S and triplet T+ energies have the signs opposite
to the signs in Eq. (28), the dynamical equations for the
amplitudes (c̃S,c̃T+ ) differ from Eq. (16) by the interchange
c̃S ↔ c̃T +. Furthermore, for a T+ → S transition, the system
was initially in the triplet T+ state, hence the singlet S

amplitude vanishes at the early time. Therefore the initial
conditions are also c̃S ↔ c̃T + interchanged as compared to the
S → T+ sweep. This implies that their product transforms as
c̃∗
S c̃T+ → (c̃∗

S c̃T+ )∗, and �± → −(�±)∗according to Eq. (18).
In other words the transition probability P = Re{�±} changes
sign, but the imaginary parts Q = Im{�+} remain unchanged.
The change of the sign of Re{�±} is obvious because of the
S ↔ T+ interchange, so that the longitudinal component of
the angular momentum transfer changes sign. However, the
effective field Im

{
�±} does not change, and this indicates

that the imaginary components of �± should add during a
S → T+ → S cycle.

In conclusion of this section, for linear sweeps the dimen-
sionless function �−(Ti,Tf ) that reflects the effect of a single
Landau-Zener sweep on nuclei diverges logarithmically when
Ti → −∞ and Tf → ∞. In Sec. VI, we discuss in more detail
the dependence of �±(Ti,Tf ) on the limits (Ti,Tf ) and the
Landau-Zener parameter γ .

D. Adiabatic regime

Some more insight on the long-τ tails of the products
c̃∗
S c̃T+ comes from the stationary solution of Eq. (16).25 For

a large detuning δ = εT+ − εS from the S − T+ anticrossing,

when |τ | 
 1, the stationary solution of Eq. (16) provides an
adiabatic approximation to the singlet and triplet amplitudes.
Note that we still assume the duration of the sweep is short as
compared to the nuclear Larmor precession time.

Then the eigenenergies of the electronic states of the
Hamiltonian of Eq. (16) are

ε± = 1
2 (εS + εT+ ) ±

√
v2

⊥ + (δ/2)2, (51)

and at the lower branch of the energy spectrum the product of
the amplitudes equals

c̃∗
S c̃T+ = − v⊥/2√

v2
⊥ + (δ/2)2

. (52)

Here the oscillatory τ -dependent phase factors cancel because
c̃S and c̃T+ belong to the same eigenvalue. It immedi-
ately allows calculating the transverse components �+

j =
A�j c̃S c̃

∗
T+v±/v⊥ and �−

j = A�j c̃
∗
S c̃T+v−/v⊥ of �j and the

effective fields from Eqs. (12a) and (12b). The transverse
components �±

j vanish as v⊥/δ when |δ|/v⊥ → ∞. Similarly,
the longitudinal component found from Eq. (12c) equals

�z
j = −Aζj

2

[
1 − δ/2√

v2
⊥ + (δ/2)2

]
− ηj (nZ). (53)

Far from the intersection, when δ/v⊥ → −∞ and the eigen-
state is almost a pure triplet, �z

j → −Aζj − ηj (nZ). In the
opposite limit, when δ/v⊥ → ∞ and the eigenstate is almost
a pure singlet, �z

j → −ηj (nZ). The point δ = 0 has been
identified as “spin funnel” in Ref. 49.

In the adiabatic limit, the fields �j acquire the usual
meaning of RKKY fields with a nuclear dynamic time scale
of t ∼ h̄/�j . Near the level anticrossing point δ = 0, �j ∼
An0/N where n0 is the concentration of nuclei and N is the
number of nuclei in the dot. With An0 ≈ 10−4 eV and N ≈
106, t ≈ 10 μs. It sounds tempting to relate this accelerated
nuclear spin dynamics with the enhanced spin diffusion during
the cycles including stops near ST+ anticrossings observed by
Reilly et al.50

For a slow linear sweep between τi = −τf and τf , with
δ = βτ , one finds from Eqs. (18) and (52) the quantity �±

(a)
which, according to Eq. (21), results in

Q(a) = 4γ ln

⎛
⎝
√

τ 2
f + 4γ + τ 2

f

2
√

γ

⎞
⎠ , (54)

and from Eq. (20) we find P(a) = 0. The results for P(a) and
Q(a) hold with logarithmic accuracy; the subscript (a) indicates
that they were derived in the adiabatic approximation. In the
same way, one can check that c̃∗

S c̃T+ of Eq. (52) is in agreement
with the 1/τ terms of Eqs. (48) and (49).

Applying Eq. (52) to a nonlinear dependence δ = δ(τ ), one
easily concludes that �± converges if δ(τ ) is superlinear and
diverges by some power law if it is sublinear.

Equation (52) implies important consequences for
the nuclear-spin dynamics under the condition of time-
independent detuning. Indeed, it follows from Eqs. (10),
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(11)–(12b), and (52) that the rate of change of the total nuclear
spin is

h̄
∂I z

∂t
= − i

2

v+
sov

−
n − v−

sov
+
n√

v2
⊥ + (δ/2)2

. (55)

Therefore time-independent detuning results in producing a
magnetization I z that increases linearly in time as long as the
parameters of the electronic Hamiltonian remain unchanged.
This generation of spin magnetization by time-independent
electrical bias is possible because the time-inversion symmetry
is violated by a strong external field B producing Zeeman split-
ting of the electron triplet state, and the simultaneous presence
of hyperfine and spin-orbit interactions. The magnitude of
the effect reaches its maximum at δ = 0, when the system
is brought to the center of the ST+ anticrossing. The time
scales of the parameter change can be estimated similarly to
Sec. VII D. Under the usual conditions, the shortest of them
corresponds to the precession of v±

n in the external field. These
conclusions seem to agree with the observations of Ref. 44.

