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Correlation energy functional from jellium surface analysis
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Using the wave-vector analysis of the jellium exchange-correlation surface energy, we show that the PBEint
generalized gradient approximation (GGA) of Fabiano et al. [Phys. Rev. B 82, 113104 (2010)] is one of the
most accurate density functionals for jellium surfaces, being able to describe both exchange and correlation
parts of the surface energy, without error compensations. We show that the stabilized jellium model allows us
to achieve a realistic description of the correlation surface energy of simple metals at any wave vector k. The
PBEint correlation is then used to construct a meta-GGA correlation functional, modifying the one-electron
self-correlation-free Tao-Perdew-Staroverov-Scuseria (TPSS) one. We find that this new functional (named JS)
performs in agreement with fixed-node diffusion Monte Carlo estimates of the jellium surfaces, and is accurate
for spherical atoms and ions of different spin-polarization and for Hooke’s atom for any value of the spring
constant.
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I. INTRODUCTION

Kohn-Sham ground-state density-functional theory
(DFT),1,2 the most used method in first-principles
electronic calculations of quantum chemistry and
condensed-matter physics, is based on the approximations
of the exchange-correlation (XC) energy (Exc) and potential
(Vxc,σ = δExc/δnσ ). Here nσ is the spin density, σ =↑ and ↓.
In recent years, many XC functionals have been built, being
classified on the so-called “Jacob’s ladder.”3 The ground
on which the ladder lies is the Hartree approximation (XC
energy and potential are zero), and the first rung is the local
spin-density approximation (LSDA) constructed entirely from
the uniform electron-gas model:1

ELSDA
xc =

∫
dr nεunif

xc (n↑,n↓), (1)

where εunif
xc (n↑,n↓) is the exchange-correlation energy per

particle of an electron gas with uniform spin densities n↑ and
n↓.4,5

The next rungs of the Jacob’s ladder are the generalized
gradient approximation (GGA) and the meta-GGA that use
more ingredients in order to satisfy exact constraints of the
XC energy:

EGGA
xc =

∫
dr nεGGA

xc (n↑,n↓,∇n↑,∇n↓), (2)

and

EMGGA
xc =

∫
dr nεMGGA

xc (n↑,n↓,∇n↑,∇n↓,τ↑,τ↓), (3)

where τσ (r) are the positive Kohn-Sham kinetic energy
densities,

τσ (r) =
occ.∑
i

1

2
| ∇ψiσ (r) |2 , (4)

and ψiσ (r) are the occupied Kohn-Sham orbitals of spin σ .
(Unless otherwise stated, atomic units are used throughout,
i.e., e2 = h̄ = me = 1.)

These approximations are nowadays the most used because
of their computational efficiency and accuracy. Due to its
simplicity, no GGA functional can be accurate for both atoms
and solids.6 In spite of this severe limitation, there are accurate
GGAs for molecules (e.g., BLYP,7 revPBE,8 APBE,9 PBE10),
for solids (e.g., PBEsol,11 AM0512), for surfaces (e.g., PBEsol,
AM05, PBEint13), and for hybrid interfaces (e.g., PBEint). On
the other hand, meta-GGA14,15 can achieve good accuracy for
solids, atoms, and molecules, and might overcome difficult
problems in condensed-matter physics, as interaction of CO
molecule with Pt surface.16

Higher rungs of the ladder, such as optimized effective
potentials,17–19 hyper-GGA, and random-phase approximation
(RPA) methods have a nonlocal dependence of the Kohn-
Sham orbitals, showing a prohibitively high computational
cost. Moreover, the hyper-GGA, which is a fully nonlocal
correlation functional compatible with exact exchange, has an
important degree of empiricism, and even if it satisfies many
exact constraints, it is not as accurate as it was expected.20 The
random-phase approximation (RPA) method is very expensive
for a full self-consistent calculation, employing the occupied
and unoccupied Kohn-Sham orbitals. Non-self-consistent RPA
evaluations severely fail for Be2 binding energy,21 and unfortu-
nately show an important dependence on the chosen orbitals22

for molecules. This is not the case for bulk solids, for which
RPA is remarkably accurate.23 RPA-related methods, such
as the inhomogeneous Singwi-Tosi-Land-Sjölander (ISTLS)
approach,24,25 or the ones derived from the linear response
of time-dependent density-functional theory in the context
of adiabatic-connection-fluctuation-dissipation theorem, have
been barely applied to finite systems.

Jellium electron gas has become, along the years, a DFT
paradigm used to construct and to test XC approximations,
as well as to derive important exact properties of XC energy.
Jellium is a simple model of a simple metal, in which the
ion cores are replaced by a uniform positive background of
density n̄ = 3/4πr3

s = k3
F /3π2, and the valence electrons in

the spin-unpolarized bulk neutralize this background. Here rs

is the bulk density parameter (rs = 2.07 for Al and 3.93 for
Na), and kF is the bulk Fermi wave vector. The jellium surface
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energy (σ ) is the energy cost per unit area to create a planar
surface by cutting the bulk. Lang and Kohn26 reported for the
first time jellium surface LSDA self-consistent calculations
that showed early evidence that density functionals may work
for surface science. However, jellium XC surface energy (σxc)
was a long-standing puzzle: density functionals, RPA, and
time-dependent DFT methods27 agree well with each other but
disagree strongly with high-level correlated methods such as
Fermi hypernetted chain (FHNC//0)28 and old diffusion Monte
Carlo (DMC)29 calculations for jellium slabs. This puzzle was
resolved by new DMC calculations,30 by the inhomogeneous
Singwi-Tosi-Land-Sjölander approach,25 and by the jellium
surface wave-vector analysis at the RPA level.31 Indeed, all
the semilocal rungs of the Jacob’s ladder (LSDA, GGA, meta-
GGA) are reliable for jellium surfaces.

