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Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films
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The crystallite size and cumulative lattice disorder of three prototypical, high-performing organic semicon-
ducting materials are investigated using a Fourier-transform peak shape analysis routine based on the method of
Warren and Averbach (WA). A thorough incorporation of error propagation throughout the multistep analysis and
a weighted fitting of Fourier-transformed data to the WA model allows for more accurate results than typically
obtained and for determination of confidence bounds. We compare results obtained when assuming two types
of column-length distributions, and discuss the benefits of each model in terms of simplicity and accuracy.
For strongly disordered materials, the determination of a crystallite size is greatly hindered because disorder
dominates the coherence length, not finite size. A simple analysis based on trends of peak widths and Lorentzian
components of pseudo-Voigt line shapes as a function of diffraction order is also discussed as an approach to
more easily and qualitatively assess the amount and type of disorder present in a sample. While applied directly
to organic systems, this methodology is general for the accurate deconvolution of crystalline size and lattice
disorder for any material investigated with diffraction techniques.
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I. INTRODUCTION

While it is often convenient to describe crystalline matter as
perfectly periodic, the true nature of most crystalline materials,
especially weakly bonded solids such as organic materials, is
unmistakably highly defective.1 The presence of defects and
disorder will disrupt the spatial and energetic periodicity of
the material, and can have a large effect on electronic and
optical functionality, as well as on thermal and mechanical
properties. For example, direct connections have been made
between intracrystalline lattice disorder and the mechanical
properties of Kevlar fibers.2 Optoelectronic materials, on
the other hand, rely on the overlap of initially localized
molecular wavefunctions to exhibit their optimal properties.
Molecular orbital overlap in organic molecules is thus highly
dependent on the relative spacing and orientation between
adjacent molecules.3 Thus, it is reasonable to expect that static
statistical fluctuation in crystalline order will affect electronic
transport and charge-trapping properties of conducting and
semiconducting materials.4 Such effects will be particularly
significant in materials prone to distortions, e.g., the van
der Waals bonded organic semiconductors described herein.
Consequently, the understanding and quantification of lattice
disorder and defects is of great importance for designing and
engineering improved materials.

Diffraction line-shape analysis has been known to provide
information about the general disorder and finite size of the
crystalline domains. At the simplest level, one commonly
used approach in the analysis of atomic and molecular solids
is to determine the approximate size of crystalline grains
from the breadth of x-ray-diffraction peaks using the Scherrer
equation,5,6 which relates the peak width and the coherence
length (Lc):

Lc = 2πK

�q

, (1)

where K is a shape factor (typically 0.8–1), and �q is the full
width at half the maximum of a diffraction peak. The scattering
vector is q = (4π /λ)sin(θ ) for a given scattering angle 2θ and
x-ray wavelength λ.

This approach is often used because it is easy to apply,
involves minimal data processing, and can often give descrip-
tive evidence for relative changes when processing conditions
are varied experimentally. Because of its simplicity however,
this equation lends itself to misuse. Besides the shape factor,
which can be a source of considerable debate, and assumptions
about grain size distribution, the Scherrer equation in Eq. (1)
assumes that the crystallite size is the main contributor to the
broadening of diffraction peaks: lattice disorder is ignored. As
disorder becomes non-negligible, it is necessary to consider
this contribution to the observed line shape.

Lattice disorder is manifest in a number of forms and has
largely been ignored in the analysis of thin films, especially
those of organic semiconductors. Lattice disorder can be
manifest in two forms: noncumulative and cumulative disorder.
Noncumulative disorder (historically termed disorder of the
first kind) is characterized by random statistical fluctuations
about an ideal lattice position, where the average lattice is
preserved. Thermal fluctuations generally fall into this cate-
gory, but frozen local defects and strain fluctuations giving rise
to noncumulative disorder can occur as well. Noncumulative
disorder is characterized by a lowering of the peak intensity,5

which does not affect the peak shape and breadth and thus
does not affect the analysis described herein. A detailed
account of this type of disorder is beyond the scope of this
work. Cumulative disorder (or disorder of the second kind)
describes the statistically homogeneous disturbances to an
ideal crystalline lattice which produce long-range distortion.
To represent this type of disorder, the periodic lattice vectors
are replaced with vectors of statistically determined magnitude
and directions, whose deviations from ideal are described by

045203-11098-0121/2011/84(4)/045203(20) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.045203


RIVNAY, NORIEGA, KLINE, SALLEO, AND TONEY PHYSICAL REVIEW B 84, 045203 (2011)

probability functions. Cumulative disorder dictates that the
local arrangements of atoms have slight disturbances from the
average but with no memory of the arrangements in another
part of the crystalline domain (Fig. 1). This means that if
we were to monitor the separation between two points in the
lattice, r i and rj , the deviation from ideal positions would be
a function of the separation

�
→
rij = →

rj − →
ri = �

→
rij |ideal + δ

→
r (

→
rj − →

ri ), (2)

while in the case of noncumulative disorder, the deviation
from ideality δr is independent of the magnitude of the vector
describing their separation (for large enough separation),
although it may depend on its direction. In this work we
focus on the main contribution of cumulative disorder, termed
paracrystalline disorder. The concept of paracrystallinity was
first pioneered by Hosemann2,7 and is described in detail in
the literature.1,8,9 A measure of the statistical fluctuation of
individual lattice spacings, the paracrystallinity parameter g,
is commonly reported as a percent of the mean lattice spacing.
Real materials typically exhibit paracrystalline disorder in the
range of 0–15%, where <1% represents highly crystalline
material, 1–10% represents paracrystalline material, and 10–
15% represents a glass or melt.2

Cumulative lattice disorder can arise from dislocations,
impurities, chain backbone twists (in polymers), or nonideal
packing (in small molecule, weakly bonded solids). While the
specific cause can rarely be distinguished by peak-shape anal-
ysis, the end result is disorder characterized by compounding,
cumulative distortions. Regardless of its origins, cumulative
disorder can be decoupled from the effects of finite crystallite
size by the distinct broadening of higher-order diffraction
peaks.

While both cumulative and noncumulative disorder can
coexist (as in the case of thermal fluctuations about an already
distorted paracrystalline lattice), Takahashi postulated that
inter-crystalline variation in average lattice spacing can also
be deconvoluted from the diffraction line shape, as it too
has a dependence on diffraction order.10 This phenomenon
is termed lattice-parameter fluctuation, or nonuniform strain
(erms). Lattice-parameter fluctuation describes the variance of
the interplanar spacing within a sample—from one crystallite
to the next, from one area of the diffracting volume to
another—thus characterizing slight inhomogeneities within a
sample. Examples include a slight contraction or expansion
of the lattice spacings due to interfaces, a swelling of the
outer regions of a grain due to impurities or solvents at
grain boundaries or strains created by solvent evaporation.
Nevertheless, it is clear that in all real crystals some amount of
disorder exists. Quantifying such disorder is therefore of great
importance to further our understanding of structure-property
relationships.

Approaches to line-shape analysis rely on the fact that
finite crystallite size affects peak breadth but is independent
of diffraction order, while other terms cause a progres-
sive broadening of the higher-order diffraction peaks [e.g.,
(200),(300),. . .,(m00)]. Additionally, the functional form with
which peaks broaden can be attributed to different types of
disorder or defects.11 Thus, for example, by plotting the peak
breadth vs diffraction order, one can extract the grain size
from the intercept (m = 0), while the functional form of
the broadening [i.e., �q(m)] can reveal the mechanism and
magnitude of the lattice nonidealities.11–13 This approach,
classified as an integral breadth method (related to the analysis
of Williamson and Hall),14,15 is useful in strongly diffracting
materials, but it is difficult to reliably determine the appropriate

(a) (b) (c)

FIG. 1. (Color online) Different mechanisms responsible for diffraction peak broadening. A collection of crystallites of different shapes and
sizes is sketched in (a), showing a slight variation of the interplanar distance dhkl from one crystallite to another (lattice-parameter fluctuation).
The column length M in a crystallite can depend on its shape as shown in (b). Noncumulative vs cumulative disorder is sketched for a
small number of diffracting planes in (c). Noncumulative disorder (top) involves random fluctuations about the ideal lattice positions (gray);
for cumulative disorder (bottom), statistical fluctuations about the lattice spacing occur, which accumulate to destroy the ideal lattice. The
histograms shown are the lattice positions of 10 000 one-dimensional (1D) simulated lattices, showing the loss of predictive ability due to
distortion propagation that is the signature of paracrystalline disorder. Sketches of disordered two-dimensional (2D) lattices are shown in the
far right, with the ideal lattice indicated by dotted gray lines.
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functional dependence �q(m) when only a limited number
of higher-order reflections are observable. This is especially
true for highly defective organic materials, where only a few
(typically two or three) higher-order peaks can be observed.

More accurate techniques involve utilizing the entire peak
shape, in the form of a Fourier-transform (FT) analysis of
the diffraction peaks. The power of such techniques, first
introduced by Warren and Averbach,16,17 is that contributions
from cumulative disorder and a finite crystallite size can
be decoupled due to their specific functional dependences
on diffraction peak order and the Fourier frequency. The
Fourier coefficients of the peaks can be represented as the
product of contributions from a finite crystallite size, which is
independent of peak order, and disorder terms that are peak-
order dependent.8,18 This Warren-Averbach (WA) analysis has
utility on multiple length scales and for different materials
systems, not only the organic systems described herein. A
useful comparison of Scherrer, integral breadth, and Fourier-
based (WA) techniques has been provided for ball-milled
molybdenum by Lucks et al.19 While the WA analysis has been
successfully applied to defective metals,20–23 ceramics,24–26

composites,27 and to a lesser extent, polymers,8,18,28,29 it can
be easily applied to systems with much larger average layer
spacings provided diffraction data can be collected and the
diffracted line shapes are well resolved and sufficiently above
background. Such systems include biological moieties (i.e.,
lipids or proteins), block copolymer domains, and colloidal
crystals. For example, in colloidal crystals, the quantification
of disorder and domain size can be of great importance in the
study of optical trap states for photonic applications30 which
could be determined by analogy with ultraviolet diffraction
spectra analysis.31,32

In this work we focus on organic semiconducting thin
films, where the highest performing materials are often highly
textured, semi- or polycrystalline films. Organic semicon-
ductors have been thoroughly studied—and in some cases
commercialized—as active layer materials in complementary
logic circuits, photovoltaics, lighting, and sensors. They are
readily solution processed and are thus amenable to low-cost,
high-throughput fabrication.33–35 The ability to design new
molecules and predict their performance in devices suffers
from a lack of well-understood structure-property relations.
In part, this is due to the drastic variability in microstructure
and morphology caused by variations in chemistry, processing
conditions and postprocessing treatments which in turn affect
device performance.36 One aspect that makes organic thin films
particularly susceptible to disorder is the presence of weak van
der Waals interactions between molecules. Electronic coupling
is strongly dependent on details of intermolecular separation.
The nature of frontier orbital overlap in π -conjugated ma-
terials is found to be highly sensitive to small variations in
intermolecular spacing, orientation, and relative position.3,37

The need to understand microstructure and morphology on
multiple length scales thus motivates accurate determination of
crystallite size and cumulative disorder. Such findings will aid
in bridging the effect of chemistry and processing conditions
with overall performance in optoelectronic devices such as
organic transistors and photovoltaics.