VI. S → T+ SWEEPS AND ROUND CYCLES

Complex functions �±(Ti,Tf ) of Eq. (18) describe the
effect of a sweep on the nuclear spins. As seen from Eqs. (20)
and (26), the probability of the electron S → T+ transition P

is completely controlled by the real part of �±, P = Re{�±},
while the angular momentum transferred to the nuclear system
�Iz depends both on the real and imaginary parts of �±.
Imaginary parts of �± are always present but manifest
themselves in the nuclear-spin accumulation only when there
are two competing mechanisms of the electron-spin transfer,
hyperfine and spin orbit.

In this section, we first present data on the dependence of
�± on the integration limits and the Landau-Zener parameter
γ obtained by numerical integration of Eq. (29), and then
develop an analytical approach for describing the oscillatory
dependence of the transition probability P on the cycle length.

A. Linear sweeps

We begin with linear S → T+ sweeps of Sec. V. For such
sweeps, we denote the initial time −τi (τi > 0) and the final
time τf (τf > 0) so that the duration of the sweep is τi + τf .
To reduce the number of parameters, we assume τi = τf .
Transition probabilities P (τf ) are plotted in Fig. 2(a) as a
function of the sweep half time τf for two values of γ .
While for large τf both curves saturate to the Landau-Zener
probabilities PLZ of Eq. (46), oscillations of P (τf ) are very
pronounced. They decay at a rather long-time scale, and
their shape cannot be described by a single characteristic
time. We attribute the oscillations to the interference pattern
between two spectrum branches and estimate their period
τosc from the Schrödinger exponent exp(−iv⊥t/h̄) in the
anticrossing point, which results in τosc ≈ γ −1/2. The rate of
their decay is controlled by the passage time h̄v⊥/β2 across
the avoided crossing that results in a decay time τdec ≈ γ 1/2.
Finally, we arrive at a rough estimate of the transient regime
τtr ∼ max{γ 1/2,γ −1/2}. Actually, this only is a lower bound
on τtr . The saturation takes a longer time and the difference in
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FIG. 2. (Color online) (a) Transition probability P =
Re{�±(τf )} for a linear sweep starting in the S state at the initial time
−τi and ending at the final time τf = τi plotted as a function of the
half sweep time τf for two values of the Landau-Zener parameter γ .
Full (blue) line: γ = 1; dashed (red) line: γ = 0.1. The anticrossing
point is passed in the middle of the sweep at time τ = 0. The full
(blue) lines in (b) and (c) are Q = Im{�+(τf )} for γ = 1 and γ = 0.1,
respectively. In (b) and (c), the dashed (green) lines are the adiabatic
solutions of Eq. (54).

the shapes of the γ = 1 and γ = 0.1 curves deserves more
comments. The γ = 0.1 curve strongly resembles plots of
Fresnel integrals, and we attribute the oscillatons to the eiτ 2/2

factors in the asymptotics of Eq. (49). With increasing γ ,
the patterns of oscillations are getting less regular due to the
second oscillatory factor τ 2iγ in the asymptotics of c̃∗

S c̃T+ . The
switching of regimes happens at 2πγ ≈ 1 as is seen from the
expression e−2πγ for the Landau-Zener transition probability.

In agreement with the asymptotics found in Sec. V B, the
imaginary parts of �± displayed in Figs. 2(b) and 2(c) exhibit
a behavior quite different from the behavior of their real parts
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P . They increase nearly logarithmically with τf , with weak
oscillations superimposed on this monotonic growth. Their
magnitudes increase with γ , and for γ ≈ 1 and τf ≈ 10 they
are by one order of magnitude larger than P . Therefore, even
with a moderate spin-orbit coupling, the imaginary parts of
�± are expected to contribute essentially to the spin transfer
�Iz of Eq. (26). This contribution should not only change the
magnitude of �Iz but also smoothen its τf dependence.

In Fig. 2(b) we also plot Q = Im{�+} for γ = 1 by using
the approximate adiabatic expression of Eq. (54) to compare
it to the exact numerical result. Apart from some details of the
behavior for early and late times, which are expected, we see
that the dominant contribution to Q can be explained in terms
of the adiabatic field of Eq. (54). Figure 2(c) provides a similar
comparison, but for a faster sweep with γ = 0.1. Even in this
situation, the adiabatic approximation is a reasonable starting
point for describing the basic shape of Q of Eq. (21).

The above analysis of linear sweeps, together with the
arguments of Sec. V D, allow us to make some conclusions
about the generic (nonlinear) S-T+ sweeps as well. Imagine
the sweeps with the rate unchanged near the anticrossing but in-
creasing away from it. As long as the speedup happens at times
τ > τtr (this inequality should be fulfilled strongly enough),
the probability P = Re{�±} changes only modestly, while
the long-time tails of the products c̃∗

S(τ )c̃T+ (τ ) contributing to
Q = Im{�+} are cut off. Thus increasing the sweep rate away
from the anticrossing reduces Q and might have a profound
effect on �Iz. However, its specific magnitude depends on the
values of a number of parameters such as v±

n ,v±
so,τtr , and the

speedup time.

B. Cyclic linear sweeps

Round sweeps are of the most practical interest for
experiment, and their detailed shapes are nontrivial because of
the oscillating tails of Re{�±} of Fig. 2(a). Therefore below
we provide the data on �± for two different round sweeps
starting in the singlet states S at τi < 0.