The wave-vector analysis of jellium XC surface energy
is an important tool for understanding how well an XC
approximation works, because it separates the long-range and
short-range XC effects. Langreth and Perdew32 showed that
the exact XC energy of any inhomogeneous system can be
obtained from a three-dimensional (3D) Fourier transform
(wave-vector analysis) of the spherical averaged XC hole
density, that is, a function of a 3D wave vector k. For a jellium
surface, exact constraints of this wave-vector-dependent XC
hole are known: at long wavelengths (k → 0) the surface
plasmons dominate, whereas at short wavelengths (k → ∞),
LSDA becomes accurate.32,33 These known limits have been
used to carry out a wave-vector interpolation correction to
LSDA,32 PBE-GGA,34 and TPSS-metaGGA.35

Moreover, recent 2D and 3D wave-vector analyses of the ex-
act RPA,31,36 ISTLS,25 and time-dependent DFT (TDDFT)27,37

calculations have been used to solve and understand the
jellium surface problem, and as accurate benchmarks for
density functionals.13,31,37 Thus such calculations become a
common test for density functionals, because they can reveal
the accuracy of the approximation for the surface energy at
any wave vector.

Recently, the PBEint GGA functional13 for hybrid inter-
faces has been constructed, with the aim to preserve, as much
as possible at the GGA level, the good properties of both
PBE and PBEsol, i.e., a good description of molecular and
solid-state properties, respectively. Its exchange enhancement
factor is

Fx(s) = 1 + κ − κ

1 + μ(s)s2/κ
, (5)

where s = |∇n|/[2(3π2)1/3n4/3] is the reduced gradient, κ =
0.804 is fixed from the Lieb-Oxford bound,10 and

μPBEint(s) = μGE + (μPBE − μGE)
αs2

1 + αs2
, (6)

with α = (μGE)2/[κ(μPBE − μGE)] = 0.197. Here μGE =
10/81 is the coefficient of the second-order gradient expansion
(GE) of exchange energy, and μPBE = 0.219 51 was derived
from the linear response of bulk jellium, but is also reasonably
accurate for heavy atoms.6,9 The value of α was fixed from
the constraint d2F PBEint

x (s)/d(s2)2|s=0 = 0, which ensures a
smooth functional derivative δEPBEint

x /δn. Equation (6) leads
then to the recovery of the second-order gradient expansion of
the exchange energy over a large range of the reduced gradient

(for s � 1 PBEint exchange is close to PBEsol exchange).13

In the rapidly varying density regime (s � 2.5), μPBEint →
μPBE, PBEint exchange behaves as PBE exchange. For the
correlation functional, PBEint has a PBE-like expression with
β = 0.052, fitted to jellium surfaces. A very similar value of β

has been also found for the RGE2 functional,38 which uses a
different exchange functional. The PBEint is accurate for bulk
solids and jellium surfaces because it recovers the second-order
gradient expansion in the slowly varying limit, as well as for
metal-molecule interfaces because it also recovers the PBE
behavior at medium and large values of the reduced gradient
s. Recently, good performance of the PBEint functional for
the description of electronic and structural properties of gold
nanostructures was also reported.39

PBEint GGA gives similar wave-vector analysis of the
jellium XC surface energy as PBEsol.13 However, in Sec. II,
we show that, unlike PBEsol, PBEint does not rely on an error
cancellation between the exchange and correlation parts of the
jellium surface energy, being able to accurately account not
only for σxc , but also for σx and σc separately, at every 3D
wave vector k. By employing a reliable model for the simple
metal surfaces (stabilized jellium model), we achieve a realistic
picture of the correlation surface energy σc(k) of Al (111), and
we show significant differences from the jellium model. Our
calculations give indication for the behavior of exact σxc and
σc of real metal surfaces.

Because the PBEint correlation parameter β = 0.052 can
capture the right physics of the exact correlation for jellium
surfaces, and from this point of view is a nonempirical
parameter, it can be used further in construction of more
accurate approximations for the correlation hole and energy.
Thus, in Sec. III, we modified the TPSS meta-GGA correlation
functional,14 which is self-correlation free for one-electron
systems, to recover the PBEint correlation energy at slowly
varying density regime, and at jellium surfaces. This new
jellium-surface (JS) correlation functional is remarkably ac-
curate for jellium surfaces, atoms, ions, and Hooke’s atom.
Finally in Sec. IV, we summarize our conclusions.

II. WAVE-VECTOR ANALYSIS OF JELLIUM AND
STABILIZED JELLIUM XC SURFACE ENERGIES

In our calculations we use self-consistent LSDA orbitals
and densities, as in Refs. 13, 31, 34, 35, and 37. It is fair
and reasonable to compare the energies predicted by different
functionals for the same density. Self-consistency effects on
the density from corrections to LSDA are small for jellium,
where the self-interaction errors are negligible, as shown in
Figs. 1 and 2 of Ref. 40 and Fig. 1 of Ref. 41. Moreover,
because LSDA orbitals give very good results in describing
jellium surfaces,37 we also use them for the stabilized jellium
calculations (see Sec. II B below), similar to Ref. 42.