Some disorder in organic semiconductor crystallites results
from thermal (noncumulative) fluctuations (a description

that is at the core of dynamic disorder models of charge
transport).38–40 Intrinsic static structural imperfections such as
chain ends, twists in polymer backbones, as well as extrinsic
defects such as stacking faults, impurities, or solvent swelling
can also contribute to the cumulative lattice disorder most
likely affecting the lattice parameter fluctuation, erms, and
paracrystalline disorder, g. While peak-shape analysis cannot
be used to determine the direct causes and mechanisms that
contribute to the static disorder within the film, it does serve
as a tool to thoroughly quantify disorder and therefore can
contribute to the modeling of structure and charge transport in
realistic films.4,38

While a number of x-ray-based techniques have been pre-
viously used to determine crystallite size and have addressed
disorder, these techniques are prone to misuse or lack clear
confidence bounds. Furthermore, the application of these
techniques to organic semiconductors has been limited,18,41,42

which is surprising given the importance of intracrystalline
lattice disorder on charge transport. In this work we utilize a
similar formalism as that of the WA analysis,5,8,11,18 but we
employ a direct fit to the experimentally determined Fourier
coefficients of the peak shapes. We incorporate careful back-
ground subtraction and error propagation to provide not only
more accurate final results for crystallite size, lattice parameter
fluctuation, and paracrystallinity, but importantly, confidence
in those results. We choose three organic semiconductors with
distinct microstructures to highlight a range of crystallite sizes,
disorder, scattering geometries, and crystallographic directions
which are all accessible to WA analysis.

We first use the polymer poly{[N,N 9-bis(2-octyldodecyl)-
naphthalene- 1, 4, 5, 8-bis(dicarboximide)-2, 6-diyl]-alt-5,59-
(2,29-bithiophene)}, P(NDI2OD-T2), and show step by
step how the full routine is performed. P(NDI2OD-T2)
is an electron-transporting polymer that has been shown
to have high, 0.1–0.8 cm2/V s, mobilities in the top
gate geometry. It is highly soluble and shows exceptional
stability in ambient.43,44 The small molecule triisopropylsilyl
pentacene (TIPS-pentacene) is next used to show a small
molecule system known to crystallize extensively as
a comparison with the previously described polymer.
TIPS-pentacene, also solution processable, consistently
attains mobilities in the range of 0.1–1 cm2/V s, but has
been shown to exhibit bandlike transport and mobilities up to
5 cm2/V s.45–47 Finally, we show the case of an aligned film
of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene)
(PBTTT) to explore the disorder associated with
crystallographic directions directly linked to charge transport
in conjugated polymers. PBTTT is a high mobility (up to 1
cm2/V s), solution-processable polymer that has been well
studied and shows significant order for a semiconducting
polymer thin film.48–50

In addition to reliable results and successful application of
the WA model to organic films, we show that the determina-
tion of crystallite size using diffraction techniques becomes
irrelevant in systems where cumulative disorder dominates
and arrive at a closed form for approximating a coherence
length using the disorder terms described herein. Finally, we
discuss the relation between the functionality of peak shape (in
the form of pseudo-Voigt functions) and the WA parameters,
highlighting the potential for a more accessible approach to
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generally determine disorder contributions without involved
FT methods.

II. THEORETICAL BACKGROUND

Before addressing the particular implementation of the
Warren-Averbach formalism used in this analysis, it is helpful
to describe the general aspects of the theory. This will help
define the relevant variables and the ways they are included in
the analysis.

Consider an arrangement of planes of atoms or molecules
along a given crystallographic direction (hkl) and label the
x-ray-diffraction peaks as m(hkl), where m = 1,2,3,. . . is the
diffraction order and dhkl is the interplanar separation. We turn
our attention to a unit cell on the jth plane from the origin of
the crystal along the (hkl) direction. If the lattice was perfect,
the distance from the origin, along the (hkl) direction, would
be |rj |hkl = jdhkl . Allowing for disorder and imperfections
in the lattice, we introduce terms involving fluctuations in the
interplanar spacing (δdhkl) and in the position of the planes
with respect to each other (δj). This allows us to write

(
→
rj )hkl = (dhkl + δdhkl)(j + δj )

= dhklj + dhklδj + jδdhkl + δjδdhkl . (3)

Keeping only first-order terms and renaming the deviations
to correspond to the usual notation of positional disorder
Z(j) = δj and lattice parameter fluctuations e = δdhkl/dhkl ,
the interplanar separation is

(
→
rj )hkl = dhkl[j + Z(j ) + je]. (4)

The scattering amplitude for a scattering vector q is the sum
of the waves coming from all the scatterers, and the intensity
is the product with its complex conjugate

I (q) ∝
[∑

j

exp(i
→
q · →

rj )

]
·
[∑

j ′
exp(−i

→
q · →

rj ′)

]

=
∑
j,j ′

exp[i
→
q ·(→

rj − →
rj ′)]. (5)

Here, for simplicity, we ignore the structure factor associ-
ated with the (hkl) reflection since it does not influence the peak
shape. The measured intensity will be the ensemble average

I (q) ∝
〈∑

n

N (n) exp[i �q · (�rn)hkl]

〉

=
∑

n

〈N (n) exp[iqdhkl(Zn + ne)]〉 exp[idhklnq]

=
∑

n

Am(n,q) exp[idhklnq], (6)

where (rn)hkl = (rj−rj ′)hkl , Zn = Z(j)−Z(j ′), and we have
grouped all sets of unit cells in the sample that are n � 0
repeat planes apart along the same column into a multiplicity
factor N(n). Finally, we can regroup terms as Am(n,q) =
〈N(n)exp[iqdhkl(Zn + ne)]〉. This last expression resembles
a Fourier transform except that the Fourier coefficients are
q dependent. For a peak centered at qo, q = qo + dq, and
dq multiplies the fluctuations dependent on Zn and e, which
are small; so to first order, the approximation Am(n,q) ≈

Am(n,qo) is valid. Since n is a separation distance, n �
0, we can expand the complex exponential into a sine and
cosine component and keep only the even part of the sum,
the cosine series. Noting that for the mth-order diffraction
peak, Bragg’s condition is dhklqo = 2πm and that N(n),
Zn, and e are independent variables, one obtains Am(n) ≈
〈N (n)〉〈exp[i2πmZn]〉〈exp[i2πmne]〉, which is the usual sep-
aration of the Fourier coefficients into a size-dependent term
and disorder-dependent terms. Now we turn our attention to
each of these terms.

For the calculation of 〈N(n)〉 we need to determine the
number of pairs of planes {j1, j2} with |j1−j2| = n within
a column consisting of x total planes. Since order is not
important, choosing the pair {j1, j2} is equivalent to the
pair {j2, j1} and we can show that there are N(n,x) = x−n
pairs in the column. Considering a normalized probability
distribution ρN (x) of column lengths within the sample, the
sample-averaged size coefficient, normalized by the average
column length M, is

AS
m(n) = 〈N (n)〉

M
=

∫ ∞
n

ρN (x)(x − n)dx∫ ∞
n

ρN (x)x dx
, (7)

where the lower integration limit in the numerator means that
only columns of size x � n can have a pair of planes n repeat
units apart. The normalization by the average column length
is to ensure that Am(0) = 1.

As for the disorder terms, it is generally assumed that
Zn and e follow Gaussian statistics, and so the statistics of
normally distributed random variables can be used. Since
the mean value for the disorder variations is zero, 〈Zn〉 = 0
and 〈e〉 = 0, we obtain 〈exp(i2πmZn)〉 = exp(−2π2m2〈Z2

n〉)
and 〈exp(i2πmne)〉 = exp(−2π2m2n2e2

rms), where we define
the root mean square of the lattice variations in the sample,
erms =

√
〈e2〉.

Finally, the positional disorder term Zn is considered. For
noncumulative disorder, the positional variation is about the
perfect lattice and the relevant disorder is that for the pair
{j2, j1} of diffracting planes. These are independent; so
〈(Zn)2〉 = 2〈(Z0)2〉 and

〈exp(i2πmZn)〉 = exp
(−4π2m2

〈
Z2

0

〉)
. (8)

There is no dependence on n—the only effect is to reduce
the peak intensity, as mentioned previously. For cumulative
disorder, the positional variations are independent but they add

so that 〈(Zn)2〉 = ng2, with the paracrystallinity g =
√

〈Z2
0〉,

and

〈exp(i2πmZn)〉 = exp(−2π2m2ng2). (9)

Thus, we arrive at the well-known Warren-Averbach
expression for the Fourier coefficients factored into the
size- and disorder-dependent terms, AS

m(n) and AD
m(n),

respectively.

Am(n) = AS
m(n)AD

m(n)

= 〈N (n)〉
M

exp
[−2π2m2

(
ng2 + n2e2

rms

)]
. (10)
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For the size-dependent term, we consider two cases. In
the case where all the crystallites are assumed to be of the
same size, their distribution is described by a delta-function
distribution at the column size M = Mδ . To allow the more
physically reasonable case where the column lengths of
crystallites are not all the same, we describe the population of
column sizes using a gamma distribution with a mean column
length M = Mγ and standard deviation wγ .

III. EXPERIMENTAL

A. Materials

Poly{[N,N 9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis
( dicarboximide )-2, 6-diyl ]-alt-5, 59-( 2, 29-bithiophene ) }
[P(NDI2OD-T2), Polyera ActivInk N2200] was obtained
from Polyera Corporation, Skokie, IL. TIPS-pentacene
was obtained from Merck Chemicals. Solutions of 1 wt%
(∼10 mg/mL) TIPS-pentacene and 1 wt% P(NDI2OD-T2)
were prepared in 1,2-dichlorobenzene and were filtered in
a 20 μm polytetrafluoroethylene filter. PBTTT was used as
received and dissolved at a concentration 15 mg/mL in a
solvent mixture of 6:1 chloroform/1,2-dichlorobenzene at
70 ◦C in a valve-sealed, pressure-resistant vial.51

B. Film fabrication

Substrates for all x-ray experiments were Si(100) wafers
with native SiO2 and were cleaned by sonication in acetone and
isopropyl alcohol before a 20 min UV-ozone treatment. Films
of P(NDI2OD-T2) were prepared on octadecyltrichlorosi-
lane (OTS) -treated substrates. OTS was applied to cleaned
substrates in hexadecane solution (0.1% by volume), for
10 min before rinsing with heptane, acetone, and isopropanol.
P(NDI2OD-T2) was spun from an 80 ◦C, 1 wt% solution at
a spin speed of 1200 rpm, and then annealed at ∼300 ◦C
for 40 min in a N2 glovebox, resulting in film thicknesses of
∼60–70 nm as measured by atomic force microscopy. TIPS-
pentacene was spun from an 80 ◦C, 1 wt% solution at 1000 rpm,
resulting in film thicknesses of 100–110 nm. PBTTT was
deposited via a previously described flow-coating technique.51

The substrate was adhered to a custom-built, motorized
translation stage. Approximately 15 μL of the PBTTT solution
was dispensed into the gap under the stationary knife blade
fixed at 150 μm above the substrate surface. The stage was
then translated at 2 mm/s in the direction of blade tilt. Once
the films were dry, they were removed from the stage and
heated to 250 ◦C for 5 min before cooling to room temperature.
Film thicknesses were ∼30 nm. The aligned PBTTT films
are misoriented ∼15◦ from the primary crystallographic axes
of the Si wafer to avoid contributions from the Si substrate
scattering peaks.