Figure 3 presents data for a round sweep of the total duration
of 4τf that includes the sweep of Fig. 2 from τi = −τf to τf

and the backward sweep that begins immediately after the
end of the forward sweep and proceeds with the same speed.
According to Eq. (20), P = Re{�±} displays the probability of
S → T+ transition. Remarkably, Fig. 3(a) shows that for γ = 1
the decay of P is rather long and includes deep and irregular
oscillations. For γ = 0.1, P (τf ) shows a wide maximum at
τf ≈ 2, and the following oscillations without any visible
decay up to τf = 10. In this case, a double dot in the linear
sweep regime resembles a resonator of a length decreasing as
τ−1
f . We expect that first peaks can be resolved experimentally,

e.g., in beamsplitter experiments,21 while higher peaks should
merge into a background with P ≈ 0.5. Using first sharp peaks
for ultrafast spin operation is highly tempting.

As distinct from P = Re{�±}, Q = Im{�+} of Fig. 3(b)
is a nearly monotonic function of τf for γ = 1 (with irregular
oscillations superimposed), and is about 10 for τf = 10.
Therefore it can heavily contribute to �Iz. However, Im{�±}
is small and strongly oscillates at γ = 0.1.

We speculate that the drastic difference in the patterns
of our Figs. 2 and 3 might be a clue for the asymmetry

2 4 6 8 10
τf i

0.2

0.4

0.6

0.8

1.0

(a)

(b)

P Re
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τf i

5

10

15

Q Im

FIG. 3. (Color online) (a) Transition probability of a S → T+
transition P = Re{�±} and (b) the imaginary part Q = Im{�+(τf )}
for a round sweep plotted versus τf (one fourth of the sweep time).
The first part of the sweep is the same as the sweep of Fig. 2, and
the second part sweeps in the opposite direction with the same speed
immediately after reaching the turning point. Full (blue) lines: γ = 1;
dashed (red) lines: γ = 0.1.

between the properties of S and T+ cycles (double and single
passages, respectively) observed in Ref. 10 and displayed in
their Fig. 2(d).

To demonstrate the effect of the tunneling process near the
anticrossing point, in Fig. 4 are plotted the data for a cycle
that begins in the S state at −τi , reaches the anticrossing at
τ = 0, and then runs immediately back with the same speed
until τf with τi = τf . Comparison of Figs. 3(a) and 4(a) for
γ = 1 shows quite similar patterns of the oscillations of P (τf )
that are more regular in Fig. 4(a). However, the patterns for
γ = 0.1 are rather different demonstrating essential decrease
in the spin transfer. The magnitudes of Q = Im{�+} are small
in both cases, but their τf dependencies are rather different.

C. Analytical theory of the probability oscillations

We can explain the oscillations in the transition probability
as a function of the total duration of the cycle employing the
analytical results in Sec. V. The forward sweep from −τi to the
turning point τm gives rise to the singlet and triplet amplitudes
of Eq. (44). Assuming τm 
 1 and τi 
 1, and employing
Eqs. (37a) and (37d), the singlet and triplet amplitudes at the
turning point τm are

c̃
(f S)
S ≈ e−πγ e

i

(
τ 2
i −τ 2

m

)
/4

τ
iγ

i τ−iγ
m , (56)
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FIG. 4. (Color online) Real part P (a) and imaginary part Q (b)
of the function �+(τf ) for a round sweep plotted vs half sweep time
τf . The first part of the sweep, starting in the S state at τi < τ < 0,
stops in the anticrossing point at τ = 0 and runs immediately in the
opposite direction until τf = |τi |. Full (blue) lines: γ = 1; dashed
(red) lines: γ = 0.1.

c̃
(f S)
T+ ≈ e−i3π/4e−πγ/2

√
2πγ

�(1 + iγ )
e
i

(
τ 2
i +τ 2

m

)
/4

τ
iγ

i τ iγ
m . (57)

Here the superscripts indicate that we started in the singlet S

state and carried out a forward linear sweep. The phase of the
early time singlet state is arbitrary and is omitted because it
only modifies the overall phase of the wave function and does
not influence the final result for the probability. The amplitudes
of Eqs. (56) and (57) are derived under the assumption that
c̃S = 1 and c̃T+ = 0 at time τ = −τi .

Next, we consider the backward sweep and include the
contributions from two channels passing through the T+ and
S states at the turning point. As discussed in Sec. V C, the
dynamical equations for the amplitudes for the backward
sweep (c̃(b)

S ,c̃
(b)
T+ ) differ from Eq. (16) by the interchange

c̃S ←→ c̃T+ . In order to make contact with our results in
Sec. V, we change the time τ → τ − 2τm for the backward
sweep. Using the interchange c̃S ←→ c̃T+ , it follows from
Eq. (44b) that for the triplet T+ channel the ratio of the final and
initial amplitudes along the backward sweep is c̃

(bT+)
S /c̃

(f S)
T + =√

γ e−i3π/8D−1−iγ (−eiπ/4τf )/[e−i3π/8Diγ (−ei3π/4τm)]∗, T+
in the superscript of c̃

(bT+)
S indicates the channel. In the limit

τf 
 1, Eqs. (37d) and (37c) imply that this ratio equals

c̃
(bT+)
S /c̃

(f S)
T+ ≈ e−i3π/4e−πγ/2

√
2πγ

�(1 + iγ )
ei(τ 2

f +τ 2
m)/4τ

iγ

f τ iγ
m .

