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Generation of entangled-photon pairs from biexcitons in CuCl thin films: Nano-to-bulk
crossover regime
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We have constructed a theoretical framework of biexciton-resonant hyperparametric scattering for pursuit
of high-power and high-quality generation of entangled-photon pairs. Our framework is applicable to the
nano-to-bulk crossover regime where the center-of-mass motions of excitons and biexcitons are confined and
material surroundings and the polarization correlation of generated photons can be considered. We have analyzed
the generation of ultraviolet entangled photons from CuCl film with and without dielectric microcavity and
revealed that in the nano-to-bulk crossover regime we generally get a high performance from the viewpoint
of statistical accuracy and the generation efficiency can be enhanced by the optical cavity while maintaining
the high performance. The nano-to-bulk crossover regime has a variety of degrees of freedom to control the
entangled-photon generation, and the scattering spectra explicitly reflect quantized exciton-photon coupled
modes in finite structures.
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I. INTRODUCTION

Entangled-photon pairs have been discussed in relation with
the Einstein-Padolsky-Rosen (EPR) paradox,1 and nowadays
they play an important role in quantum-information technolo-
gies. The pursuit of high-quality and high-efficiency genera-
tion of entangled photons is a fascinating subject in the fields
of quantum optics and solid-state physics. In addition to the
standard generation method by parametric down-conversion
(PDC) in second-order nonlinear crystals,2,3 the generation
scheme using single semiconductor quantum dots4–8 attracts
much attention, because single pairs of entangled photons
are generated in principle from a single dot, and it can
be a deterministic source of entangled pairs. Recently, the
generation efficiency is highly enhanced by implementing an
optical cavity by distributed Bragg reflectors (DBRs)6 and also
by molecule of micropillars.8 Further, the entangled-photon
generation by current injection has been reported.7 On the
other hand, the entangled-photon pairs are also considered as
an excitation light source, and it is of growing importance for
the next-generation technologies of fabrication and chemical
reaction.9 For this purpose, it is essential to generate high-
power and high-quality entangled-photon beams, and this
high-power but probabilistic generation is another direction of
research in addition to the deterministic generation by single
quantum dots.

In the process of PDC,2,3 an incident photon with frequency
ωin and wave number kin splits into two photons (ω1,k1) and
(ω2,k2) satisfying the conservations of energy ωin = ω1 + ω2

and of wave vector kin = k1 + k2. This second-order nonlinear
process creates polarization-correlated entangled-photon pairs
in nonlinear optical crystals with birefringence. On the other
hand, Savasta et al.12 suggested and Edamatsu et al.10

experimentally demonstrated that ultraviolet entangled-photon
pairs are generated by biexciton-resonant hyperparametric
scattering (RHPS) in CuCl (see Fig. 1). The RHPS is a
third-order nonlinear process, in which two incident pho-
tons resonantly create a biexciton (excitonic molecule) with

(2ωin,2kin) and it spontaneously collapses into a photon
pair satisfying 2ωin = ω1 + ω2 and 2kin = k1 + k2. Since the
lowest level of biexcitons in CuCl, which was resonantly
excited in the experiment, has zero angular momentum,11

the emitted pair consists of left- and right-circularly po-
larized photons conserving the total angular momentum.
Owing to the two possible decay paths through exciton-
polariton branches, the polarizations of emitted photons are
entangled.

The generation efficiency of RHPS is quite high compared
to that of PDC, because of the giant oscillator strength of
the two-photon absorption involving the biexcitons in CuCl.11

However, in the first experimental report,10 a part of detected
pairs has no entanglement, and this noise was subtracted in
the estimation of entanglement of the generated pairs. As
indicated by Oohata et al.,13 the main contribution of the
unentangled pairs is the accidental collapse of two biexcitons,
and this problem has been successfully suppressed by using
high-repetition and weak-power laser pulses, because the
number of unentangled pairs (noise) is increased by Iin

4

for increasing the pumping power Iin while the number of
entangled pairs (signal) is proportional to Iin