A. Jellium

Let us consider a jellium surface at z = 0. This system is
translationally invariant in the plane perpendicular to the z axis.
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FIG. 1. (Color online) Comparison of the PBE, TPSS, PBEsol,
and PBEint exchange-only jellium surface energies with the exact
results. σ exact

x were calculated in Ref. 36, using the adiabatic-
connection-fluctuation-dissipation theorem.

This symmetry greatly simplifies the Kohn-Sham equations
because veff(r) = veff(z), and the normalized orbitals become

�k||,l(r) = 1

A1/2
eik||r||φl(z), (7)

where A is the cross-sectional area, k|| and r|| are the wave
vector and the position in the plane perpendicular to the z axis,
and φl(z) are solutions of the one-dimensional Kohn-Sham
equations,

[
−1

2

d2

dz2
+ veff(z)

]
φl(z) = εlφl(z), (8)

with l = 1,2, . . . ,lM is the subband quantum number (lM is the
highest occupied level) for a jellium slab, and l is a continuous
quantum index in the case of an infinite jellium surface.26
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FIG. 2. (Color online) LSDA, PBE, PBEsol, PBEint, and TDDFT
wave-vector-resolved correlation surface energies γc(k), versus
k/2kF , for a jellium slab of thickness a = 2.23λF and rs = 2.07.
The area under each curve represents the corresponding correlation
surface energy; see Table I.

TABLE I. PBE, PBEint, PBEsol, TDDFT, and DMC jellium
surface correlation energies (erg/cm2) of the slabs shown in Figs. 2
and 3. The DMC values are extrapolated for every slab, taking
into account the quantum size effects of the slabs. The values
which best agree with DMC ones are indicated with bold font.
(1 hartree/bohr2 = 1.557 × 106 erg/cm2.)

PBE PBEint PBEsol TDDFT DMC

rs = 2.07 720 661 604 742 674 ± 45
rs = 3 262 233 220 275 230 ± 10

Because the sums over k|| can be done analytically in many
calculations36 due to

1

A

∑
k||

−→
∫

d2k||
(2π )2

, (9)

the jellium surface becomes in principle a one-dimensional
problem.

The surface exchange-correlation energy is26,34

σxc =
∫ ∞

−∞
dz n(z){εxc([n]; z) − εunif

xc (n̄)}

=
∫ ∞

0
d

(
k

2kF

)
γxc(k), (10)

where γxc(k) is the 3D wave-vector analysis, that is,

γxc(k) =
∫ ∞

0
du 8kF u2bxc(u)sin(ku)/(ku), (11)

where

bxc(u) =
∫ ∞

−∞
dz n(z){nxc([n]; z,u) − nunif

xc (n̄; u)}, (12)

where nxc([n]; z,u) is the spherical average of the coupling-
constant averaged XC hole density.31,37 Here the 3D wave
vector k is defined as k =

√
k||2 + k2

z .
The exact low-wave-vector limit of γxc is32

γxc(k → 0) = kF

4π

(
ωs − 1

2
ωp

)
k, (13)

where ωp = (4πn̄)1/2 and ωs = ωp/
√

2 are the bulk- and
surface-plasmon energies, and n̄ is the bulk density. The exact
high-wave-vector limit of γxc is not known, but LSDA is very
accurate in this limit32,33 of short-wavelength oscillations.

In Fig. 1 we show a comparison of σx at semi-infinite jellium
surfaces, for various density functionals, in the range 2 � rs �
6 where most of the metals lie. In these calculations, we use
the physically motivated Eq. (15) of Ref. 41 to interpolate
or extrapolate to any rs (solving four linear equations fitted at
rs = 2, 3, 4, and 6). The exact values σ exact

x for rs = 2, 3, 4, and
6 are taken from Table II of Ref. 36. Similar calculations were
already reported (see Ref. 35 and Fig. S3 of the supplementary
material of Ref. 11).

Both PBEsol and PBEint are very accurate for any rs , but
PBEint is almost exact in the range 2 � rs � 4, outperforming
all other functionals. We recall that σ PBEint

xc ≈ σ PBEsol
xc ≈

σ TPSS
xc ≈ σ DMC

xc , where σ DMC
xc are the fixed-node diffusion

Monte Carlo (DMC) calculations of Ref. 30. (See also Table II
of Ref. 25.) Thus while TPSS meta-GGA and PBEsol GGA
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FIG. 3. (Color online) Same as Fig. 2, but for a jellium slab
of thickness a = 2.23λF and rs = 3. The area under each curve
represents the corresponding correlation surface energy; see Table I.

rely on an error compensation between σx and σc, PBEint gives
very accurate results for both σx and σc.

In order to understand better the PBEint behavior at jellium
surfaces, we perform the wave-vector analysis of Eq. (11). The
LSDA, PBE, PBEsol, and PBEint exchange-correlation hole
functions are accurately known. See Refs. 4, 43, and 44 for the
LSDA exchange-correlation hole, Ref. 43 for the smoothed
PBE exchange hole model and Ref. 45 for the PBE correlation
hole, Ref. 37 for PBEsol XC hole density, and Ref. 13 for
PBEint XC hole density.