(58)

Similarly, by using the interchange c̃S ←→ c̃T+ , it follows
from Eq. (45b) that for the singlet S channel the ratio of the final
and initial amplitudes along the backward sweep c̃

(bS)
S /c̃

(f S)
S =

Diγ (e3iπ/4τf )/Diγ (−e3iπ/4τm). In the limit τf 
 1,

Eqs. (37d) and (37c) imply that the ratio of the singlet
amplitudes after the backward sweep equals

c̃
(bS)
S /c̃

(f S)
S ≈ e−πγ ei(τ 2

f −τ 2
m)/4τ

iγ

f τ−iγ
m . (59)

The singlet amplitude at the final time τf after the cycle of
duration (τi + τm) + (τm + τf ) is a sum of the contributions
coming from both channels, c̃

(tot)
S = c̃

(bT+)
S + c̃

(bS)
S . Finally,

c̃
(tot)
S ≈ ei(τ 2

f +τ 2
i −2τ 2

m)/4

(
τf τi

τ 2
m

)iγ

[(1 − PLZ) + PLZeiϑ(τm)],

(60)

where the Landau-Zener transition probabilityPLZ for a single-
passage is defined by Eq. (46) and the phase ϑ(τm) at the
turning point τm is defined as

eiϑ(τm) = eiτ 2
mτ 4iγ

m e−iπ/2�(−iγ )/�(iγ ). (61)

The dependence of the transition probability P = 1 −
|c̃S(τf )|2 on the position τm of the turning point is

P (τm) = 4PLZ(1 − PLZ) sin2 ϑ(τm)/2, (62)

where ϑ(τm) is the Stückelberg phase.45–48 It is acquired
between the two passages and includes both the adiabatic and
nonadiabatic (γ -dependent) parts. From Eq. (62) we can make
several observations that are consistent with the numerical data
of Fig. 3. First, when τf 
 1 and τi 
 1, P does not depend
on the initial and final times. The transition probability only
depends on the Landau-Zener probability PLZ of Eq. (46)
and the turning point τm. This means that the oscillations
of P (τm) are a robust feature of a coherent double passage
across a Landau-Zener anticrossing. The transition probability
oscillates around the average value

Pav = 2PLZ(1 − PLZ). (63)

For fast sweeps PLZ � 1 so that P oscillates between 0 and
4PLZ . For slow sweeps PLZ is close to 1 and the probability
oscillates between 0 and 4(1 − PLZ). The maximum in the
oscillation amplitudes is achieved at PLZ = 1/2. When PLZ =
1 − e−2πγ = 1/2 (γ ≈ 0.11), the transition probability P

oscillates between 0 and 1. The amplitudes of the oscillations
are smaller for all other values of γ . This is exactly the behavior
we see in the numerical plots. One more remarkable feature
of Fig. 3(a), that all oscillations pass through P = 0, is also
reflected by Eq. (62).

Oscillatory patterns of γ = 0.1, curves in Figs. 2(a) and
3(a), show strikingly different behavior. In Fig. 2(a), the
amplitude of oscillations decreases with τf , and P gradually
approaches its Landau-Zener limit PLZ . On the contrary,
in Fig. 3(a) the oscillations, after some transitional period,
acquire a stationary amplitude. Equations (62) and (63)
clarify the origin of this behavior typical of double passages
across the anticrossing.45,46,48 Indeed, Pav of Eq. (63) is a
Landau-Zener probability P

(2)
LZ for a double passage across

the anticrossing that can be derived directly by the above
two-channel procedure with quantum amplitudes substituted
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by probabilities; see Ref. 40. Therefore suppression of these
long-time scale oscillations and approaching the double-
passage Landau-Zener limit P

(2)
LZ are only achieved when the

decoherence is taken into account, and can allow measuring
decoherence times.

In conclusion, prolonged oscillations of the electronic
amplitudes (c̃S,c̃T+ ) are a generic property of the coherent
electron dynamics during the single and double passages
across the S-T+ anticrossing. Their amplitudes and durations
are controlled by the Landau-Zener parameter γ and by
dephasing on longer time scales, and the patterns are rather
different for the single and double passages.

VII. BACK ACTION OF SPIN DYNAMICS ON
OVERHAUSER FIELDS

The Hamiltonian Ĥ of Eq. (3) describing the electron
states depends on the Overhauser fields created by the
spatially dependent nuclear-spin configuration. The electrons
experience the nuclear fields vα

n and ηn of Eqs. (4) and (6),
where the first represents the components of the effective
difference magnetic field in the dots, and the second represents
the induced average magnetic field. When going through the
S-T+ transition, the electrons will experience a change of
these nuclear Overhauser fields. It is a unique property of
Eq. (26) for the change in the total longitudinal nuclear spin
�Iz that it expresses a global property of a double dot in
terms of the parameters of the electronic Hamiltonian and
does not depend of a specific configuration of nuclear spins.
For different elements in the Hamiltonian Ĥ , we calculate their
mean-square values as well as their variances.

The expression for the change of the total z component
of the nuclear spin of Eq. (27) makes the role of Q explicit
due to the mediation of spin-orbit coupling. With v±

so = 0, the
total spin transfer is protected by the momentum conservation
law and Q manifests itself through shakeup processes in the
nuclear-spin reservoir respecting the conservation of the total
angular momentum. The electron dynamics induces changes
in the nuclear-spin configuration that in turn induces changes
in the diagonal and off-diagonal elements of the electron
Hamiltonian (3). In what follows, we compute these changes.

A. Changes in Overhauser fields

Electrons experience an effective Zeeman splitting in the
Overhauser field of η̂ of Eq. (6). The associated change in the
z component of η̂, �η̂z

n = −A
∑

j ζj�Î z
j , is

�η̂z
n = A2

2v2
⊥

∑
j

ρj ζj (�−v−Î+
j + �+v+Î−

j ). (64)

In the multicycle regime, the field of Eq. (64) has been
measured by Petta et al.49 and by Foletti et al.9 by the
shift in the position of the ST+ anticrossing. In contrast to
�Iz, the change �η̂z

n in the longitudinal field depends on
the detailed nuclear-spin configuration and on the spatially
dependent electron-nuclear couplings ρj of Eq. (5) and ζj of
Eq. (7).