2. However, this
fundamental trade-off problem between signal intensity and
S/N ratio should be resolved from the viewpoint of material
structures14 in addition to the improvement of pumping
condition in Ref. 13. While one solution is using single
quantum dots as deterministic sources,4–8 for the pursuit
of high-power generation there is a proposal of using an
optical cavity embedding an excitonic quantum well for the
improvement of generation efficiency.15,16 Furthermore, owing
to the rapid radiative decay by the exciton superradiance
(enhancement of interaction volume between excitons and
photons),17,18 we have theoretically revealed that the trade-
off problem can be resolved by simultaneously realizing a
high generation efficiency and a rapid radiative decay rate
of excitons, which are achieved by a DBR cavity embed-
ding an excitonic nanolayer in the nano-to-bulk crossover
regime.14
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FIG. 1. (Color online) The biexciton-resonant hyperparametric
scattering (RHPS) is depicted on biexciton, exciton-polariton, and
longitudinal exciton dispersion curves. Biexcitons are resonantly
created by two-photon absorption, and entangled-photon pairs are
emitted when the biexcitons decay into the lower exciton-polariton
branch. This emission appears in the scattering spectrum as two peaks
called LEP and HEP (lower and higher energy polaritons) as seen in
Fig. 3. Due to the conservation of energy and of wave vectors, the
positions of the two peaks depend on scattering angle,10,11 and the
entangled two photons are emitted symmetrically about the pump
beam as shown in the inset. Two additional peaks called MT and ML

in scattering spectra originate from the biexciton decay into transverse
and longitudinal exciton levels, respectively.

In a microcrystal, such as a quantum dot and quantum well
smaller than the Bohr radius of excitons, the electron and hole
are individually confined in the crystal, and the relative motion
of excitons and also the binding energy are strongly modified
from those in bulk crystal. When the crystal size is larger than
the exciton Bohr radius but small enough compared to the light
wavelength, the center-of-mass motion of excitons is confined,
and the center-of-mass kinetic energy is quantized.19,20 When
the crystal size is comparable or a few times larger than the
wavelength (nano-to-bulk crossover regime), the system is
characterized by exciton-photon coupled modes with peculiar
resonance energies and radiative lifetimes, and the coupled
modes are gradually reduced to bulk polariton branches by
the increase of crystal size.18,21–25 In this crossover regime,
due to the center-of-mass confinement of excitons and the
spatially resonant coupling with electromagnetic fields, the
system shows a variety of optical responses compared to
bulk materials and also to quantum dots. Owing to the recent
development of nanoscale fabrication, anomalous nonlinear
optical responses have been reported in semiconductor nanos-
tructures and in the nano-to-bulk crossover regime.17,26–36

Further, in such regime, we obtain rapid radiative decay
rates of excitons on the order of 100 fs due to the exciton
superradiance.17 Concerning the entangled-photon generation,
while the performance of the PDC method is almost governed
by the choice of nonlinear materials and its thickness,
the RHPS method significantly depends on the quantum
states of excitons and biexcitons, because it is a resonant
process involving elementary excitations. In the nano-to-bulk
crossover regime, the generation of entangled photon pairs by
RHPS is qualitatively modified with respect to frequencies,
angles, polarizations, and phase difference of the generated

entangled state as discussed in our previous Letter.14 In the
present paper, we will show in detail our theoretical framework
for the investigation of the entangled-photon generation in
the nano-to-bulk crossover regime with multilayer structures,
especially an excitonic layer embedded in DBR cavity.

We explain our theoretical framework in Sec. II, and show in
detail the way to calculate the one-photon scattering intensity
and the two-photon coincidence intensity of RHPS in the case
of multilayer structure in Sec. III. The calculated results are
shown in Sec. IV, and the discussion is summarized in Sec. V.