In Ref. 13, it was shown that γ PBEint
xc (k) agrees very well

with γ PBEsol
xc (k), being between the most accurate GGAs for

surface energies. A detailed comparison of PBE, PBEsol, and
exact jellium exchange surface energies was reported in Fig. 6
of Ref. 37. However, the nonoscillatory model of the GGA
exchange hole is inaccurate near k = 2kF . Thus we focus only
on the correlation part. We choose two jellium slabs of the same
thicknesses a = 2.23λF and rs = 2.07 (which corresponds to
Al) and rs = 3, respectively. These slabs have been used also
in Refs. 31 and 37.

In Fig. 2, we show a comparison of γc(k) for several density
functionals and for a sophisticated TDDFT calculation37 that
uses the adiabatic-connection-fluctuation-dissipation theorem.
The TDDFT curve is exact at low wave vectors and high
wave vectors, but gives surface correlation energies similar
with the RPA ones,27 e.g., considerably higher than the
DMC benchmarks results (see Table I). Thus we use TDDFT
calculation for comparison only in the low- and high-wave-
vector regimes.

γc(k)PBEint is remarkably close to γc(k)TDDFT in both
low- and high-wave-vector regions, and its integrated surface
correlation energy agrees best with the DMC data (Table I).
These facts indicate that γc(k)PBEint is the most accurate curve
of Fig. 2, showing that the parameter β = 0.052 used in the
construction of PBEint correlation captures the behavior of
the exact correlation energy for simple metals. The same
PBEint good behavior is shown in Fig. 3, for the jellium slab
with rs = 3.

Note that even if the PBEint correlation parameter
(β = 0.052) is between the PBE (β = 0.0667) and PBEsol
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FIG. 4. (Color online) Normalized valence electrons densities of
the jellium and stabilized jellium models, at a semi-infinite surface of
rs = 2.07 versus z/λF . Also shown is the density of a thick (11-layer)
real Al slab. The surface plane is at z = 0, the bulk is at z � 0, and
the vacuum is at z � 0.

(β = 0.046) values, inspection of Figs. 2 and 3 shows
that PBEint has the steepest curve in the plasmonic region
(k/2kF → 0). Moreover, γ PBEint

c (k) correctly recovers the right
γ TDDFT

c (k) at small k, γ LSDA
c (k) at large k, and

∫ ∞
0 dkγ PBEint

c (k)
is the most accurate. Thus β = 0.052 can be considered an
(almost) exact correlation hole constraint for jellium surfaces.

B. Stabilized jellium

In the last subsection we have found that PBEint is very
accurate for the ideal, jellium surfaces. However, the jellium
model has serious deficiencies in describing simple metals: for
rs ≈ 2 the jellium total surface energy σ is negative, and for
rs ≈ 6, the jellium bulk modulus is negative. These limitations
were solved in the stabilized jellium model,46 by taking into
account the interaction between the ions and electrons through
a simple empty-core pseudopotential as

w(r) =
{−z/r, r � rc

0, r < rc,
(14)

and by eliminating the spurious self-repulsion energy of
the positive background in each cell.46 Here z is the ion
charge, and rc is the core radius, which is defined by
Eq. (26) of Ref. 46. (The corresponding parameters for the
simple metal Al are rs = 2.07, rc = 1.11, and z = 3.) In the
practical implementation of the model, to avoid the need
to exactly define the bulk structure, the stabilized jellium
model is turned into a simple structureless pseudopotential
model. This is achieved by taking the difference between the
pseudopotential and the electrostatic potential of the jellium
positive background to be constant in the bulk (averaging
over a Wigner-Seitz cell) and zero outside (see Sec. II of
Ref. 46). The stabilized jellium model gives accurate surface
energies of simple metals (see Fig. 2 of Ref. 46) and, moreover,
the remaining small discrepancy with real surfaces can be
corrected by including geometric effects using a “corrugation
factor.”46,47
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FIG. 5. (Color online) PBEint wave-vector-resolved XC surface
energies γxc(k) versus k/2kF , for semi-infinite jellium and stabilized
jellium surfaces. The bulk parameter is rs = 2.07. The exact slope
is given by Eq. (13). The area under each curve represents the
corresponding XC surface energy; see Table II.

In Fig. 4 we show the normalized densities n(z)/n̄ at
the semi-infinite jellium, semi-infinite stabilized jellium, and
11-layer-slab real Al surfaces. The calculation for real Al
was done at the PBEint self-consistent level (LSDA gives a
similar density), and computational details are given in the
next subsection. Figure 4 confirms that the stabilized jellium
density is steeper46 and agrees in detail with the valence density
of real metal, showing that the electrons near the surface are
more tightly bounded than in the jellium model case. For a
slab, the same behavior can be seen in Fig. 1 of Ref. 42.

Because the stabilized-jellium model is an appropriate
model for real surfaces, it is thus important to understand how
the wave-vector analysis is modified in this more realistic case.
We thus report a comparison of the γxc(k) and γc(k) for jellium
and stabilized jellium of semi-infinite surfaces of rs = 2.07,
at the PBEint level. Stabilized jellium model calculations use
the regular bulk density n̄.

In Fig. 5 we show that γxc(k) of the stabilized jellium is
always smaller than the jellium one. Moreover, both curves
recover the exact behavior at k → 0 [see Eq. (13)], and the
accurate LSDA at k → ∞. Thus a steeper density decreases
considerably σx , whereas σc remains almost constant, as shown
in Table II.