The singlet-triplet terms v̂±
n and v̂z

n in the Hamiltonian
Ĥ of Eq. (3) are sums over all nuclear spins. ST0 level

splittings characterized by v̂z
n were measured in Ref. 26 and a

number of followup papers, and ST+ splittings described by
v̂±

n in Ref. 21. The changes in these terms during a cycle are
�v̂α

n = A
∑

j ρj Î
α
j . By using Eq. (24), we find changes in the

components α = ± that couple S to T±,

�v̂±
n = A2

2v⊥

⎡
⎣v±

v⊥
�±∑

j

ρ2
j Î

z
j ± i�z

∑
j

ρj ζj Î
±
j

⎤
⎦

∓ iA
∑

j

ρj

ηj (nZ)

h̄
(Tf − Ti)Î

±
j , (65)

and, by using Eq. (25), in the component α = z coupling S to
T0,

�v̂z
n = − A2

2v2
⊥

⎡
⎣�−v−∑

j

ρ2
j Î

+
j + �+v+∑

j

ρ2
j Î

−
j

⎤
⎦ . (66)

We note that while v̂z
n only produces a longitudinal Overhauser

field mixing S and T0, �v̂z
n includes operators Î±

j and therefore
mixes S and T+ belonging to our 2 × 2 subspace.

In the next subsections, mean values and variances of these
operators are computed.

B. Constraints and mean values

While nuclear spins are distributed in the bath randomly, the
magnetization fluctuations v±

n controlling electron dynamics
during the cycle impose on their values the constraints,

A
∑

j

ρj I
α
j = vα

n , (67)

adding also a constraint related to vz
n. To simplify calculations,

we consider below the nuclear spins Ij as random Gaussian
variables that are normalized, in the absent of constraints,
as 〈I λ

j I λ′
j ′ 〉 = 1

3Ij (Ij + 1)δjj ′δλλ′ , with λ = (x,y,z). Then the
mean values of Iλ

j are

〈I λ
j 〉=

∫
dIλ

j I λ
j P
(
I λ
j

)∏
j ′ �=j

∫
dIλ

j ′P
(
I λ
j ′
)
δ
(
vλ

n − A
∑

j ′ ρj ′Ij ′
)

∏
j ′
∫

dIλ
j ′P
(
I λ
j ′
)
δ
(
vλ

n − A
∑

j ′ ρj ′I λ
j ′
) ,

(68)

where P(I λ
j ) are Gaussian probabilities, (vx

n,v
y
n ) are defined

as v±
n = (vx

n ± v
y
n )/

√
2, and the denominator secures the

normalization of the probabilities under the constraints of
Eq. (67).

Using the integral representation for δ functions,

δ(x) = 1

2π

∫ ∞

−∞
eiωxdω, (69)

multiple Gaussian integrations of Eq. (68) result in

〈I±
j 〉 = ρjv

±
n /(AR2),

〈
I z
j

〉 = ρjv
z
n/(AR2), (70)

where Rn =∑j ρn
j are determined by the spatial dependence

of the electron-nuclear coupling constants. Substituting these
expressions into Eqs. (64) and (65), we arrive at the corrections
to the nuclear field experienced by the electron spin during the
sweep, 〈

�ηz
n

〉 = −�IzAR′
3/R2, (71)
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where R′
3 =∑j ρ2

j ζj , and the Overhauser field mixing its S

and T+ components,

〈
�vz

n

〉 = −�IzAR3/R2, (72)

with �Iz of Eq. (26).
We see that both the changes in the longitudinal differ-

ence field �vz
n and the longitudinal average field �ηz are

proportional to the change in the total nuclear spin �Iz. It
follows from Eqs. (5) and (7) that ρj typically have opposite
signs in both dots while ζj > 0 everywhere, hence R′

3 > 0.
Therefore with A > 0, the sign of 〈�ηz

n〉 (the change in the
mean Overhauser field building in the double dot) is opposite
to the sign of �Iz, in agreement with Eq. (6). The sign of
〈�vz

n〉 is defined by the sign R3 that depends on the choice of
electronic basis functions (see Appendix B), therefore it is not
uniquely defined with respect to �Iz.

The magnitudes of �ηz and �vz
n are of the order of

�IzAn0/N per cycle, i.e., about �Iz/
√

N of the mean values
of ηz and vz

n. For v±
so = 0, �Iz = −P , hence | �Iz |� 1.

However, it is seen from Figs. 2(b) and 3(b) that Q is an order of
magnitude larger than P when γ � 1. Therefore when vso �= 0,
the conditional expectation values 〈�ηz

n〉 and 〈�vz
n〉 should

experience Q enhancement through the Q enhancement of
�Iz, and ηz and vz

n can change by about 1% per cycle.
The mean values of the transverse components of vn,

calculated in a similar way from Eq. (65), are

〈
�v±

n

〉 = A
v±vz

n

2v2
⊥

R3

R2
�± ± iA

v±
n

2v⊥

R′
3

R2
�z

∓ ivz
nη̄(nZ)(Tf − Ti)/h̄, (73)

where η̄(nZ) is a mean value of ηj (nZ) over all nuclear species.
Because different species are distributed randomly at the
scale of atomic spacings, they self-average in the linear
approximation over Tf − Ti , and we accept that all of them
have the same absolute values of the angular momenta, Ij = I .
While the first term is comparable in the magnitude to Eq. (72),
the last two terms might be much larger because they increase
with the sweep duration. However, Eq. (73) includes changes
both in the amplitude and the phase of �v±

n , and the latter
might not be essential when solving Eq. (16), which only
depends on v⊥. We come back to this term in Sec. VII D.