II. THEORETICAL FRAMEWORK

The emission spectra from Bose-Einstein condensation of
biexcitons were calculated by Inoue and Hanamura,37 and
these authors also investigated the relation between energies
and scattering angles of two peaks called LEP and HEP (lower
and higher energy polaritons; see Fig. 1). Later, Hanamura and
Takagahara38 calculated line shapes of the so-called MT and
ML peaks, which are emitted by the relaxations of biexcitons
to transverse and longitudinal excitons, respectively. The en-
tanglement of the scattered photons by RHPS was first pointed
out by Savasta et al.,12 and their theoretical framework39

is based on the quantum electrodynamics (QED) theory for
dispersive and absorbing media40,41 and on the exciton-exciton
correlation functions calculated from first principles.42,43

In the present paper, in order to correctly treat the
center-of-mass confinement of excitons, we construct our
framework by extending the QED theory of excitons,44 which
simultaneously solves the equation of motion of excitons and
of electromagnetic fields inheriting the concepts of the above
QED theories40,41 and of the semiclassical nonlocal theory30,45

(or the so-called ABC-free theory46). It is well known that
the center-of-mass motion of excitons raises more than one
propagating modes of exciton-polaritons in their band gap,
and the RHPS process has been used to observe the dispersion
of polaritons11,37,47–49 and also to measure the translational
masses of excitons and biexcitons.11,50–52 Moreover, optical
responses explicitly reflect the confinement of center-of-mass
motion of excitons in nanostructured materials and also in the
nano-to-bulk crossover regime,17–20,26–36 on which we focus
in the present paper.

Concerning the treatment of biexcitons, we suppose the
excitons as pure bosons and consider an exciton-exciton
interaction leading to the creation of biexcitons. However,
instead of the detailed treatment in the theory of Savasta
et al.,39 we simply represent the relative motion of the
lowest level of biexcitons with some parameters measured in
experiments,11,53,54 and the coefficients of the exciton-exciton
interaction is replaced by the assumed wave function and the
binding energy of biexcitons. This treatment is very simple
and useful to catch the behavior of biexciton lowest level in
CuCl even in the nano-to-bulk crossover regime, because the
exciton and biexciton states in CuCl has been well analyzed
by the bipolariton theory55,56 and RHPS experiments.54,57,58

While the treatment of biexcitons is in general a four-body
problem with two electrons and two holes and it is usually hard
to solve; owing to the above-mentioned simple treatment, we
can easily discuss the polarization correlation of photon pairs
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emitted from the biexciton lowest level, which has no angular
momentum.

Moreover, by using the dyadic Green’s function for the
wave equation of the electric field, we can consider the
surroundings of excitonic material, such as an optical cavity
consisting of two DBRs. In order to extract the scattering fields,
instead of using the input-output relation,41,59–63 we consider
the definition of the Green’s function and commutation
relations of fluctuation operators. This simple treatment is
valid at least in multilayer systems and useful to consider
complicated structures.

In the following subsections, we show our theoretical
framework to calculate the signal and noise intensities by
RHPS. We show the Hamiltonian in Sec. II A, and the
equations of motion are derived in Sec. II B. In order to discuss
the RHPS, we use some approximations, which are explained
in Sec. II C. The model of biexcitons is shown in Sec. II D.
In order to solve the equations of motion, we use the Green’s
function technique explained in Sec. II E. Finally, we derive
the expression of observables in Sec. II F.

A. Hamiltonian

Our theoretical framework is based on the QED theory of
excitons.44 The Hamiltonian is written as

Ĥ = Ĥex + Ĥres + Ĥint + Ĥem, (1)

where Ĥex describes the excitonic system, Ĥres represents
a reservoir for the nonradiative damping of excitons, Ĥint

is the exciton-photon interaction, and Ĥem describes the
electromagnetic fields and a background dielectric medium
as discussed in Ref. 64 and also used in Ref. 44. In order to
discuss the biexciton-RHPS, we consider an exciton-exciton
interaction with coefficient Vμ,ν;μ′,ν ′ . Namely, the Hamiltonian
of excitonic system is written as

Ĥex =
∑

μ

h̄ωμb̂†μb̂μ + 1

2

∑
μ,μ′,ν,ν ′

Vμ,ν;μ′,ν ′ b̂†μb̂†ν b̂ν ′ b̂μ′ , (2)

where b̂μ is the annihilation operator of an exciton in state μ

and ωμ is its eigenfrequency. We treat the excitons as pure
bosons satisfying

[b̂μ,b̂
†
μ′ ] = δμ,μ′, (3a)

[b̂μ,b̂μ′ ] = 0, (3b)

and their nonbosonic behavior is described by the exciton-
exciton interaction, the second term in Eq. (2). The reservoir
Ĥres is written as