C. X-ray scattering measurements

X-ray-diffraction measurements on all samples were con-
ducted at the Stanford Synchrotron Radiation Lightsource
at beam lines 2-1 (high-resolution specular diffraction), and
7-2 (high-resolution grazing incidence diffraction). The data
are expressed as a function of scattering vector q, which is
decomposed into the components parallel to (qxy) or normal
to (qz), the substrate depending on the desired scattering

geometry. The incident photon energy was 8 keV for both
beam lines. All diffraction experiments were carried out with
the samples enclosed in a helium-filled chamber in order to
reduce the effects of air scattering and beam damage due to the
intense x-ray beam. While the primary effect of beam damage
is to reduce peak intensity with no change in peak position,
the uniform sample was periodically translated during a single
scan because peak shape is of central importance to the analysis
described herein. For thin polymer samples, beam damage can
become noticeable during a long, single scan and can introduce
artificial broadening in the higher-order peaks. In cases with
very low scattered intensity, the sample was translated after
each recorded diffraction peak. A good way to check for
beam damage is to compare fast scans (with necessarily poorer
counting statistics) to the final data, normalized to match in-
tensities. The faster scans should each be taken at fresh spots in
the sample, with varying integration times and point densities.

For the grazing incidence x-ray scattering (GIXS), the
films were illuminated at incidence angles of about 0.2◦
(7-2 measurements). These values were chosen so that the
x-ray beam penetrates the entire thickness of the polymer
sample (∼50–100 nm) but only a small portion of the silicon
substrate.52,53 This choice reduces the background scattering
from the substrate.

Beam footprint and Lorentz corrections must be applied
to the measured diffracted intensity.48 The beam footprint
correction takes into account that changing the scattering angle
2θ also changes the volume of the sample that is illuminated
by a factor of sinθ . The Lorentz correction accounts for
the different amount of time that a given reciprocal lattice
point spends at Bragg condition, which varies as ∼sinθ . The
polarization correction is not taken into account due to the
highly polarized nature of the used synchrotron radiation.
Both these corrections put together require us to multiply the
original data by a factor of q2.

The q resolution of the data obtained at the beam lines
used is determined by the collimation on the detector. For
the high-resolution specular scattering (beam line 2-1), the
collimation was set by fixed slits with a resolution of 0.01◦
or about 0.01 Å−1 for the scattering vector, qz. For the high-
resolution grazing incidence scattering (beam line 7-2), the
diffracted beam collimation was set by 1 mrad Soller slits
(effectively 0.1◦ or a qxy resolution of 0.007 Å−1).

With Fourier-transform techniques, especially those requir-
ing peak-fitting routines, it is important for the collected data
to be of high quality throughout, not just at or near the peak
centers. Significant information must be collected from the
low-intensity peak wings, and thus, long integration times
are often necessary especially for weakly diffracting samples.
In general, having more points per peak is advantageous for
the fitting procedure used to subtract background. Collecting
a broad region around each peak is important for having
a high point density in the Fourier-transformed data. Thus,
more points and collected breadth around the diffraction peaks
are important for error reduction and background subtraction.
Nevertheless, a compromise must be made between collection
time and analysis requirements. We have found that collecting
data centered about a peak in a window of 6–10 times the full
width at half maximum with ∼100 points in this range for each
peak is sufficient.

045203-5



RIVNAY, NORIEGA, KLINE, SALLEO, AND TONEY PHYSICAL REVIEW B 84, 045203 (2011)

TABLE I. Peak parameters for P(NDI2OD-T2) data set.

Position, qz (Ref. 56) Area, A Width, �q

Index (Å−1) (arb. units) (Å−1) Pseudo-Voigt mixing parameter, η

100 0.258 0.0368 0.02033 ± 7 × 10−5 0.739 ± 0.007
200 0.510 0.0014 0.0325 ± 2 × 10−4 0.72 ± 0.01
300 0.759 2.6 × 10−4 0.0469 ± 8 × 10−4 0.94 ± 0.03
400 1.017 1.5 × 10−4 0.071 ± 0.002 0.72 ± 0.07
500 1.259 1.1 × 10−4 0.104 ± 0.006 1.0 ± 0.1

IV. DATA PROCESSING AND ANALYSIS

A. P(NDI2OD-T2)

We will use the data set of a thiophene-naphthalene polymer
with branched alkyl side chains, P(NDI2OD-T2), as an exam-
ple to describe each step in the analysis process. The diffraction
data [Fig. 2(a)] are from the out-of-plane lamellar stacking of
the copolymer. While this polymer normally adopts a face-on
molecular packing,54 the edge-on packing can be achieved by
annealing a spun cast film to the melting point and slowly
cooling the sample to ambient temperature.55 This stacking
comprises the layered conjugated cores of the polymer (see
the inset to Fig. 2), separated by the branched alkyl chains of
the naphthalene-diimide, and has a large mean lattice spacing
of d100 = 24.4 Å. The obtained size and order parameters
describe, respectively, the size of the layered lamellae in the
direction perpendicular to the substrate and the fluctuations
and/or disorder associated with the molecular packing in this
direction. We use this data set as a model since five well-
resolved peak orders are observed. In the following sections,
the same formalism is applied to other materials systems.

As a starting point, one measures the desired x-ray
diffraction (XRD) pattern and determines the uncertainty in
each of the data points (see Appendix A). To propagate errors
through the data analysis, the standard procedure is to keep
track of the variance after each operation. The next step of
refinement is to take into account that even when the error in the
initial data may be uncorrelated, the error after manipulating
the data could be correlated, as would be the case with fitting,
Fourier transforms, and interpolations. This means that we
must not only keep track of the variance in our variables,
but also their covariance; we will use the covariance matrix
formalism described in Appendix A. For now, it suffices to
know that at each step we must calculate the new covariance
matrix and for this we need to know the derivative of each
output with respect to each input for all the operations in the
process. The input and output in a given step can either be a set
of data points or fitting parameters depending on the operation
(e.g., least-squares fitting, Fourier transform, etc.).

After estimating the error in our raw data and performing the
initial q2 correction, we determine the background to subtract
from our data and isolate the diffraction peaks. An accurate
determination of the functions describing the background and
peaks is needed so that there is confidence in the isolated peaks
in both high- and low-intensity ranges to avoid errors in the
low-frequency components of the Fourier spectrum. This is
done with a two-step fitting routine in which a coarse fit to the
entire data set is done first, serving to determine the functions
that span the entire data range—mainly the background

functions and (if present) broad amorphous scattering peaks.
Following this initial fitting step, a refinement is performed
by considering a reduced range of data around each of the
diffraction peaks of interest. The fitting parameters allowed to
vary in this refinement step are only those that most influence
the fit within the reduced data range, for example, the param-
eters of the peak of interest, and the width of adjacent peaks
(those parameters defining the wings of nearby peaks). This
refinement step is repeated for each of the diffraction peaks.

In the case of P(NDI2OD-T2), the functions used to
describe the data are two background functions (an exponential
and a power-law function), collectively labeled fbkg, and five
pseudo-Voigt peaks, one to describe each peak order f m

pV. The
peak positions, widths, amplitudes, and pseudo-Voigt mixing
parameters for each diffraction order are reported in Table I.

The intensity from each diffraction order is then isolated
from that of the remaining peaks and background. It should
be noted that the isolated peak, F (m), is not the same as the
function describing the peak in question, f m

pV. The function f m
pV

is used as a means to more accurately determine the functions
describing the background and remaining peaks. The isolated
peak is obtained as the difference between the original data,
Ydata, and both the global background, as well as background
intensity from nearby peaks:

F (m)(q) = Ydata(q) − fbkg(q) −
∑
i �=m

f
(i)
pV(q). (11)

Note that the sum is over all peaks except that being isolated
(peak m). This approach is used to minimize the effect of
the background or surrounding peak wing subtraction errors,
which can give rise to artifacts in the analysis. Furthermore,
if an appropriate background determination is prevented due
to noise in the data or a low peak intensity, the resulting error
in the isolated peak will reflect this (it will be large). Such an
effect can be observed in the higher-order peaks, especially
the wings of m = 3, as well as peaks m = 4 and 5 [Fig. 2(b)].

The isolated and centered individual peaks are shown in
Fig. 2(b)—normalized only for display purposes—showing
order-dependent broadening indicative of the non-size-related
terms contributing to the peak shape. After isolating the indi-
vidual peaks, we calculate the coefficients of the Fourier series
with a fast-Fourier-transform (FFT) algorithm [Fig. 2(c)].
Here, the validity of the assumption that the peaks are
symmetric can be verified by plotting the inverse Fourier
transform of the even and odd parts of the FFT, representing
the cosine and sine series, respectively. As shown in Fig. 2(b),
the cosine series describe the isolated peak shapes well, while
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FIG. 2. (Color online) Data processing and weighted
Warren-Averbach full-fit analysis of P(NDI2OD-T2) along the
lamellar stacking, specular diffraction direction. (a) Corrected data
with measurement error, on a semilogarithmic scale, with coarse fit
functions for individual peaks (solid orange), background (dotted
gray), and the combined coarse fit (dashed red); inset: chemical
structure of P(NDI2ODT2). The isolated peaks for m = 1 to m =
5 (b) and their respective normalized Fourier transforms (c) with
the associated propagated error. The peak contribution from the
cosine (solid cyan) and sine (dashed green) terms are shown with
the raw isolated peaks in (b). The large errors for higher diffraction
order peaks [especially (400), (500)] are shown here to reflect the
uncertainty associated with multiple processing steps with these
poorly resolved peaks. The weighting used in FT fits is based on these
error values, thus, the FT data points with excessive error (those with
the least certainty) play little role in the final FT fit. (d) The normalized
Fourier transforms with the weighted WA full fits assuming

the sine components only become noticeable when the noise
in the data increases.