C. ST+-pulse-induced interdot shakeups

Let us explain the importance of the variance in the spin
production by considering the total nuclear spins in the left and
right dots. Average values of different operators calculated in
Sec. VII B were based on the conditional mean values 〈Iα

j 〉 of
nuclear spins Iα

j of the order of N−1/2 that are small compared
with their root-mean-square values. Therefore calculating the
mean-square values of all operators and their variances is
important for estimating the widths of statistical distributions.

We begin with the differences in the spin polarizations of
the left and right dots, L and R, that are critical for spin
manipulation. While division of a double dot into its left
and right parts holds only when the overlap integral is small

enough, cf. Appendix B, the results are instructive. Splitting
Eq. (4) into sums over L and R, we define partial sums

vα
nL(R) = A

∑
j∈L(R)

ρj I
α
j . (74)

Their sums are vα
n and are subject to constraints of Eq. (67).

However, their differences

uα
n = vα

nL − vα
nR (75)

are free of any constraints. Using Eq. (25), the change in the
left-right polarization difference is

�Iz
LR = − 1

2v2
⊥

(�−v−u+
n + �+v+u−

n ). (76)

When averaged over an unpolarized spin reservoir, its mean
value vanishes, 〈�Iz

LR〉 = 0, and the mean-square value equals

〈(
�Iz

LR

)2〉 = A2n0

6v2
⊥

I (I + 1) | � |2
∫

ρ2(R)d3R, (77)

with ρ(R) of Eq. (5) and

| � |2= P 2 + Q2. (78)

A simple estimate of the right-hand side of Eq. (77) results in
| � |2. Therefore the asymmetry of spin pumping of the left
and right dots is Q enhanced whenever Q 
 P , in particular,
when vso = 0 and P � 1. We attribute this enhancement to
shakeup processes resulting in multiple spin flips per each
“pure” injected nuclear spin. These processes are random, and
it is not clear for now how they influence inhomogeneous spin
distributions.13,15

The detailed spatial patterns of spin generation at long-time
scales are a subtle subject and are related to the spatial variation
of the electron-nuclear couplings ρ(Rj ) and ζ (Rj ) calculated
in Appendix B. With mean values of I±

j of Eq. (70), spatial
distribution of �Iz

j is related to �Iz as �I±
j = (ρ2

j /R
2)�Iz.

The left-right asymmetry in ρ2
j originates either from the

geometric asymmetry of the double dot15 or from the L-R
overlap of the electron density, cf. Appendix B, and produces
a regular difference in the I z generation rate. While the results
depend on the specific distribution of nuclear spins and the
S-T0 mixing,14 the mechanism of Q enhancement is quite
general whenever γ � 1.

D. Mean-square values and variances

Mean values of Sec. VII B were evaluated over an unpo-
larized nuclear-spin bath and estimate the mean rates of the
change of the different parameters. However, the estimate of
the shakeup rate of Sec. VII C demonstrates that calculating
variances of these random variables can provide additional,
and sometimes even more valuable, information about the
magnitudes of the expected changes during a cycle. The
conditional probability distributions are so wide that the mean
values are not representative. In this section, we evaluate
variances of the basic nuclear fields.

We begin with calculating the mean-square values. Because
all nuclear fields of Eqs. (64)–(66) are linear in the angular
momenta Iα

j , mean values of the quadratic forms in them
include integrals that differ from Eq. (68) by substituting I λ

j
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either by (I λ
j )2 or by I λ

j I λ
j ′ with j �= j ′. While the latter terms

are smaller in the parameter 1/N � 1, they have a higher
statistical weight. Summing all terms, one arrives at lengthy
expressions for 〈(�ηz

n)2〉 and 〈(�vz
n)2〉, which we do not

present here. Instead, using the mean values of Eqs. (71) and
(72), we present the variances defined as Var{ξ} = 〈ξ 2〉 − 〈ξ 〉2

Var
{
�ηz

n

} =| � |2 A4

6v2
⊥

I (I + 1)[R′
4 − (R′

3)2/R2], (79)

where R′
4 =∑j (ρjζj )2, and

Var
{
�vz

n

} =| � |2 A4

6v2
⊥

I (I + 1)[R4 − (R3)2/R2]. (80)

Comparison with Eqs. (71) and (72) shows Q enhancement
even when vso = 0 (hence when �I = −P ), the effect that
manifested itself already in Eq. (77). This means that the
nuclear spins with I z

j away from the mean conditional
expectation values 〈I z

j 〉 respond to the sweeps stronger than
the spins with I z

j = 〈I z
j 〉. Also, this enhanced sensitivity is due

to the spatial distribution of ρj and ζj because with ρj = const
and ζj = const the brackets in Eqs. (79) and (80) vanish. By
the order of magnitude, both quantities experience changes
of about �An0/N per cycle; with � ≈ 10 and N ≈ 106, this
suggests changes of about 1% per cycle. In other words, around
ten spins interchange their directions during one passage.

Calculating 〈�(v+
n v−

n )〉 results in a simple equation,

〈�(v+
n v−

n )〉 = −I zAvz
nR3/R2, (81)

because the contributions of the two last terms of Eq. (65)
cancel. In the absence of spin-orbit coupling, this immediately
suggests 〈�(v2

⊥)〉 = PAvz
nR3/R2. Under these conditions,

large terms in Eq. (65) reflect only the change in the phase
of v±

n , which does not influence dynamical equations (16),
and the relative change in (v⊥

n )2 = v+
n v−

n is only about N−1/2.
We note that for a symmetrical double dot this mean value is
additionally suppressed by the factor R3/R2 that is small in
the overlap integral.