Ĥres =
∑

μ

∫ ∞

0
d�{h̄�d̂†

μ(�)d̂μ(�)

+ [b̂μ + b̂†μ][gμ(�)d̂μ(�) + g∗
μ(�)d̂†

μ(�)]}, (4)

where d̂μ(�) is the annihilation operator of harmonic oscillator
with frequency � interacting with excitons in state μ and
gμ(�) is the coupling coefficient. The oscillators are inde-
pendent of each other and satisfy the following commutation
relations:

[d̂μ(�),d̂†
μ′(�′)] = δμ,μ′δ(� − �′), (5a)

[d̂μ(�),d̂μ′ (�′)] = 0. (5b)

Further, Ĥint is simply written as a product of electric field
Ê(r) and excitonic polarization P̂ex(r):

Ĥint = −
∫

d r P̂ex(r) · Ê(r). (6)

The excitonic polarization is represented as

P̂ex(r) =
∑

μ

Pμ(r)b̂μ + H.c., (7)

where the coefficient Pμ(r) is expressed by the exciton center-
of-mass wave function gex

μ (r) and unit vector eμ in polarization
direction as

Pμ(r) = Meμgex
μ (r). (8)

The absolute value of M can be evaluated by the longitudinal-
transverse (LT) splitting energy �LT = |M|2/ε0ε

ex
bg of excitons,

the vacuum permittivity ε0, and the background dielectric
constant εex

bg of the excitonic medium.

B. Equations of motion

According to Ref. 44 or the QED theories of dispersive and
absorbing media,40,41,64 the equation of motion of electric field
Ê(r) is derived in frequency domain as

∇ × ∇ × Ě
+

(r,ω) − ω2

c2
εbg(r,ω)Ě

+
(r,ω)

= iμ0ω J̌0(r,ω) + μ0ω
2 P̌

+
ex(r,ω). (9)

Here, μ0 is the vacuum permeability and εbg(r,ω) is the
dielectric function of the background medium with arbitrary
three-dimensional structure. We write an operator with a check
(̌) in the frequency domain. J̌0(r,ω) describes the fluctuation
of electromagnetic fields and satisfies

[ J̌0(r,ω),{ J̌0(r ′,ω′∗)}†]
= [ J̌0(r,ω), J̌0(r ′, − ω′)]

= δ(ω − ω′)δ(r − r ′)
ε0h̄ω2

π
Im[εbg(r,ω)]

↔
1 . (10)

In the same manner as in Ref. 44, we obtain the equation of
excitons’ motion in frequency domain as

[h̄ωμ − h̄ω − iγex/2]b̌μ(ω)

=
∫

d r P∗
μ(r) · Ě

+
(r,ω) + Ďμ(ω)

−
∑

ν

∑
μ′,ν ′

Vμ,ν;μ′,ν ′

∫ ∞

−∞
dt

eiωt

2π
b̂†ν(t)b̂ν ′(t)b̂μ′(t), (11)

where γex is the nonradiative damping width defined in terms of
{gμ(�)} as shown in Eq. (D7) of Ref. 44, and Ďμ(ω) represents
the fluctuation by the damping satisfying

[Ďμ(ω),{Ďμ′(ω′∗)}†] = [Ďμ(ω),Ďμ′(−ω′)]

= δμ,μ′δ(ω − ω′)
h̄γex

2π
. (12)

The last term on the right-hand side of Eq. (11) is the nonlinear
term due to the exciton-exciton interaction.
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Here, we define a new operator

B̂λ ≡ 1

2

∑
μ,ν

F ∗
λ,μ,ν b̂ν b̂μ, (13)

which annihilates a biexciton (excitonic molecule) in state λ

and describes a two-exciton eigenstate B̂
†
λ|g〉 by applying it to

the ground state |g〉 of matter system. The coefficient Fλ,μ,ν is
invariant by the exchange of two exciton indices as

Fλ,μ,ν = Fλ,ν,μ. (14)

Further, it is orthonormal,

1

2

∑
μ,ν

Fλ,μ,νF
∗
λ′,μ,ν = δλ,λ′ , (15)

and also has a completeness∑
λ

Fλ,μ,νF
∗
λ,μ′,ν ′ = δμ,μ′δν,ν ′ + δμ,ν ′δν,μ′ . (16)