Finally, we show in Fig. 6 the surface correlation behavior.
Even if the integrated σc agree well for both jellium and
stabilized jellium (see Table II), their wave-vector analyses
show qualitative differences: (i) the plasmonic region (small
values of k) is more important for the stabilized jellium (and
consequently in real simple metals); (ii) the short-wavelength

TABLE II. PBEint semi-infinite jellium and stabilized jellium
correlation and XC surface energies (erg/cm2), for bulk parameter
rs = 2.07.

Jellium Stabilized jellium

σc 678 667
σxc 2984 2481

(k → ∞) region is less important for real surfaces, and (iii) at
intermediate wave vectors, the variation of σc decreases in the
stabilized jellium model.

C. Simple metal: Aluminium

In this last subsection we present results for the real Al(111)
surface, studied in the full self-consistent Kohn-Sham scheme,
with PBE, PBEsol, and PBEint functionals. The calculations
are performed within DFT, in a plane-wave pseudopotential
approach.48 Symmetric slabs of 11 layers thickness have been
used, allowing all layers to relax in the direction perpendicular
to the surface. Ultrasoft pseudopotentials with a cutoff of
35 Ry, a 10 × 10 × 1 k-point grid, and a vacuum region of 14 Å
thick have been employed. Surface energies were computed
following Ref. 49.

In Table III we show the equilibrium lattice constant, bulk
modulus, and surface energy of Al(111). The experimental
values of the bulk modulus and lattice constants have been
corrected for finite temperature and phonon zero-point effects,
according to the careful analysis of Refs. 50 and 51. Note that
these corrections are more than 7% for bulk moduli.

For the equilibrium lattice constant PBE is in very good
agreement with experiments. This fact shows that in the Al
bulk, there are important regions with relatively high values of
the reduced gradient s. We also recall that the maximum value
of s in Al (111) bulk is smax = 1.4, considerably higher than in
other bulk solids. (See Table III of Ref. 52). For bulk modulus,
both PBEint and PBEsol are accurate, being very close to the
corrected experimental value.

For the real surface, PBEint and PBEsol give similar results,
much better than the PBE one. This trend is in accord with our
jellium surface calculations. We recall that for Al(111), the
jellium surface is completely wrong (σ = −642 erg/cm2), the
stabilized jellium gives σ = 801 erg/cm2, and the stabilized
jellium together with a corrugation factor [see Eq. (56) of
Ref. 46] gives σ = 921 erg/cm2,46 very close to our full DFT
calculations and to the experimental value.

Clearly the good performance of the PBEint functional is
not only related to the β coefficient, as the results in Table III
take also into account exchange and self-consistent effects.
Nevertheless, these results show that the PBEint functional
yields a very accurate description of simple metals, being more
accurate than PBEsol for lattice constant and more accurate
than PBE for surface energies and bulk modulus.

TABLE III. Equilibrium lattice constant, bulk modulus, and sur-
face energy of Al(111) from PBE, PBEint, and PBEsol self-consistent
calculations. The experimental data were corrected for thermal
and zero-point effects (see Table I of Ref. 51). The uncorrected
experimental data are presented in brackets. The best results for each
row are in bold font.

PBE PBEint PBEsol Expt.

a0 (Å) 4.025 4.009 3.998 4.022 (4.05)
B (GPa) 77.26 81.78 81.90 81.3 (76)

σ (erg/cm2) 888 1027 1035 1140
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FIG. 6. (Color online) PBEint wave-vector-resolved correlation
surface energies γc(k) versus k/2kF , for semi-infinite jellium and
stabilized jellium surfaces. The bulk parameter is rs = 2.07. The area
under each curve represents the corresponding correlation surface
energy; see Table II.

III. META-GGA CORRELATION FUNCTIONAL

In the previous section we showed that the PBEint param-
eter β = 0.052 correctly describes the correlation in simple
metals. In this sense, β = 0.052 is a nonempirical parameter
that can be used further in developing approximations on the
higher rungs of the Jacob’s ladder for both XC energy and hole.

In this section we propose the jellium surface (JS) meta-
GGA correlation functional that is in fact a self-correlation
correction to the PBEint GGA correlation, and is constructed
in a similar way as TPSS and revTPSS meta-GGA correlation
functionals.14,15,53

A. Construction of JS correlation functional

The meta-GGA correlation energy is14,53

EMGGA
c =

∫
dr nεrev

c

[
1 + dεrev

c zq
]
, (15)

where

z = τW

τ
, (16)

with τW = |∇n|2/(8n) being the von Weizsäcker kinetic-
energy density2 and τ is the total Kohn-Sham positive kinetic-
energy density [see Eq. (4)]. εrev

c is a revision of PKZB
meta-GGA correlation functional,54 and has the general form

εrev
c = εGGA

c [1 + C(ζ,ξ )zm] − [1 + C(ζ,ξ )]zm
∑ nσ

n
ε̃σ
c ,

(17)

with

ε̃σ
c = max

[
εGGA
c (nσ ,0,∇nσ ,0),εGGA

c (n↑,n↓,∇n↑,∇n↓
]
.

(18)

Here

ζ = n↑ − n↓
n

, ξ = |∇ζ |
2(3π2n)1/3

(19)

are the relative spin polarization and its reduced gradient.