When these normalized Fourier spectra of the isolated
peaks are fitted to the WA function, Am(n) [Eq. (10)], the
contribution of each data point to the fits is weighed by its
uncertainty. The resulting fits are shown in Fig. 2(d), where
two different column-length distributions are assumed. In one
case, it is assumed that all the columns in the sample have
the same length (a delta-function distribution), and in the
other, a gamma-distribution function is used. The comparison
between these two approaches is described below, but the
gamma distribution yields better fits to the data. This is
due to a more realistic size distribution, as well as an extra
fitting parameter. Finally, the ability of the Warren-Averbach
formalism to describe the original shape of the isolated peaks
is shown by calculating the inverse Fourier transform on the
fitted WA function and comparing it to the isolated peaks
[Fig. 2(e)]. Reassuringly, the gamma-distribution-based fit
results provide the best agreement.

The fitting results are summarized in Table IV along with
those for the other two materials analyzed here. The average
P(NDI2OD-T2) column length is M = 22 nm (using the results
that assume a γ distribution), with a paracrystallinity parame-
ter of g = 3.6% and an interplanar spacing fluctuation of erms =
1.7%. These parameters are consistent with those expected
for a polymer system along a crystallographic direction where
layers are separated by disordered alkyl side chains, leading to
unregistered stacking of two-dimensional (2D) sheets.18 These
results are compared to those obtained with a number of peak
breadth and shape analysis techniques in Table IV, and a more
detailed discussion is provided in following sections. The
results of the routine described herein agree reasonably well
with other analysis techniques described earlier (Scherrer,
integral breadth, and graphical WA methods), with the added
benefit of using as much information as possible to determine
the fitting parameters, using the error in the data to weigh the
fits and provide a conservative estimate of uncertainties.

It should be noted, however, that the uncertainty in the
results reflects the propagated error through the different
steps in the analysis but it does not account for the (still
existent) errors in background determination. To determine
the effect of these errors, the analysis process was repeated
on the same data set but using several different background
subtractions. This had little effect on the column lengths,
but the disorder terms (g, erms) varied within 0.5–1 %. As
a separate validation, data sets from two different films
prepared nominally the same way yielded results that were
also within this range. This measure of analysis-to-analysis
and sample-to-sample variation serves as an estimate of the
systematic errors associated with this line-shape analysis.

B. TIPS-pentacene

Another prototypical material is the soluble acene small
molecule TIPS-pentacene, due to its high mobility with the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a column-length distribution following a delta function (dashed blue)
and a gamma function (solid red); inset: log scale representation of
FT fits. (e) Resynthesis of the peaks in reciprocal space using the fit
results shown in (d) match well with the raw data.
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(a)

(b)

FIG. 3. (Color online) WA full-fit analysis of TIPS-pentacene
specular diffraction. (a) Corrected specular data; inset: TIPS-Pn
chemical structure. (b) Fourier transforms of the isolated peaks, with
error, and fits utilizing delta (dashed blue) and gamma (solid red)
distribution functions (inset: from narrowest to broadest, the 001,
002, 003 peaks).

recent observation of band transport which has been attributed
to very high-quality crystalline regions.47 The diffraction
data presented here is the out-of-plane packing of the highly
textured thin film. Four orders of the (00l) peak are observed,
with the intensity of the fourth order appearing very low due to
the structure factor. The spacing associated with this direction
is d001 = 16.4 Å, in good agreement with previous structural
determination.46,57 The same corrections and analysis steps
described in the previous section were applied here (Fig. 3).

The diffraction peaks are found to be much narrower than in
P(NDI2OD-T2) (see Table II) and exhibit less order-dependent
broadening as is clear from the isolated peaks shown in
Fig. 3(b), inset. Slight peak asymmetry, most apparent in the
(003) peak plotted on a semilogarithmic scale, has negligible
effect on the analysis.

The low-frequency components of a peak, represented
in the first few Am(n) Fourier coefficients, are the most
sensitive to inaccuracies in background subtraction and overlap
from tails of adjacent peaks. This is usually reflected in an
unphysical concavity of Am(n) around n = 0, termed the
“hook effect.”5 It is unphysical because the second derivative
of Am(n) cannot be negative since it is proportional to the
column-length distribution [Eq. (7)] which must be positive.
Such errors result in an overestimation of the average column
length in order to fit the terms at low n, and consequently an
overestimation of the disorder terms in order to fit the terms at
large n. A standard method to correct for this is to fit a line to
the first few Am(n) coefficients, and normalize the calculated
Am(n) to the intercept of that line instead of to Am(0). The first
two diffraction orders for this data set showed a slight hook
effect, and this correction was employed.

As with the P(NDI2OD-T2) data set, it is evident that the
gamma distribution for column lengths yields a better fit to
the experimental Am(n) values. The obtained column lengths
point toward large crystalline domains, with an average column
length of M = 67 nm, small fluctuations in the interplanar
spacing (erms = 0.18%), and a small paracrystallinity (g =
0.3%). This agrees with the general knowledge that TIPS-
pentacene exhibits a well-defined three-dimensional packing,
necessitating a low paracrystallinity.

C. PBTTT

Although the study of the column length and disorder
associated with all the crystallographic directions of an organic
crystal allows us to relate its microstructure to performance, it
is of particular importance to analyze those directions directly
associated with charge transport in organic semiconductors.
Charge transport in thin-film transistors occurs in the plane
of the film, thus, an in-plane scattering geometry is of key
importance to study directions directly associated with charge
transport in thin film transistors. As an example, we investigate
an aligned film of a fused ring polythiophene, PBTTT. This
high-performing polymer exhibits highly textured edge-on
packing with the chain backbone and cofacial π -stacking
direction lying in the plane of the film.48,59 Disorder that in-
fluences the π -stacking will disrupt the π -orbital overlap, thus
directly affecting charge transport. The difficulty associated

TABLE II. Peak parameters for TIPS-Pn data set.

Position, qz (Ref. 56) Area, A Width, �q

Index (Å−1) (arb. units) (Å−1) Pseudo-Voigt mixing parameter, η

001 0.380 1.0270 0.00594 ± 5×10−5 0.48 ± 0.03
002 0.759 0.1333 0.00690 ± 3×10−5 0.34 ± 0.02
003 1.136 0.3499 0.00790 ± 3×10−5 0.30 ± 0.02
004 1.511 3.3×10−4 0.0102 ± 2×10−4 0.35 ± 0.06
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with most conjugated polymers is that the π -stacking peak
is often weak, and rarely are two or more orders observed.
The use of an aligned film serves the dual purpose of (1)
decoupling the π -stacking peaks from other in-plane scattering
(i.e., the chain backbone repeat units)54,59 and (2) increasing
the observed intensity by narrowing the solid angle where
there is scattering due to the π -stacked planes (the chains are
aligned within ∼30◦).

The π -stacking spacing in this sample is 3.69 Å. Two
diffraction orders are readily observable with some misaligned
contributions from the chain backbone. By performing scans
in the orthogonal direction [see Fig. 4(a)], we are able to fix the
positions of the chain backbone and mixed index peaks (un-
related to the π -stacking) and subtract their contribution with
the background when isolating each peak. The isolated peaks
[Fig. 4(b), inset] are significantly broader than those from the
previous two materials, and a clear order dependence of the

(a)

(b)

FIG. 4. (Color online) WA full-fit analysis of π -stacking grazing
diffraction of PBTTT. (a) Corrected grazing incidence data with
associated errors, as a reference, we include grazing incidence data
in the orthogonal direction (dotted line) showing the peak positions
of the chain backbone-related contributions; inset: PBTTT chemical
structure. (b) FTs of isolated peaks, with error, and fits utilizing delta
(dashed blue) and gamma (solid red) distribution functions (inset:
from narrow to broad, the 010 and 020 peaks). Note that the fits to
the FT data overlap regardless of the assumed size distribution.

broadening is observed (see Table III). The resulting Fourier
transforms have a large associated error due to the higher
noise in the data, the added uncertainty of the contribution
from the chain backbone peaks, and the low relative intensity
of the second-order peak. These complications highlight the
importance of using all the information contained in the data
(fitting all the Fourier coefficients), as well as keeping track of
the error at each step of the line-shape analysis.

One notices that the functional dependence of the column-
length distribution (single length compared to gamma distribu-
tion) plays no role in the fits, as can be seen in Fig. 4(b) where
they overlap. In fact, there are interesting effects associated
with the description of the column length in this analysis. Most
importantly, we observe a large paracrystalline disorder, g =
7.3%, and a small but nonzero fluctuation in the interplanar
spacing, erms = 0.9%. We propose that with such a high degree
of lattice disorder, the determination of a mean crystallite size
by x-ray techniques is not possible, and we further address this
point in a following section.

V. DISCUSSION

In the following discussion we compare the results using
the routine applied above with other x-ray peak-shape-analysis
techniques in order to highlight the benefits associated with
our methodology. We investigate this from the standpoint
of accuracy, confidence, and robustness in the resulting
parameters. The effect and validity of the two column-length
distributions used is addressed. We then discuss the difficulty in
determining crystallite size when the inherent lattice disorder is
dominant. This is important since the extraction of a crystallite
size from single peak width is often misused. To make the case
that size determination of heavily disordered crystallites is
unreliable, we derive a closed-form coherence length based on
the disorder parameters alone. Finally, as the full WA routine
requires in-depth data processing and analysis, we describe
a simpler method to compare lattice disorder across systems
by exploring the pseudo-Voigt mixing parameter. This mixing
parameter contains more subtle information about peak shape
than the width alone, and can thus be used as a first-order
comparison when considering disorder.

A. Benefits of weighted full fit with error propagation

The benefits of the full WA routine outlined here are pre-
sented by detailing the advantages of careful error propagation
for confidence, fit accuracy, and robustness; we further com-
pare this to other analysis techniques and discuss the respective
results. The important point is that our methodology provides
better, more accurate values for the crystallite size and disorder
parameters than those obtained from these other methods.

Fourier-transform peak-shape analyses suffer from a num-
ber of assumptions with respect to background subtraction
and can be subject to errors due to their multistep nature. It
is thus important and informative to incorporate a complete
error propagation routine so that confidence bounds can be
established for the parameters of interest. Uncertainty due
to fitting and peak isolation of poorly resolved peaks, which
are complicated by uncertain background and partial overlap
from adjacent reflections, can hinder analysis. Additionally,
the same uncertain subtraction of background and adjacent
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TABLE III. Peak parameters for PBTTT data set.

Position, qz (Ref. 56) Area, A Width, �q

Index (Å−1) (arb. units) (Å−1) Pseudo-Voigt mixing parameter, η

010a 1.704 1.5×10−4 0.0652 ± 5×10−4 1.00 ± 0.01
020a 3.416 1×10−5 0.28 ± 0.01 1.00 ± 0.07

aWe have adopted the orthorhombic unit-cell indexing of Chabinyc et al. for PBTTT (Ref. 48) although the unit cell is almost certainly triclinic
(Ref. 60). This is done for simplicity.

peak overlap reduces the confidence in the low Fourier
frequency components and can give rise to the well-known
hook effect. Taking into account the varying certainty in each
Fourier component, one can obtain a more accurate fit to
the model and a conservative estimate of confidence in the
desired parameters. More refined statistical methods for error
propagation can be performed, such as Monte Carlo bootstrap,
but their application would narrow the error bounds for the
obtained parameters and not modify the observed trends; their
utilization is beyond the scope of this work.