However, in the presence of spin-orbit coupling the dynam-
ics of spin amplitudes (c̃S,c̃T ) is controlled by v± rather than
v±

n . The mean value of �(v2
⊥), calculated by using Eqs. (65)

and (70), is

〈�(v+v−)〉 = 〈�(v+
n v−

n )〉 + Avz
n

2v2
⊥

R3

R2

[
�−v−

n v+
so + �+v+

n v−
so

]
+ i
(
v−

n v+
so − v+

n v−
so

)
×
[
η̄nB

h̄
(Tf − Ti) − A

2v⊥

R′
3

R2
�z

]
, (82)

where the first term is defined by Eq. (81). Physically, the
second and third terms in Eq. (82) take into account the angle
between v+

n and v+
so in the complex plane, and are proportional

to the product v⊥v⊥
n . With v⊥ ∼ v⊥

n , relative corrections
coming from the second term are of the order �/

√
N per cycle.

The third term is usually much larger because it increases
linearly with the pulse duration �T = Tf − Ti . It includes
two contributions, the first of which is due to the Zeeman
precession of nuclei and the second due to the Knight field
and is proportional to the integral of | c̃T + |2. While the

magnitude of the second contribution depends on the shape
of the pulse, the ratio of these terms is roughly η̄(nB)/(An0/N )
and they become comparable at B ∼ 1 mT. This indicates
that the first contribution to the third term usually dominates.
With v⊥ ∼ v⊥

so and η̄(nB) ≈ 10 mT, the Zeeman term results
in 〈�(v+v−)〉 ∼ 0.1〈v+v−〉 for a 0.1-μs linear sweep. This is
much larger than the correction to the same quantity estimated
in Eq. (81) and to 〈(�vz

n)2〉 having the same scale. The effect
in InAs should be much larger than in GaAs because of the
stronger spin-orbit coupling.

The above estimates indicate that, because of the terms in
Eq. (65) linear in the pulse duration, spin-orbit corrections
to transverse matrix elements are essentially larger than the
corrections to the longitudinal ones.

In Eq. (82), Zeeman precession of nuclei manifests itself in
〈(v+v−)〉 only through spin-orbit coupling. The effect is much
stronger when estimated through the variance of v+v−, and we
estimate it for vso = 0 when v± = v±

n . Disregarding two first
terms in Eq. (65), the calculations similar to those performed
above when deriving Eqs. (79) and (80) result in

Var{�(v+
n v−

n )} ≈ I (I + 1)

6

(
η2

(nB) − η̄2
(nB)

)
× (v+

n v−
n )A2R2[(Tf − Ti)/h̄]2, (83)

where η2
(nB) is the mean-square value of ηj (nB). It follows from

Eq. (83) that the dominating mechanism of changing v⊥
n is the

nuclear-spin precession with a characteristic time of about a
microsecond at B ∼ 10 mT. It is about two to three orders of
magnitude shorter than the corresponding time for vz

n estimated
above.

It is also instructive to compare this estimate with a much
longer time for v⊥

n following from Eq. (81). The latter estimate
was found with the nuclear configuration of Eq. (70), which
reflects the mean values of nuclear spins under the constraints
of Eq. (67). In a narrow region of the phase space around
these mean values the dynamics of v⊥

n is strongly suppressed.
The estimate of Eq. (83) is much more representative because
it represents the entire phase space compatible with the
constraints of Eq. (67). A similar type of behavior of vz

n was
discussed above as applied to Eq. (80).

VIII. CONCLUSIONS

We have studied the dynamics of the electron and nuclear
spins near ST+ avoided crossings in double quantum dots.
While adopting the traditional approach based on the hierarchy
of time scales, with a slow nuclear and fast electron dynamics,
we employed a quantum description of the electron spin
and coherent dynamics of nuclear spins, and investigated the
time-resolved patterns of single and double Landau-Zener
passages through the anticrossing point. They are described
by two complex conjugate functions �± depending on the
initial and finite times (Ti,Tf ) and the trajectory of the sweep,
with �− proportional to the integral of the product c̃∗

S(t)c̃T (t)
of the complex amplitudes of the S and T+ states. Their real
parts P = Re{�±} are proportional to the S-T+-transition
probability and for one-side sweeps oscillate at small time
scales when the system is close to the anticrossing and saturate
at long-time scales. For linear sweeps, we find the singlet and
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triplet amplitudes in terms of Weber D functions (parabolic
cylinder functions); the long-time asymptotic limit of P

equals the Landau-Zener probability PLZ = 1 − e−2πγ . For
round trips, the system also experiences long-term Stückelberg
oscillations. The first sharp oscillations might be utilized
for ultrafast electron-spin operation, while the decay of the
oscillations can provide information about dephasing rates.
It is important that the imaginary part Q = Im{�+} that
acquires contributions from the electronic states at a wide time
scale and accumulates with time (it diverges logarithmically
for linear sweeps) has a profound effect on the dynamics
of the nuclear spins. When the Landau-Zener parameter
γ � 1, Q is typically one order of magnitude larger than P .
Therefore in the presence of the spin-orbit coupling violating
the angular momentum conservation, Q may become the
major factor controlling the angular momentum transfer to
nuclei. In particular, this mechanism is efficient for excursions
including a stay near the anticrossing point. Generically, � =
(P 2 + Q2)1/2 controls the shakeup processes that exchange
angular momentum between the left and right dots. With
Q 
 P , it is Q that plays a dominating role in these angular-
momentum exchange processes. Because the mechanism that
plagues many experimental efforts of building considerable
polarization gradients remains unknown, it is a challenging
question whether and how the shakeup processes contribute
to it; unfortunately, only a theory including multiple passages
can resolve it. We also estimated changes in the Overhauser
fields during a single cycle and concluded that the transverse
components are more volatile than the longitudinal ones.
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APPENDIX A: SPIN OPERATOR

We use the following convention for the spin-1 operator S:

Sx = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ , (A1)

Sy = 1√
2

⎛
⎜⎝

0 −i 0

i 0 −i

0 i 0

⎞
⎟⎠ , (A2)

Sz =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ . (A3)

These operators satisfy the commutation relations[Ŝi ,Ŝj ] =
iεijkŜk , where εijk is the Levi-Civita tensor, as well as Ŝ2

x +
Ŝ2

y + Ŝ2
z = 2.