For any C(ζ,ξ ), d, and positive integers q and m, EMGGA
c =

0 for any fully spin-polarized one-electron density (defined by
ζ = 1 and z = 1). In the TPSS case, GGA = PBE, q = 3, and
m = 2 (which represent minimum values for these parameters
in order to satisfy exact constraints, such as recovery of
gradient expansion). revTPSS also uses q = 3 and m = 2, but
has a GGA expression similar to PBE but β is rs dependent
[see Eq. (3) of Ref. 15] with, e.g., β(rs = 2) = 0.059,
β(rs = 4) = 0.0546, and β(rs = 6) = 0.0517. The revTPSS
parametrization of β is a fit to the exact β(rs) parameter of
the second-order gradient expansion of the correlation energy,
derived by Hu and Langreth.55

For JS we chose GGA = PBEint, and q = m = 4, such
that in the slowly varying density regions, JS recovers faster
the PBEint behavior. This choice was motivated by our
observation that for jellium surfaces the PBEint correlation
is a remarkably good choice.

For the uniform density scaling

nγ (r) = γ 3n(γ r), γ > 0, (20)

in the low-density limit (γ → 0), the JS meta-GGA scales
correctly as EJS

c = γW PBEint, where W PBEint is a negative
constant given by using the value β = 0.052 in Eq. (39) of
Ref. 53. In the high-density limit (γ → ∞), EJS

c correctly
scales to a negative, n-dependent constant. In the large gradient
limit (s → ∞), JS correctly vanishes. In the slowly varying
limit (small s), JS recovers PBEint correlation.

We find C(ζ,ξ ) and d similar as in TPSS construction:53

C(0,0) and d are fixed by the requirement that for jellium
surfaces, where the self-interaction error is negligible and
PBEint works very well, JS recovers PBEint for any rs .
The spin-dependent behavior of C(ζ,ξ ) is instead fixed by
requiring that for a Wigner crystal jellium the correlation is
independent of ζ for 0 < ζ < 0.7. This is obtained in practice
by considering one-electron Gaussian densities of different
spin polarization 0 < ζ < 1. Thus we propose the following:

d = 3.7, (21)

and

C(ζ,ξ ) = 0.353 + 0.87ζ 2 + 0.5ζ 4 + 2.26ζ 6{
1 + 1

2

√
ξ [(1 + ζ )−4/3 + (1 − ζ )−4/3]

}4 . (22)

The denominator of Eq. (22) is a dumping factor dependent
on

√
ξ . In the case of an electron gas with slowly varying

spin densities, the gradient expansion of the correlation energy
is known to contain terms depending on |∇ζ |2 and ∇n · ∇ζ

(which, however, negligibly contribute to the correlation
energy56), but not on

√
ξ . Nevertheless, we can state that our

construction is correct, because εJS
c → εPBEint

c in the slowly
varying limit due to the choice q = m = 4. The denominator
of Eq. (22) is thus only required to account for self-correlation
in atoms.

In Fig. 7, we show the correlation energy per particle εc

of TPSS, JS, and PBEint for the Li atom and the Ar15+ ion,
versus the radial distance from the nucleus. For both atoms,
εTPSS
c and εJS

c are correctly zero in the monovalent region,
where the self-correlation correction removes the PBEint bad
behavior.
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FIG. 7. (Color online) Correlation energy per electron (hartree)
versus the radial distance r (bohr) from the nucleus, for Li atom
(upper panel), and for Ar15+ (lower panel).

In Table IV, we report correlation energies of the one-
electron Gaussian densities with different spin polarization
ζ . All meta-GGAs are correct for ζ = 1, and all of them
give correlation energies practically independent on ζ in the
range 0 � ζ � 0.7. These results reveal that JS can accurately
describe correlation energies of low-density Wigner crystals,
where the electrons are localized near the lattice sites.

B. Results

1. Jellium surfaces

In Table V we show that JS is very accurate for jellium
surfaces, all the correlation values being in the range of
DMC estimations. Moreover, JS and PBEint have similar
performance, showing that our self-interaction correction
correctly does not have any effect for jellium surfaces, where
the electrons are delocalized. TPSS and PBE overestimate the
jellium surface correlation energies, and PBEsol underesti-
mates them for 2 � rs � 3. Thus the most accurate values in
Table V, all in the range of DMC calculations, are given by
revTPSS, JS, and PBEint.

TABLE IV. Correlation energies (hartree) of the one-electron
Gaussian densities with relative spin-polarization ζ .

ζ TPSS revTPSS JS

0.0 −0.021 −0.022 −0.019
0.1 −0.021 −0.022 −0.019
0.2 −0.020 −0.022 −0.019
0.3 −0.020 −0.022 −0.019
0.4 −0.020 −0.021 −0.019
0.5 −0.020 −0.021 −0.019
0.6 −0.019 −0.021 −0.019
0.7 −0.018 −0.020 −0.018
0.8 −0.017 −0.018 −0.017
0.9 −0.012 −0.013 −0.013
1.0 0.000 0.000 0.000

TABLE V. Semi-infinite jellium surface correlation energies
(erg/cm2) for PBE, PBEint, and PBEsol GGA functionals and TPSS,
revTPSS, and JS meta-GGA functionals. Results within the DMC
error bar are denoted with boldface.

rs PBE PBEint PBEsol TPSS revTPSS JS DMC

2 829 745 708 827 771 749 768 ± 50
3 276 246 234 274 251 248 242 ± 10
4 124 111 105 125 111 112 104 ± 8
6 40.2 35.4 33.3 39.6 34.8 35.9 31 ±...