From the excitonic Hamiltonian Ĥex [Eq. (2)], the coefficient
Fλ,μ,ν and eigenfrequency �λ of biexciton eigenstate λ should
satisfy

(h̄ωμ + h̄ων)Fλ,μ,ν +
∑
μ′,ν ′

Vμ,ν;μ′,ν ′Fλ,μ′,ν ′ = h̄�λFλ,μ,ν . (17)

By using Eqs. (14) and (16), we can rewrite Eq. (13) as∑
λ

Fλ,μ,νB̂λ = b̂ν b̂μ. (18)

Therefore, from this relation and Eq. (17), we can rewrite
Eq. (11) as

[h̄ωμ − h̄ω − iγex/2]b̌μ(ω)

=
∫

d r P∗
μ(r) · Ě

+
(r,ω) + Ďμ(ω)

+
∑
λ,ν

(h̄ωμ+ h̄ων − h̄�λ)Fλ,μ,ν

×
∫ ∞

−∞
dω′{b̌ν(ω′− ω)}†B̌λ(ω′). (19)

On the other hand, by deriving the equation of motion for B̂λ

and by using the above relations, we get

(h̄�λ − h̄ω)B̌λ(ω)

=
∑
μ,ν

F ∗
λ,μ,ν

∫ ∞

−∞
dω′(h̄ων − h̄ω′)b̌ν(ω′)b̌μ(ω − ω′). (20)

In principle, the biexciton RHPS process is described by the
three equations of motion (9), (19), and (20), and commutation
relations (10) and (12). However, in the actual calculation, we
use the following approximation.

C. Approximation for RHPS process

We suppose that a coherent light beam resonantly excites
biexcitons and their amplitude is large enough compared
to the vacuum fluctuation. In this situation, if we do not
consider the higher order processes, the biexciton operator in
the nonlinear term of Eq. (19) can be replaced by the amplitude

Bλ(ω′) = 〈B̌λ(ω′)〉. Further, we replace b̌ν(ω′ − ω) in the
nonlinear term by b̌(1)

ν (ω′ − ω), which satisfies the linear
equation

[h̄ωμ − h̄ω − iγex/2]b̌(1)
μ (ω)

=
∫

d r P∗
μ(r) · Ě

+
(r,ω) + Ďμ(ω). (21)

Simultaneously solving this equation and Eq. (9), b̌(1)
μ (ω)

can be expressed by the fluctuation operators J̌0(r,ω) and
Ďμ(ω). The calculation is straightforward by using the Green’s
function technique as will be shown in Sec. II E. Under the
above approximation, Eq. (19) is rewritten as

[h̄ωμ − h̄ω − iγex/2]b̌μ(ω)

	
∫

d r P∗
μ(r) · Ě

+
(r,ω) + Ďμ(ω)

+
∑
λ,ν

(h̄ωμ + h̄ων − h̄�λ)Fλ,μ,ν

×
∫ ∞

−∞
dω′{b̌(1)

ν (ω′ − ω)
}†Bλ(ω′). (22)

By solving this equation and Eq. (9), we can represent
Ě

+
(r,ω) by the fluctuation operators J̌0(r,ω) and Ďμ(ω).

This calculation is also straightforward by using the Green’s
function.

For the calculation of Bλ(ω), we suppose that the biexciton
amplitude is not decreased by the scattering, because its
contribution is small compared to the pumping light. Under
this approximation, by phenomenologically introducing a
damping constant γbx, the biexciton amplitude is obtained from
Eq. (20) as

Bλ(ω) 	 1

h̄�λ − h̄ω − iγbx/2

∑
μ,ν

F ∗
λ,μ,ν

×
∫ ∞

−∞
dω′ (h̄ων − h̄ω′)

〈
b̌(1)

ν (ω′)
〉〈
b̌(1)

μ (ω − ω′)
〉
,

(23)

where 〈b̌(1)
ν (ω′)〉 can be calculated from Eqs. (9) and (21)

by considering an incident light beam as a homogeneous
solution of Eq. (9). Under the weak bipolariton regime,16

where the coupling between exciton-polariton and biexciton is
small enough compared to their broadening, the approximated
expression (23) of biexciton amplitude is sufficient for the
discussion of RHPS process. While Savasta et al. considered
the equation of motion of projection operators,12,39 they also
used a similar approximation for the treatment of biexcitons
under the detailed verification of its validity.