APPENDIX B: SIMPLE MODEL

The singlet part of the spin-wave function is

χS(1,2) = 1√
2

(| ↑1〉| ↓2〉 − | ↓1〉| ↑2〉) (B1)

and the three triplet components of the spin-wave function are

χT+ (1,2) = | ↑1〉| ↑2〉, (B2a)

χT0 (1,2) = 1√
2

(| ↑1〉| ↓2〉 + | ↓1〉| ↑2〉), (B2b)

χT− (1,2) = | ↓1〉| ↓2〉. (B2c)

We will in this section discuss the spatial dependence of the
hyperfine coupling constants ρj of Eq. (5) and ζj of Eq. (7).
In a simple model, the electron wave functions near the S-T+
anticrossing are

ψS(1,2) = cos νψR(1)ψR(2)

+ sin ν√
2

[ψL(1)ψR(2) + ψL(2)ψR(1)], (B3)

100 50 50 100
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1.0
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(a)
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1.2

ζ x,y 0 100nm 2

(b)

FIG. 5. (Color online) Spatial variation of the electron-nuclear
couplings ρ(x,y = 0) (a) and ζ (x,y = 0) (b). In (a), the red (full)
curve is for ν = π/2 − 0.1 and the blue (dashed) curve is for ν = 0.1.
The size of the dots is l = 50 nm and the separation between the dots
is d = 100 nm. The overlap integral between the left and the right
oscillator wave function is 0.1. It is the most striking feature that
the overlap between the wave functions induces asymmetry of the
ρ(x,y) even in geometrically symmetric double dots. The asymmetry
reaches its maximum when the system is close to the (0,2) state.
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ψT (1,2) = 1√
2

[ψL(1)ψR(2) − ψL(2)ψR(1)], (B4)

where L denotes the left and R the right dot, and the angle
ν depends on the Zeeman energy ηZ . The normalization
coefficients in Eqs. (B3) and (B4) are exact under the
assumption that the functions ψL and ψR are orthonormalized.

Let us illustrate the spatial dependence of the electron-
nuclear coupling constants ρ of Eq. (5) and ζ of Eq. (7)
for a simple model of a quantum dot. We assume that
the electrons are in the lowest orbital harmonic oscillator
state. The Cartesian coordinates wave function is ψ(x,y) =
exp[−(x2 + y2)/l2]/(l

√
2/π ), where l is the size of each

quantum dot. We have two quantum dots that are separated
at a distance d, one at x = −d/2 and y = 0 and the other at
x = d/2 and y = 0. We form an orthonormal basis set based on
the functions ψ(x − d/2,y) and ψ(x + d/2,y). In this basis,
we compute ρ(x,y) and ζ (x,y).

We plot in Fig. 5 the electron-nuclear couplings ρ(x,y)
and ζ (x,y) for y = 0 as a function of x when ν = 0.1 and
ν = π/2 − 0.1. The spatial distribution of the singlet-triplet
coupling ρ(x,y) depends on the angle ν. When ν is close
to π/2, there is a nearly equal probability for electrons to
be located in the left and right dot for both the singlet and
triplet states. Then the singlet-triplet coupling ρ(x,y) is nearly
antisymmetric around x = 0, ρ(x,y) ≈ −ρ(−x,y) [the sign
of ρ(x,y) depends on the sign choice in Eq. (B4)]. When ν is
small, the electrons are in the singlet state (0,2) in the right dot,
so that ρ(x,y) passes through zero inside the right dot (for x >

0). Therefore even for two symmetrically shaped dots, the S-T+
electron-nuclear coupling can become asymmetric because of

the overlap of the left and right dot wave functions. The asym-
metry depends on ν controlled by the external magnetic field.

The triplet-triplet electron-nuclear coupling ζ (x,y) does
not depend on ν and is a symmetric function of x for the two
symmetric quantum dots.

APPENDIX C: TWO IDENTITIES FOR THE PARABOLIC
CYLINDER D FUNCTIONS

Using the solution of Eq. (44) for c̃T+ (τ ) and c̃S(τ ) and the
normalization condition |c̃S(τ )|2 + |c̃T+ (τ )|2 = 1, we arrive at
an identity

γ | D−1−iγ (−eiπ/4τ ) |2 + | Diγ (ei3π/3τ ) |2= eπγ/2 (C1)

relating absolute values of two D functions at arbitrary real
values of τ and γ .

Next, it follows from Eq. (29) that

∂τ

(| c̃S |2 − | c̃T+ |2) = −2i
√

γ
(
c̃∗
S c̃T+ − c̃S c̃

∗
T+

)
. (C2)

Integrating it over τ and using Eqs. (44) and (46), we find∫ ∞

−∞
dτ Im{e−i3π/4D−1−iγ (−eiπ/4τ )Diγ (ei3π/4τ )}

= − sinh πγ

γ
e−πγ/2. (C3)

The integral of the real part of the integrand diverges.
While we could not find these identities for Dn(z) functions

with complex (imaginary) indices n and the arguments directed
along diagonals in the complex z planes in any of mathematical
sources, we checked them numerically.
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