2. Hooke’s atom

To further assess the JS meta-GGA correlation functional
we consider in this subsection Hooke’s atom. This model
system represents two interacting electrons in an isotropic har-
monic potential of frequency ω. The XC wave-vector analysis
of the Hooke’s atom is different from the jellium surfaces, be-
cause in the large k limit (k → ∞), the LSDA is not accurate.33

Thus this system is a challenging test for the JS meta-GGA.
Moreover, at small values of ω, the electrons are strongly
correlated, and at large values of ω, they are tightly bound,
two important cases in many condensed-matter applications.

The exact ground-state solutions of the Hooke’s atom
correlated wave function are known:57 Introducing the center
of mass R= (r1 + r2)/2, and the relative coordinate r =
r1 − r2, the two-particle Hamiltonian is separable, and the
Schrödinger equation decouples in two separate equations
depending only on R and r, respectively [see Eqs. (6) and
(7) of Ref. 57].

The center of mass behaves as a 3D harmonic oscillator
of frequency ωR = 2ω,57 whose solution is well known. The
eigenvalue problem for the relative motion is57[

−1

2
∇2

r + 1

2
ω2

r r
2 + 1

2r

]
φ(r) = εφ(r), (23)

with ωr = ω/2. Exact analytical ground-state solutions of
Eq. (23) are known for special values of ω.57 They have the
form

φ(r) = φ(r) ∼ u(r)

r
, (24)

where

u(r) = e−ρ2/2ρ

p−1∑
ν=0

aνρ
ν, (25)

with ρ = √
ωrr , and p an integer (p � 2). For any p � 2,

Eqs. (24) and (25) provide an exact ground-state solution,
whose corresponding ω is obtained from a nonlinear equation
[see Eq. (25) of Ref. 57]. Thus there is a one-to-one
correspondence between the special values of ω for which
analytical ground state [Eqs. (24) and (25)] exists, and the
power of the polynomialp that defines this ground state.

Let us consider the classical electron distance57

r0 = (
2ω2

r

)−1/3
, (26)

which plays a similar role as λF in the case of jellium
surfaces. In Fig. 8 we show the normalized exact ground-state
densities n(r)r3

0 for different frequencies. The solutions with
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FIG. 8. (Color online) Exact normalized ground-state electron
densities n(r)r3

0 of the Hooke’s atom with different frequencies,
versus the radial distance r/r0. Here r0 is the classical electron
distance defined in Eq. (26). p represents the order of the polynomial
of Eq. (25). For p = 2, r0 = 2; for p = 4, r0 = 11.4425; for
p = 6, r0 = 27.9349; for p = 8, r0 = 51.5285; and for p = 11,
r0 = 100.2476. In all cases,

∫ ∞
0 dr4πr2n(r) = 2.

2 � p � 4 [see Eq. (25)] represent the low-correlation regimes
(or tightly bounded regimes), and the solutions with p � 8
are the strongly correlated regimes. In the strong-correlated
case, the region near the “nucleus” of the Hooke’s atom has
a deep “hole” due to the strongly correlated electrons, and,
moreover, the density becomes more localized over a r0 length.
As p → ∞, the electrons are perfectly localized around r0

(note that in this case r0 → ∞).
We calculate the exact correlation energies for the first ten

ground-state exact solutions of the Hooke’s atom (2 � p �
11), using the same procedure described in Ref. 58. Our exact
correlation results are reported in the lower panel of Fig. 9.

In the upper panel of Fig. 9, we show the accuracy of several
correlation functionals. We use the exact densities and orbitals.
As we mentioned at the beginning of Sec. II, it is a common,
fair practice to test different functionals for the same density.
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FIG. 9. (Color online) Upper panel: Errors of several correlation
functionals Eapprox

c − Eexact
c (hartree) versus the classical electron

distance r0. Lower panel: Exact correlation energy Eexact
c (hartree)

versus the classical electron distance r0 (bohr).

For these unpolarized systems, τ = τW so z = 1, and ζ = 0,
and thus the construction of C(0,0) and d becomes essential for
describing this two-electron system. The JS meta-GGA is very
accurate over the whole frequency regimes, including tightly
bounded and strongly correlated ones,58,59 outperforming all
the other approximations.

These results, which are not related to jellium surfaces,
show that JS meta-GGA may be one of the most accurate
correlation functionals for many-electron systems.

3. Atoms and ions

Finally, we consider briefly an application to real systems,
employing the JS correlation functional to compute the
correlation energy of several atoms. A more comprehensive
study of real systems (e.g., molecules) is beyond the scope of
this work and will be the subject of a future investigation.

In Table VI we report the correlation energy per electron
Ec/N of 15 spin-unpolarized spherical atoms and ions (Ar6+,
Ar, Kr, Xe, Zn, two-electron systems: He, Li+, Be2+; four-
electron systems: Be, B+, C2+, N3+, O4+; and ten-electron
systems: Ne, Ar8+) , and 11 spin-polarized spherical atoms and
ions (H, N, O+, and three-electron systems: Be+, Li, Ar15+,
C3+, N4+, B2+, O5+, Ne7+). We use analytic Hartree-Fock
densities and orbitals.60

For spin-unpolarized systems, all functionals give rather
similar results with differences of few mHa per electron.
None of the investigated functionals shows a clearly superior
performance, nevertheless, the JS and PBEint functionals give
overall the best mean absolute error (MAE) and mean absolute
relative error (MARE). This shows that PBEint and JS better
describe the correlation.