Comparing our WA full-fit routine to similar diffraction
analysis techniques is an informative way to understand
advantages in our routine. Line-shape analysis techniques can
be divided into those that use the q-space data, with the most
prominent example being the Scherrer approach, and those
that use its Fourier transform, such as the Warren-Averbach
approach. In addition to the Scherrer analysis, another peak-
breadth analysis is the method of integral breadths,52,61 which
is related to the Williamson-Hall analysis. In this routine,
the size-related broadening of the peaks is not dependent
on diffraction order, and order-dependent broadening, �q(m),
is assumed to vary linearly or quadratically with m. The
crystallite size is obtained from �q vs m fits.11,12 For this
method to be accurate, several diffraction orders are required,
or the fits will not be reliable. In Fourier-transform techniques,
the information contained in the complete peak shape is
considered, not just the breadth.

The first application of the Warren-Averbach formalism,
and the one most commonly used, relies on rewriting
Eq. (10) as

ln[Am(n)] = ln

[
N (n)

M

]
− 2π2m2nf (n), (12)

where f (n) = g2 + ne2
rms. Fitting ln[Am(n)] vs m2 for a

constant n, one obtains values for ln[N(n)/M] from the
intercept and f(n) from the slope of each curve. Since multiple
peak orders (m) are necessary for fitting, but the higher orders
decay rapidly with n, the data becomes noisy and must be
truncated, which leads to artifacts in the subsequent fitting
steps. Fitting of ln[N(n)/M] vs n provides a value for M, and
a third linear fit of f(n) vs n yields g2 and e2

rms. One of the
biggest disadvantages of this graphical implementation is that
it is unreliable, since often the intercept and the slope of a linear
fit are determined from as few as two or three points. This was
addressed in the work of Prosa et al.18 by employing a Monte
Carlo bootstrap procedure to reflect the added uncertainties of
using iterative fits. This is improved in our full-fit routine, since
all the data are considered simultaneously when performing
an error-weighted fit to the model.

The effect of a weighted fit of the Am(n) to Eq. (10)
is further understood by considering the uncertainties of
the experimental Fourier coefficients. For a constant m, the
uncertainties in Am(n) for large n are due to noise in the data,
while those for lower n suffer from error in the background
and overlapping peak subtraction errors, for example when the
hook effect is present in the data. In light of this, the points in
the intermediate n region tend to be more heavily weighted.
Additionally, the low-order m(hkl) peaks are often the least
noisy and most clearly resolved, since they are well above the
noise floor and not overlapping with other diffraction peaks.
Thus, the accuracy in the Fourier coefficients from these peaks
is greater. This is clearly seen in the data [see Fig. 2(c)]. Thus,
the benefit of complete error propagation is readily employed
by performing a weighted least-squares fit.

A comparison of our full-fit WA method with the other
analysis approaches highlights many of the inaccuracies or
drawbacks inherent in these (Table IV). Results for Scherrer-
derived coherence lengths are an overestimation both for
TIPS-Pn and P(NDI2OD-T2). This is because this method
yields a volume-weighted average size and makes assumptions
regarding the shape of grains. This method of determination of
crystalline coherence length assumes all broadening is due to
size effects, which is not the case when the disorder-induced
broadening is severe (e.g., PBTTT ribbon phase).

The results of the integral breadth approach, where the
crystallite size is determined from the intercept of peak
breadth vs. m2 also overestimates size in P(NDI2OD-T2) and
TIPS-pentacene for the same reasons as the Scherrer analysis.
However, other inaccuracies arise in both the integral breadth
and the graphical WA analysis implementation due to fitting
with just a few points. Thus, linear trends are not always clear
and there is a possibility that either the slope or intercept of the
fitted equation is negative (e.g., size determination of PBTTT
with graphical WA and integral breadth). This yields unphysi-
cal results, which we denote in Table IV, but does not suggest
what to do in order to understand this issue. When using the
full-fit version of the WA analysis, including error propagation,
one can understand the physical mechanism responsible for the
observed results of the graphical analyses. For example, in the
next section, we will discuss the unreasonably large values and
errors that are obtained for PBTTT size-related terms using our
analysis and how it relates to disorder.

Another benefit of the analysis described here is the robust-
ness of the results, shown specifically in the P(NDI2OD-T2)
data set. By varying the number of peaks used in the analysis
(from m = 1,. . .,X, where X is a higher-order peak), we show
that it only takes the inclusion of approximately two peaks
to obtain reasonably close values of M, g, and erms to those
obtained when all the peaks are used (see Fig. 5). In fact, we

045203-10



QUANTITATIVE ANALYSIS OF LATTICE DISORDER AND . . . PHYSICAL REVIEW B 84, 045203 (2011)

TABLE IV. Results of peak-shape analyses.

dhkl M or Lc w g erms

Sample/data set, analysis method (nm) (nm) (nm) (%) (%)

P(NDI2OD-T2) specular, h00 2.438
Scherrer, Lc

a 27.8
Integral breadth, �q (m2); Mv 34.0
WA graphical 23.5 4.6 1.1
WA full fit with error (δ distribution) 27 ± 1 0 3.8 ± 0.2 1.9 ± 0.2
WA full fit with error (γ distribution) 22 ± 2 14 ± 3 3.6 ± 0.2 1.7 ± 0.3

TIPS-Pn, specular, 00lb 1.652
Scherrer, Lc

a 95.2
Integral breadth, �q (m2); Mv 97.5
WA graphical 73.6 – 0.26
WA full fit with error (δ distribution) 87 ± 1 0 0.84 ± 0.09 0.20 ± 0.02
WA full fit with error (γ distribution) 67 ± 2 36 ± 1 0.3 ± 0.1 0.18 ± 0.01

PBTTT grazing, 0k0/π -stacking 0.369
Scherrer, Lc

a 9.0
Integral breadth, �q (m2); Mv –
WA graphical – 7.7 1.1
WA full fit with error (δ distribution) n/a 0 7.3 ± 2.5 0.9 ± 0.6
WA full fit with error (γ distribution) n/a n/a 7.3 ± 2.4 0.9 ± 0.6
WA full fit with error (neglecting size)c 7.3 ± 0.7 0.9 ± 0.6

aUse of hook correction.
bScherrer analysis with K = 0.9, Mv is a volume-weighted crystallite size.
cAS

m(n) = 1.
n/a: means result and/or error is prohibitively large, and – means result cannot be determined or is unphysical.

show that using just the first-order peak with one or two of the
lowest Fourier frequencies from the second-order peak results
in values that are in good agreement with the fits to all peaks.
This is especially useful in the study of weakly bonded organics
and polymers where observation of multiple diffraction orders
is experimentally difficult. Thus, while it is a definite advantage
to have as many peak orders as possible, a reasonable
approximation can often be obtained from a limited data set.

It is useful to consider the results of the routine when the
fitting steps do not use a weighted least-squares technique, but
instead use an unweighted version of the fitting method. This
is shown in Fig. 5. The results for M, g, and erms converge to
values that are similar to the weighted-fits technique, but show
more fluctuations with larger swings around the convergence
value and have larger error bars. Faster convergence as a
function of the amount of data necessary for the analysis and
smaller confidence bounds are two of the key advantages of
using a weighted fitting routine.

B. Effect of column length distribution

For the application of peak-shape analyses, assumptions
must be made about the functional form that describes the
column-length distribution within the sample. These assump-
tions will not only affect the size-related terms, but also those
associated with disorder (g, erms). Below we describe the merits
of a size distribution where we assume either one column
length (delta function) or a gamma distribution.

The experimental determination of a column-length
distribution with the WA method has been shown in a number

weighted un-weighted

FIG. 5. (Color online) Robustness of full-fit analysis approach on
P(NDI2OD-T2) data set. The fit results for M, g, and erms are shown
for fitting routines incorporating weighted fits and compared to those
without weights. Fits utilizing the γ size distribution are shown as
solid lines and filled markers, while δ distributions are shown with
dashed lines and open markers. X represents a fit incorporating peaks
of order 1 through order X. The symbols at X = 1(+1) and 1(+2)
are fits for just the first peak (m = 1), with one or two of the lowest
frequency orders from the second peak, which can give solutions
nearing that of the full-fit five-peak analysis.

045203-11



RIVNAY, NORIEGA, KLINE, SALLEO, AND TONEY PHYSICAL REVIEW B 84, 045203 (2011)

FIG. 6. (Color online) Size distributions determined from fit
results of P(NDI2OD-T2) data set. The gamma distribution function
(shaded red area) provides an average column length (Mγ ) and
variance (±wγ ) indicated by the arrows, while the delta function
defines a column length of Mδ (blue vertical line). The relevant Fourier
transforms of the (100) peak are shown as an inset, assuming each of
these distributions (solid red for gamma function distribution, dashed
blue for delta function distribution).

of cases,62,63 particularly in materials where the contributions
from disorder are not significant. This is due to the
fact that the distributions are obtained from the second
derivative with respect to n of the size-dependent term, AS

m(n)
[Eq. (7)]. In the case of a small disorder contribution, one
can approximate AS

m(n) ≈ Am(n) for small n in the first-order
peak. The presence of disorder terms will limit the validity
of this approximation. Also, calculating a second derivative
numerically on quantities with a significant uncertainty (e.g.,
the Fourier components) will lead to a large error in the
calculated crystallite size distribution.

Another option is to make an assumption about the func-
tional form describing the distribution of column lengths13,64,65

and parametrize the Fourier coefficients to the variables
describing this distribution, thus obtaining an expression for
Am(n) that can then be used in the least-squares fitting.
A simple approach would be to describe the sample as a
collection of columns with the same length, Mδ . While this
is clearly not the case in real systems, it has the advantage
of involving only one fitting parameter. The column-length
distribution is often found to be markedly asymmetric with a
broad tail extending toward larger sizes. Such a functional form
is often modeled with a log-normal distribution. In this work
we use a gamma distribution which is functionally similar to
a log-normal65 distribution and easier to implement. We show
in Fig. 6 the extracted column-length distributions from the
P(NDI2OD-T2) data set.

As can be seen in all the data sets presented here, the
experimental Am(n) do not go abruptly to zero as necessary
for a delta-function column-length distribution, but instead
have significant curvature even in the absence of disorder
terms. This is most noticeable in the Fourier transform of
the first-order diffraction peak, as this peak is most affected
by the contributions from the size distribution (Fig. 6, inset).
One result of the inability of the delta-function distribution
to describe the Am(n) is that this causes an overestimation

of Mδ , which is compensated by a slight overestimation of
g and erms. Fits with the gamma distribution, then, describe
the experimental Am(n) more accurately and yield better
results when disorder does not dominate, as is the case
for the P(NDI2OD-T2) and TIPS-pentacene data [Figs. 2(d)
and 3]. The additional fitting variable associated with using a
two-parameter gamma distribution rather than a one-parameter
delta function is evident in the larger uncertainty in all the fitted
parameters (Table IV). However, we argue that the benefit of a
more physically reasonable distribution which yields better fits
to the experimental Fourier coefficients far outweighs the slight
increase in uncertainty. Last, in all three data sets, we note that
the results for the distortion parameters (g, erms) are relatively
insensitive to the assumed column-length distribution to within
0.5–1 % variation (similar to the variation observed from
sample to sample or when assuming different background
functionalities in one data set).