For spin-polarized systems, on the other hand, the JS
functional clearly outperforms the other functionals yielding
always the best agreement with the reference values, except
for the O+ atom, and the best overall performance with a MAE
of 1.1 mHa per electron. This result provides an indication for
the accuracy of Eq. (22).

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper we have shown that the PBEint correlation
functional accurately describes jellium surfaces at any wave
vector k, giving a very accurate surface wave-vector analysis
not only for total XC energy, but also for exchange and
correlation parts. Thus at the simple but accurate PBEint GGA
level, we have performed a wave-vector analysis of stabilized
jellium, which is a realistic model of simple metals, and
we have obtained a good description of surface energies of
simple metals at any wave vectors. We have found qualitative
differences between jellium and stabilized jellium correlation
surface energies, which are reported in Figs. 5 and 6. These
findings should be a starting point for the investigation of
other differences between jellium and real metals, e.g., the
asymptotic behaviors of XC energy per particle, and XC
potential far outside the surface.63,64

We have shown that the PBEint correlation parameter
β = 0.052 captures the exact physics of jellium surfaces, and
is thus an exact hole constraint. Further, we have performed
a self-interaction correction to the PBEint correlation, by
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TABLE VI. Correlation energies per electron (Ec/N , mHa) of spherical atoms and ions with Hartree-Fock analytic orbitals and densities
(Ref. 60). Best results are indicated in boldface.

Atom PBE PBEint PBEsol TPSS revTPSS JS Ref.

Spin-unpolarized atoms and ions
He −21.0 −24.5 −26.3 −21.5 −23.1 −21.1 −21.0a

Li+ −22.4 −26.4 −28.3 −22.8 −24.3 −22.5 −21.7a

Be2+ −23.1 −27.2 −29.3 −23.5 −24.7 −23.2 −22.2a

Be −21.4 −24.6 −26.1 −21.7 −23.1 −21.7 −23.6a

B+ −23.0 −26.5 −28.2 −23.4 −24.7 −23.6 −27.8a

Ne −35.1 −39.2 −41.2 −35.4 −36.5 −38.0 −39.1a

Ar −39.3 −43.5 −45.5 −39.5 −40.5 −42.6 −40.1a

Kr −49.1 −53.8 −56.0 −49.2 −49.9 −53.3 −57.4b

Xe −54.0 −58.8 −61.0 −54.1 −54.7 −58.5 −63.5b

Zn −46.9 −51.5 −53.7 −47.0 −47.8 −51.0 −56.2b

Ar8+ −41.0 −46.1 −48.5 −41.4 −42.1 −44.9 −39.9a

Ar6+ −38.3 −43.2 −45.6 −38.7 −39.6 −42.2 −41.3a

C2+ −24.0 −27.7 −29.6 −24.5 −25.7 −24.9 −35.1a

N3+ −24.7 −28.6 −30.5 −25.2 −26.4 −25.8 −35.1a

O4+ −25.3 −29.2 −31.2 −25.7 −26.9 −26.4 −38.5a

MAE 5.3 4.2 4.4 5.2 4.8 4.2
MARE 0.13 0.12 0.14 0.13 0.12 0.11

Spin–polarized atoms and ions

H −6.0 −7.2 −7.9 0.0 0.0 0.0 0.0
Ne7+ −19.4 −23.2 −25.2 −18.8 −19.5 −18.5 −17.0a

Be+ −18.0 −21.3 −23.0 −17.4 −18.3 −16.9 −15.8a

Li −17.2 −20.2 −21.7 −16.5 −17.5 −16.0 −15.1a

Ar15+ −19.6 −23.7 −25.8 −19.0 −19.7 −18.8 −17.4a

C3+ −18.9 −22.5 −24.3 −18.2 −19.1 −17.8 −16.5a

N4+ −19.0 −22.8 −24.7 −18.4 −19.3 −18.0 −16.7a

B2+ −18.6 −22.0 −23.8 −17.9 −18.8 −17.4 −16.2a

O+ −27.1 −30.8 −32.6 −27.9 −29.0 −28.6 −27.7a

O5+ −19.2 −23.0 −24.9 −18.6 −19.4 −18.2 −16.8a

N −25.9 −29.3 −31.0 −26.5 −27.7 −27.0 −26.9a

MAEc 2.0 5.3 7.1 1.4 2.2 1.1
MAREc 0.12 0.31 0.41 0.08 0.13 0.07

aReference 61.
bReference 62.
cDoes not include H atom.

constructing the jellium-surface-meta-GGA. This new JS
functional is almost exact for jellium surfaces, accurate for
atoms and ions, and performs remarkably well for the Hooke’s
atom of any frequency, including the tightly bounded and
strongly correlated regimes.

The JS meta-GGA correlation hole model can be
constructed using the reverse engineering method proposed in
Ref. 35 for the TPSS case. Because of its good accuracy, our
JS meta-GGA correlation energy (and hole) functional can be
employed in further research for developing new hyper-GGAs.

Finally, we note that in this work we presented non-self-
consistent results, starting from accurate densities, i.e., LSDA

for jellium surfaces, Hartree-Fock for atoms and ions, or exact
density for the Hooke’s atom. This is common procedure for a
first assessment of the correlation functional. In a forthcoming
paper we will investigate self-consistency effects as well
as an appropriate exchange functional to be used together
with JS.
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