C. Effect of strong disorder on crystallite size determination
with x-ray diffraction

When the lattice disorder within a crystalline grain becomes
large enough, the connection between x-ray coherence length,
as determined from the Scherrer expression [Eq. (1)], and
crystallite size is lost. While at first this may seem like a
trivial outcome, in the literature crystallite sizes are routinely
quoted for strongly disordered systems based on peak breadth
alone, and this point is often ignored in subsequent discussion.
Moreover, there are a variety of concepts describing differ-
ent characteristic crystalline length scales: crystallite size,
grain size, column length, and coherence length. These are
frequently used interchangeably in the literature, but this is
not necessarily correct. For example, the connection between
column length and crystallite size includes the use of an (often
assumed) crystallite shape. In this section, we examine the
relation between x-ray coherence length and column length
for the case of strongly disordered materials.

Before doing so, however, it is instructive to critically
examine the results from the PBTTT-aligned ribbon phase.
At first it should be noted that any crystallite size-related
term extracted from the fits suffers from error which renders
this size meaningless. This is not due to the errors in the
experimental Am(n), because the uncertainty in the disorder
parameters is reasonable. It is also important to note that the
values for g, erms, and the resulting Am(n) are not dependent
on the functional form of the column-length distribution [see
Fig. 4(b) and Table IV]. Unlike the other two data sets, where
the delta and gamma distribution functions yielded noticeably
different Am(n), especially in the first-order peak, this was not
the case with the PBTTT data set. Even if we neglect size
effects and set all AS

m(n) = 1, the disorder terms are nearly
the same as for the full fit with size terms (Table IV). These
findings lead us to conclude that this diffraction data shows
such a high degree of lattice disorder that the specifics of
crystallite size have little effect on the peak shape (even on the
first-order peak) and hence are undeterminable.

X-ray diffraction probes domains which scatter radiation
coherently, and is dependent on the periodicity of the structure.
Any disruption to the periodicity will reduce this coherence
length. These disruptions can be localized (e.g., abrupt grain
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boundaries) or continuous (i.e., cumulative disorder). In the
context of disorder and its effect on coherence length, it is
helpful to think of an infinite paracrystal, in which there are
no abrupt changes in the periodicity and the loss of coherence
is due to cumulative disorder alone.

One can define a disorder-associated coherence length, ξ ,
by calculating the breadth of a peak described by an infinite-
sized crystallite with the only broadening mechanisms being
paracrystalline disorder (g) and lattice-parameter fluctuations
(erms). We then use this breadth and the Scherrer expression
to calculate an effective x-ray coherence length. A detailed
derivation of this expression is given in Appendix B. It is
instructional, however, to look at one of its limiting cases. In
the absence of lattice spacing fluctuations, erms = 0, one obtains

ξ = dhkl

2πg2
. (13)

This disorder-associated coherence length is inversely
proportional to the disorder-related term (g) as expected.
This is particularly useful for polymeric systems, where the
weak nature of the van der Waals bonds and many degrees
of conformational freedom make them highly susceptible to
paracrystalline disorder. It must be kept in mind that the
expression for ξ was obtained for the case of an infinite
paracrystal, which means that it is valid as long as the
disorder terms dominate and Am(n) becomes negligibly small
before ndhkl approaches the column length (physical size)
of the paracrystalline domain, M, or ξ � M. Thus, an
accurate determination of crystallite size by x-ray techniques
on disordered materials is only possible if ξ ≈ M or ξ > M.

If we calculate ξ for the materials presented in this study,
using the disorder terms obtained from their respective WA
analyses, we see that for P(NDI2OD-T2) and TIPS-Pn, ξ >
M, agreeing with the ability of the method to determine an
accurate average column length (Table V). For the aligned
PBTTT sample, as pointed out earlier, ξ is significantly smaller
than for the other two samples. In fact, the disorder-associated
coherence length ξ for the PBTTT-aligned film is comparable
to that calculated with the Scherrer expression from the peak
breadth; this is expected, since disorder is the dominant
mechanism for peak broadening.

PBTTT is one of the highest performing p-type polymeric
semiconductors, and is believed to be one of the most
crystalline organic semiconducting polymers. These experi-
mentally justified claims often relate to the very high degree
of lamellar order (in the alkyl stacking direction, [h00]) of the
liquid-crystalline layers of the polymer. The extrapolation of
this high degree of order to other crystallographic directions,
however, is not necessarily warranted. The aligned ribbon

TABLE V. Comparing coherence length and crystallite size.

M ξ a Scherrer, Lc

Materials (nm) (nm) (nm)

P(NDI2OD-T2) 22 170 27.8
TIPS-pentacene 67 18×103 95.1
PBTTT N/A 10.1 9.0

aξ utilizes results from WA full-fit results (γ distribution—see
Table IV), M is also from the γ distribution fits.

phase represents a macroscopic orienting of this highly crys-
talline polymer, and yet our results indicate a degree of lattice
disorder that is closer to amorphous than highly crystalline
behavior in the π -stacking direction—so much that the x-
ray determination of a crystallite size is impossible. These
conclusions agree with recent findings that PBTTT grains
show smooth transitions from one orientation to another.66 The
understanding of lattice disorder in the π -stacking direction is
thus critical in the understanding of trapping mechanisms for
this class of materials, and may define fundamental limitations
for transport in π -conjugated polymers.

In short, when the majority of the broadening in XRD
peaks comes from finite crystallite size (weak disorder), the
Scherrer expression is a good approximation for the crystallite
size. For samples with mild disorder, the contributions of size
and disorder effects to the peak breadth are comparable and
one must use techniques that allow the decoupling of the
two, such as the integral breadth methods or Fourier-based
(Warren-Averbach) techniques. For the accurate determination
of disorder terms, the latter is preferred. Lastly, in the case
of strongly disordered samples, disorder effects dominate
the peak broadening and techniques based on diffraction
line-shape analysis are unreliable for the determination of
crystallite sizes. Indeed, the concept of crystallite size in such
materials is not really valid.

A further consequence of this finding is that for highly
disordered systems (where the x-ray coherence length of the
sample is determined solely by disorder) the peak width alone
can be used to estimate paracrystalline disorder (if the effects
from lattice-parameter fluctuation, erms, can be neglected).
Combining Eqs. (1) and (13), we arrive at

g = 1

2π

√
�qdhkl. (14)

D. Insight into lattice disorder from trends in the pseudo-Voigt
mixing parameter

The nature of a WA-type analysis, especially with the
implementation of error propagation, can be time consuming
and thus of less interest for studies where the specifics of
lattice disorder are not the main focus. To encourage the use of
peak-shape analysis for the determination of lattice disorder on
a less involved level, below we explore the effect of cumulative
disorder on the pseudo-Voigt mixing parameter. When used
in conjunction with peak breadth, a simple comparison of
paracrystallinity across samples or materials is possible. The
following discussion considers disorder caused by normally
distributed random fluctuations, as described in Sec. II.

In moving toward this simpler approach, we recall that
contributions from size, paracrystallinity, and lattice-spacing
fluctuations to the diffraction peak shape correspond to differ-
ent functional forms.67 It is known that the Fourier transform of
a Gaussian function is a Gaussian, and the Fourier transform
of an exponentially decaying function is a Lorentzian (also
called a Cauchy line shape). Thus, from Eq. (10), we notice
that the lattice-parameter fluctuation contributes to a Gaussian
shape and the paracrystalline term is Lorentzian, which
are results of the assumption that the disorder is Gaussian
random. The size dependence is reasonably described by a
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Lorentzian (for a delta-function column-length distribution).
The actual shape of the peak in q-space will be the convolution
of these contributions, and thus best described by a Voigt
profile. Ease of use and a good agreement with experimental
data, however, have made pseudo-Voigt profiles most widely
used.18,24 Pseudo-Voigt functions are a linear combination
(instead of a convolution) of a Gaussian and a Lorentzian,
both with the same full width at half maximum. The fraction
that comes from the Lorentzian function is given by a mixing
parameter η. This then suggests a simple estimation of the
relative contributions from different types of disorder, as a
supplement to first-order methods used to estimate average
size contributions (i.e., Scherrer’s formula). The normalized
pseudo-Voigt profiles for a range of mixing parameters are
shown in Fig. 7(a), which shows how the shape changes with η.

One can then consider using the trend in the values for the
mixing parameter for a family of m(hkl) peaks to draw conclu-
sions about the relative contributions of size, paracrystallinity,
and lattice-spacing fluctuations to peak broadening. As a
starting point, the relationship between the mixing parameter

(a)

(b)

FIG. 7. (Color online) Relation of pseudo-Voigt mixing parame-
ter (η) to g and erms. (a) Depiction of pseudo-Voigt line profile in the
full range of η’s. η = 0 represents a Gaussian line shape, and η =
1 represents a Lorentzian. (b) η maps showing the mixing parameter
associated with various g and erms values for an average column length
of 10 repeat units (left) and 100 repeat units (right). For each of the
panels in (b), the top left corner tends to η = 1 and the bottom right
corner tends to η = 0.

and the different WA-related variables is explored. This is done
by fitting the Fourier transform of a pseudo-Voigt peak directly
to the WA function, Am(n) [Eq. (10)].

For a given column length, the dependence of η vs (g, erms) is
shown in Fig. 7(b). This is only done for the m = 1 (first-order)
peak because the Am(n) coefficients for m �= 1 are equivalent
to those of the m = 1 peak but with rescaled disorder terms
g′ = mg, e′

rms = merms. Values for η can then be extracted from
this map by selecting the (g, erms) pairs or a range of values by
using the confidence intervals for (g, erms) to define an area.
Each η map considers one average column length.

To show the potential for this analysis, we use the three data
sets in this work. We obtain an approximate column length
using the Scherrer formula and then obtain an η map [e.g.,
Fig. 7(b)]. We subsequently estimate pseudo-Voigt parameters
for peaks with the g and erms obtained from the WA full fit.
Figure 8 shows the agreement between the mixing parameter
derived from the η maps and those from pseudo-Voigt fits
of the isolated diffraction peaks. The shaded regions shown in
Fig. 8(b) are the range of η that is obtained from the maps using
g and erms values within a percent of the WA full-fit results.
While the peak-fit determined values for the mixing parameter
[symbols in Fig. 8(b)] differ slightly from those predicted by
the η maps, these discrepancies can be explained by errors
associated with uncertainty in the crystallite size (determined
using the Scherrer equation), as well as by the fact that this was
done for a single column length and not a distribution. Nev-
ertheless, the approximate value and general trend of mixing
parameter with diffraction order are predicted correctly.

The ultimate goal is, however, to start with the diffraction
pattern and fit a background plus a series of pseudo-Voigt
peaks and, without performing the complete Warren-Averbach
analysis, to gain insight as to the disorder in the material.
This is done by looking first at the trend in peak width with
diffraction order [Fig. 8(a)]: an increasing width with order
means that there is a disorder component, and a roughly
constant peak width (as with TIPS-pentacene) means that size

(a) (b)

FIG. 8. (Color online) Peak parameters determined from isolated
peaks of TIPS-Pn (blue circle), P(NDI2OD-T2) (green triangle), and
PBTTT (red square). (a) Peak width, �q , as a function of peak order
(the lines are guides to the eye). (b) Pseudo-Voigt mixing parameter,
η, as a function of peak order. The predictions of η from maps such
as those in Fig. 7 are shown as shaded areas.

045203-14



QUANTITATIVE ANALYSIS OF LATTICE DISORDER AND . . . PHYSICAL REVIEW B 84, 045203 (2011)

effects dominate. Assuming a varying width with diffraction
order, we now turn to the η vs m trend [Fig. 8(b)]. Relatively
constant values of η close to unity point to a g-dominated
regime (Lorentzian), and if η is slowly varying and close
to zero (Gaussian), then erms dominates the peak shape with
little effect from size or paracrystallinity. If η is not near 0
or 1, both paracrystallinity and lattice-parameter fluctuations
are important and the diffraction-order trends become more
important. A decreasing η(m) indicates an increasing Gaussian
component, thus a larger erms; an increasing η vs m indicates
a stronger paracrystalline disorder (g). Relatively constant
values of η near 0.5 suggest comparable contributions from
both g and erms, and a more detailed study must be performed
to determine the exact contributions.

The magnitudes and η(m) dependencies are reflected in our
data sets, where at least some order-dependent broadening is
observed in all materials [see Fig. 2(b) and insets in Figs. 3
and 4]. TIPS-pentacene has an η < 0.5 and a decreasing
trend, characteristic of its highly crystalline behavior (very
low g). P(NDI2OD-T2) illustrates a competition between
non-negligible effects of paracrystallinity and lattice-spacing
fluctuations with its relatively constant η ∼ 0.75 values—note
the large fluctuation in mixing parameter for the m = 4 and 5
peaks, which is due to the low intensities of these peaks. As
for the PBTTT ribbon phase, a strong paracrystallinity is again
observed in its η ∼ 1 values for m = 1 and 2.

We have shown that the peak full width and mixing
parameter, especially when multiple orders of diffraction
are accessible, provide a relative assessment of the crystal-
lite size, paracrystallinity, and lattice-parameter fluctuation.
Differences in the line-shape pseudo-Voigt parameters can
provide meaningful insight into the degree and nature of
disorder.

VI. CONCLUSIONS

The study of intracrystalline lattice disorder is important
for understanding electronic and optical processes in organic
semiconductors. Size and disorder effects in these materials
are particularly significant because van der Waals bonding
dominates the crystalline structure.

In this work we adapt the Warren-Averbach technique
to analyze diffraction line shapes. We incorporate careful
error propagation and weighted fitting to improve results and
determine conservative confidence intervals for the obtained
parameters for data sets of two high-performing polymeric
semiconductors, P(NDI2OD-T2) and PBTTT, and a solution-
processable small molecule semiconductor, TIPS-pentacene.
We focus on one class of materials, but show a range of
different disorder regimes to demonstrate the wide applica-
bility and robustness of our approach. We further discuss
the incorporation of different column-length distributions and
their effect on the fits. We show that as paracrystalline disorder
becomes large (as high as 7.3% in the cases of PBTTT ribbon
phase π -stacking) the determination of crystallite size by scat-
tering techniques is unreliable. To further address the relation
between size terms and coherence length, a disorder-induced
coherence length for paracrystalline materials is presented.
Furthermore, we suggest that trends in the pseudo-Voigt
parameters of the diffraction peaks can be used to extract

preliminary estimates of the magnitude and type of distortion
in paracrystalline materials. While we only focus on materials
within the realm of organic semiconductors, we emphasize
that the nature of the analyses presented here is general and
valid for various spacing length scales (e.g., block copolymers,
photonic crystals, and metamaterials) provided the diffraction
peaks can be fully resolved.
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APPENDIX A: ERROR PROPAGATION

In this Appendix, a detailed discussion on the propagation
of errors is provided. While the preliminary operations and
definitions used below are explored in Ref. 68, we include
them for completeness. Starting from basic concepts, a general
framework for the propagation of errors in the different data
analysis processes will be described.

A simple way to propagate uncertainty in measured
variables is by keeping track of their variance,

var(x) = σ 2
x = 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2. (A1)

When there are several inputs (xi) and outputs (yi) to a
given operation, their variance can be expressed as a vector,

σ 2
yj

=
∑

i

σ 2
xi

(
∂yj

∂xi

)2

. (A2)

However, the outputs can be correlated even if the inputs are
not. For this we need to introduce the concept of covariance,

cov(A,B) = σ 2
AB = 〈AB〉 − 〈A〉〈B〉, (A3)

and notice that cov(A,B) = cov(B,A). The next step in the
generalization of Eq. (A2) is

σ 2
yj yl

=
∑

i

σ 2
xi

∂yj

∂xi

∂yl

∂xi

, (A4)

which has the form of a matrix: the variance-covariance matrix,
Cjl (or covariance matrix for short). This is a symmetric matrix
with the variance of each variable in the main diagonal, and
the off-diagonal elements are the covariance terms. With this,
the general way of propagating the covariance in the inputs
{x} to the outputs {y} of a given step in the process is

Cout
ij = ∂yi

∂xk

C in
ks

∂ys

∂xj

. (A5)
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This can then be expressed in matrix notation as

Cout =
[

∂y

∂x

]
C in

[
∂y

∂x

]T

, (A6)

where [ ]T denotes the transpose operation. This will be
important in order to facilitate the calculations in the following
sections, as well as the practical implementation of the routine.

1. Uncertainty in the data

The first task is to determine the error in the data, which
are the counts in a detector (Ydet) normalized to the incidence
beam ion chamber (o) and any predetector absorber with
transmittance Tabs. The error is given by the Poisson statistics
in the detector counts σ 2

y = y. Thus, the error in our measured
diffracted intensity is

σI =
√

Ydet

Tabso

. (A7)

The error in the scattering vector q comes from sam-
ple/diffractometer misalignment and a small but finite ac-
ceptance angle of the collimator. These errors are small,
constant, and independent of q. With this reasoning, and
because the routine described here does not consider absolute
peak position, errors in the independent variable q are ignored.

2. Least-squares fitting routines

Consider an N-point data series {(x1, y1), . . .,(xN , yN )} to
which we want to fit a function f(x) = f(x;p), where the fitting
function has a set of n parameters p = {p1,p2,. . .,pn}. As
determined in Eq. (A5), we need to calculate the following
derivative of the performed operations, for which we use the
chain rule

∂fj

∂yi

=
∑

k

∂fj

∂pk

∂pk

∂yi

. (A8)

We recognize the first term in the sum as the Jacobian matrix

∂fj

∂pk

= J =

⎡
⎢⎢⎣

∂f (x1; �p)
∂p1

· · · ∂f (xN ; �p)
∂p1

...
. . .

...
∂f (x1; �p)

∂pn
· · · ∂f (xN ; �p)

∂pn

⎤
⎥⎥⎦ , (A9)

which is obtained as an output from most of the commonly used
fitting routines. The ∂p/∂y term in Eq. (A8), however, requires
more careful consideration. Nonweighted least-squares fitting
routines solve the set of equations

∂

∂pi

⎧⎨
⎩

∑
j

[yj − f (xj ; �p)]2

⎫⎬
⎭ = 0, (A10)

with a solution p = po. Allowing for variations in the initial
data {y} → {y} + {δy}, causes a change in the solution
{p} → {p} + {δp}. Using this, the new fitting function can
be approximated as

f (x; �po + δ �p) ≈ f (x; �po) + ∂f (x; �p)

∂ �p
∣∣∣∣
�po

· δ �p. (A11)

Inserting Eq. (A11) into Eq. (A10), it can be shown that
∂pi

∂yj

= (JJ T )−1J. (A12)

It is important to notice that the Jacobian is not a square
matrix and thus lacks an inverse. The product JJ T , on the other
hand, is invertible. Finally, we can write

∂fj

∂yi

= J (JJ T )−1J (A13)

and use this along with the covariance matrix for error
propagation as described earlier. Note that a common mistake
is to include variables that play little to no role in the fits, which
then results in nearly-zero elements in the Jacobian and a badly
scaled matrix. This is useful for identifying unnecessary fitting
parameters.

One of the assumptions in a nonweighted least-squares
regression is that each data point provides equally precise
information (the error bars are all equal). By keeping track
of the covariance in the data at each step of the data
analysis, however, one realizes that for peaks with appreciable
noise the higher-frequency components suffer from large
error, as expected. A way to maximize the efficiency of the
fitting-parameter estimation is to use a weighting function
for the residues as part of the least-squares fitting. Optimal
results, minimizing the uncertainty in the fitted parameters,
are obtained when the weights are inversely proportional to
the variance of each data point,

∂

∂pi

[∑
j

(
yj − f (xj ; �p)

σj

)2
]

= 0, (A14)

which allows us to transform to the variables

ŷj = yj

σj

, f̂ (xj ; �p) = f (xj ; �p)

σj

(A15)

and use the same formalism as for a nonweighted fitting
routine. In the last step, we convert back to the original
variables y, f(x,p). For this we take into account that

∂ps

∂yi

= ∂ps

∂ŷk

∂ŷk

∂yi

= ∂ps

∂ŷi

1

σi

,

(A16)
∂fj

∂ps

= ∂fj

∂f̂k

∂f̂k

∂ps

= σj

∂f̂j

∂ps

and substitute accordingly into Eqs. (A8), (A12), and (A13).

3. Background subtraction (peak isolation)

In order to obtain the isolated intensity of each diffraction
order, contributions from background scattering and adjacent
peaks must be subtracted from the raw data. This retains the
experimental data for the isolated peak of interest (any shape
asymmetries are retained). The isolated peak will then be
ypeak = yraw−f subs, where f subs is a function representing
all scattered intensity not attributed to the peak in question.
There will be some cross terms in the covariance matrix of the
isolated peak,

C
peak
ij = cov

(
yraw

i − f subs
i ,yraw

j − f subs
j

)
= cov

(
yraw

i ,yraw
j

) + cov
(
f subs

i ,f subs
j

)
+ cov

(
yraw

i , − f subs
j

) + cov
(−f subs

i ,yraw
j

)
. (A17)
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The first term in Eq. (A17) is the covariance matrix of the
inputs Craw

ij , the second is the covariance matrix of the values
predicted with the f subs function, Csubs

ij ,

Csubs =
[
∂f subs

∂yraw

]
Craw

[
∂f subs

∂yraw

]T

, (A18)

and due to the symmetry of the covariance matrices we see
that the fourth term in Eq. (A17) is the transpose of the third,

cov
(
yraw

i , − f subs
j

) = 〈−yraw
i f subs

j

〉 − 〈
yraw

i

〉 〈−f subs
j

〉
= −Craw

jj

∂f subs
i

∂yraw
j

= −Craw

[
∂f subs

∂yraw

]
.

(A19)

Now we need to calculate

∂f subs
i

∂yraw
j

= ∂f subs
i

∂pk

· ∂pk

∂yraw
j

, (A20)

taking into account that the background parameters pk come
from a multistep fitting routine. Note that the function f subs

does not directly depend on the parameters of the peak in
question.

4. Two-step fitting routines

The way in which error is propagated must be revised
when considering fit refinement within a reduced range of
data, for example, a small window around one peak. This is
because only a subset of parameters is fit, while keeping the
rest constant. Dividing the global fitting variables p into two
subsets, α and β, where the values for α are determined in
the first fitting step and the values for β are determined in the
second step. For the subset α, the derivatives with respect to
variations in the data are the same as described in Sec. A 1,
but only taking those rows in the Jacobian that pertain to the
parameters belonging to α. For β, however, we need to account
for the effect of the variables that have already been fixed (α)
but still have errors,

∂β

∂y
=

(
∂β

∂y

)
α

+ ∂β

∂α

∂α

∂y

= [(
Jf J T

f

)−1
Jf

] + ∂β

∂α

[(
JcJ

T
c

)−1
Jc

]
p∈α

, (A21)

where Jf is the Jacobian of the fitting function (derivatives
with respect to β only, since α is constant here) evaluated
at the solution obtained in the second fitting step. To obtain
∂β/∂α we carry out a calculation similar to that shown in
Sec. A 1 for ∂pi/∂yj ,

∂β

∂α
= −(

Jf J T
f

)−1
Jf DT , (A22)

where D is a matrix of derivatives of the function f with respect
to those “constant” parameters from the first fitting step.

5. Data interpolation

Interpolation of data is important in order to use the efficient
numerical Fourier-transform algorithms (which require that
the data are symmetric and exactly centered on the peak)
and it is unlikely that our points fall exactly on the peak

centers and extend symmetrically to the peak wings. Thus,
data interpolation is used to shift our data points so that there
is a value at q = qcenter for the peak in question and take a
symmetric range of data both to lower and higher q values.

A high point density should be obtained from the diffraction
experiments and not fictitiously created by excessive inter-
polation. Linear interpolation is sufficient and is simple to
implement,

ỹi = yi +
(

yi+1 − yi

�x

)
ε�x = (1 − ε)yi + εyi+1, (A23)

where ε is the fraction of the point spacing that we need to
shift, and we should notice that the interpolated data ỹ has one
less point than the original, y. Thus, the derivative matrix will
not be square, with the only nonzero elements being (1− ε) on
the main diagonal and ε in the diagonal above it.

6. Discrete Fourier transforms

This part of the discussion will be focused on the fast-
Fourier-transform (FFT) algorithm implemented in the com-
mercial package MATLAB (R2010a) but can easily be extended
to other versions of the algorithm. The Fourier transform
Y = F(y) of an (N + 1) element vector containing the data, y,
is given by

Yk =
N+1∑
j=1

yj exp

[
− i2π

N + 1
(j − 1)(k − 1)

]
. (A24)

The x-axis associated with this vector is determined by the
Nyquist-Shannon theorem. Since the diffraction data points
have no imaginary components, the real-valued coefficients of
the cosine series are

Am(k) =
N+1∑
j=1

yj cos

[
2π

N + 1
(j − 1)(k − 1)

]
. (A25)

The errors in this step of the process originate from the
uncertainty in the values for yj and on the peak center. Errors in
the yj values affect mostly the higher-frequency components,
except in pathological cases. An incorrect choice of the peak
center will lead to asymmetry in the peak and result in erro-
neous values for the Fourier coefficients. The first part of the
error propagation can be calculated using the covariance matrix
approach with the derivatives of the process expressed as

∂Am(k)

∂yj

= cos

[
2π

N + 1
(j − 1)(k − 1)

]
. (A26)

The second source of error affects the proper indexing of
the data points and can be written as

∂Am(k)

∂j
=

N+1∑
j=1

(
∂yj

∂j
cos

[
2π

N + 1
(j − 1)(k − 1)

]

+ 2π

N + 1
(k − 1)yj sin

[
2π

N + 1
(j − 1)(k − 1)

])
.

(A27)

The uncertainty in the point indexing is the uncertainty
in the peak center (σqo

) divided by the point spacing
(�q). This means we need to add the following elements
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along the diagonal of the covariance matrix of the Fourier
components:

σ 2
qo

(�q)2

(
∂Am(k)

∂j

)2

. (A28)

The derivative of yj with respect to the index j,∂yj /∂j ,
can be calculated by padding each side of it with one zero
and using an average of the forward- and backward-difference
approximation of the first derivative.

7. Normalization and hook effect correction

Before performing the fit to the Warren-Averbach function,
we need to normalize the Fourier spectrum of each peak so that
the zero frequency component of the Fourier spectrum is equal
to unity. The simplest case is when we use a regular division
by the Am(1) element, where we are labeling the elements by
a counting index k = 1,2,3,. . .,

Ãm(k) = Am(k)

Am(1)
, (A29)

and the derivative matrix is

∂Ãm(k)

∂Am(j )
= 1

Am(1)
δkj − Am(k)

(
1

Am(1)

)2

δ1j . (A30)

The first term is a scalar multiplying the identity matrix,
and the second is a matrix where the only nonzero elements
are in the first column and the kth row has the element
Am(k)[Am(1)]−2. This makes the resulting covariance matrix
Cij �= 0, in general, only for i,j �= 1. Since we define
Ãm(1) = 1, any variance or covariance terms involving it are
zero.

Sometimes the lower-frequency components in the Fourier
spectrum have an unphysical negative curvature, showing what
is called the “hook effect.” If this is not accounted for, the
WA fitting parameters will be incorrect. A common way
to correct for this is to fit a line to the first few Fourier
components, extrapolate to k = 1, and normalize by this
value instead of the Am(1) as before. If we use the range ν

� k � χ for our linear fit, the value used for normalizing
would be

A′
o = 〈k − 1〉〈(k − 1)Ak〉 − 〈Ak〉〈(k − 1)2〉

〈k − 1〉2 − 〈(k − 1)2〉 , (A31)

where the angle brackets denote averages. Similarly to that of
the regular normalization, we have a matrix of derivatives

∂Ãm(k)

∂Am(j )

= 1

A′
o(1)

δkj − 2Am(k)

(
1

A′
o

)2

×
[

2[ν2 + χ2 + νχ − 3(χ − ν − 1)] − 3j (χ + ν − 2)

(χ − ν)3

]
× [H (k − ν) − H (k − χ)], (A32)

where the second term uses the Heaviside step function H(k)
to guarantee that it is only nonzero if ν � k � χ .

8. Weighted Warren-Averbach fits

Once all the Fourier coefficients and their respective
covariance matrices have been calculated, the WA fitting step
can be performed. The covariance matrix of the obtained WA
parameters {Pi} can be calculated in the same way described
before for the least-squares fits, with

∂P

∂A
= (JWAJ T

WA)−1JWA (A33)

from the Jacobian, JWA, of the WA fitting function, so that

CWA =
[
∂P

∂A

]
CFFTs

[
∂P

∂A

]T

, (A34)

where CFFTs is a block-diagonal matrix made up of all the co-
variance matrices for the individual peak Fourier coefficients.
The square root of the diagonal of this matrix contains the
error for the desired parameters (M, w, g, erms).

The process described here deals with the propagation of
random errors in the measurements through each step in the
data manipulation process. It should be noted that even when
we fit a model function f(x) to a precisely known data set
{X,Y}, the determined parameters for f(x) have some error
due to a less than perfect description of the data by f(x).
A common way to account for this lack of correspondence
between a model fitting function and the data is to use the
residues to estimate the variance in the sampled data. This
estimator is then assigned as the uncertainty to each fitted
point and the usual covariance matrix formalism to propagate
such errors to the results. We use a hybrid of both approaches,
calculating the variance estimator after each operation, and
substituting the values in the diagonal of the corresponding
covariance matrix if they are lower than the estimator. This
would always consider the worst case scenario for error
propagation.

As a final remark, it is important to note that errors
are compounded with every operation, so streamlining the
algorithm and taking out unnecessary steps is helpful and
should be done whenever possible.

APPENDIX B: X-RAY COHERENCE LENGTH IN
STRONGLY DISORDERED SAMPLES

In the following we arrive at an expression to calculate
the disorder-associated x-ray coherence length as a result
of cumulative lattice disorder, using an idealized Warren-
Averbach profile and the Scherrer equation. For this we
consider Eq. (10) and notice that when the disorder is small,
the Fourier components become negligible for n > M/dhkl .
However, when the disorder terms dominate (are sufficiently
large), the exponential term will control the shape of Am(n)
and the Fourier components will become negligible for n <

M/dhkl .
To determine the disorder-associated coherence length ξ

purely induced by disorder, we first calculate the breadth of
a peak described by an infinite-sized crystallite with the only
broadening mechanisms being paracrystalline disorder (g) and
lattice-parameter fluctuations (erms). Then, we use this breadth
and the Scherrer expression to calculate ξ . This is equivalent to
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the coherence length determined from the distance over which
the lattice loses crystallographic coherence (waves scatter π

out of phase). In this case, the Fourier spectrum of the first-
order (m = 1) reflection is given by

A(n) = AD(n) = exp
[−2π2

(
ng2 + n2e2

rms

)]
. (B1)

If we now express this in terms of position x = ndhkl instead
of unit cells, we see that the peak in q space will be given
by

I (q) ∝
∫ ∞

−∞
Am(x,q) exp[iqx]dx

=
∫ ∞

−∞
exp

[
−2π2

( |x|
dhkl

g2 + x2

d2
hkl

e2
rms

)]
exp[iqx]dx.

(B2)

This will result in a Voigt profile, with the full width at half
maximum of the Lorentzian component

�Lorentz = 4π2g2

dhkl

(B3)

and that of the Gaussian component

�Gauss = 2
√

2 ln(2)
4π2erms

dhkl

. (B4)

The full width at half maximum (FWHM) of the complete
Voigt profile can be approximated by69

�Voigt ≈ c1�Lorentz +
√

c2(�Lorentz)2 + (�Gauss)2

= 4π2g2

dhkl

[
c1 +

√
c2 + 8 ln(2)e2

rms

g2

]
, (B5)

with c1 = 0.5346 and c2 = 0.2166. Inserting this into the
Scherrer equation [Eq. (1)] one obtains

ξ ≈ dhkl

2πg2

1

c1 +
√

c2 + 8 ln(2)e2
rms

g2

. (B6)

A common limiting case is that where erms = 0. This is
relevant when considering systems where g overwhelmingly
dominates. In this case, we have

ξ = dhkl

2πg2
. (B7)
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