D. Model of biexcitons

Although Fλ,μ,ν and �λ should be in principle determined
from Eq. (17) for given nonlinear coefficients {Vμ,ν;μ′,ν ′ },
we instead express Fλ,μ,ν and �λ by using experimental
results. This treatment is useful because we already know
many parameters of the lowest level of biexcitons in CuCl
by longstanding experimental and theoretical studies.11
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It is well known that the lowest level of biexcitons in CuCl
is the singlet and has zero angular momentum, because of the
exchange interactions between two electrons and between two
holes.11 Since we suppose the resonant two-photon excitation
of the lowest level, we only consider the lowest relative motion
of biexciton in our calculation. Further, according to the RHPS
experiments in Ref. 54, the lowest biexciton state mainly
consists of 1s excitons, and the contribution from the higher
exciton states was estimated on the order of 10−4. Therefore,
we consider only 1s relative motion of excitons, which has a
degree of freedom of polarization direction ξμ = {x,y,z}. The
relative motions of excitons and biexcitons are approximately
treated as those in bulk CuCl.11 The lowest biexciton level
|J = 0,M = 0〉bx with zero angular momentum is represented
as

|J = 0,M = 0〉bx = 1
2 {|0,0; 0,0〉2ex + |1,1; 1, − 1〉2ex

+ |1, − 1; 1,1〉2ex − |1,0; 1,0〉2ex}, (24)

where |j1,m1; j2,m2〉2ex is the two-exciton state represented in
terms of angular momenta (j1,m1) and (j2,m2) of two excitons.
This expression surely reflects the polarization correlation
of photon pairs observed in RHPS experiments10,13 and also
determines the phase between the two states:

�+ = (|L,R〉 + |R,L〉) /
√

2 (25a)

= (|H,H 〉 + |V,V 〉) /
√

2. (25b)

Here, |L,R〉 means that one photon is left- and the other is
right-circularly polarized, and |R,L〉 is the opposite state.
|H,H 〉 and |V,V 〉 respectively mean that both photons
are horizontally and vertically polarized. By rewriting each
exciton state in terms of the polarization direction as

|j,m〉 =
⎧⎨
⎩

|1,1〉 = − (|x〉 + i|y〉) /
√

2,

|1,0〉 = |z〉,
|1, − 1〉 = (|x〉 − i|y〉) /

√
2,

(26)

Eq. (24) is rewritten as

|J = 0,M = 0〉bx = 1
2 {|0,0; 0,0〉2ex − |x; x〉2ex

− |y; y〉2ex − |z; z〉2ex}, (27)

which also reflects the polarization correlation (25b).
Considering the relative motion 
(r) of two excitons in the

lowest biexciton level, the coefficient is written as

Fλ,μ,ν = δλ,μ,ν

∫
d r

∫
d r ′ 
(r ′)gbx

λ (r)gex
μ

∗(r + r ′)gex
ν

∗(r),

(28)

where gex
m (r) and gbx

l (r) are center-of-mass wave functions of
excitons and biexcitons, respectively, and

δλ,μ,ν = δξμ,ξν
(29)

represents the polarization selection rule reflecting the lowest
biexciton level [Eq. (27)]. Here, we suppose that the Bohr
radius of the biexciton (1.5 nm in CuCl)65 is much smaller
than the crystal size, and the relative motion of biexcitons is not
strongly modified from the bulk one. Namely, we approximate
the above expression as

Fλ,μ,ν 	 δλ,μ,ν�

∫
d r gbx

λ (r) gex
μ

∗(r) gex
ν

∗(r). (30)

Here, � is defined as

� ≡
∫

d r 
(r), (31)

and |�|2 represents the effective volume of the lowest biexciton
state. It was estimated by an experiment53 and was also used
as a parameter in theoretical work of Ref. 66.

E. Green’s function technique

Next, we explain how we simultaneously solve the equation
of motion of electric field [Eq. (9)] and that of excitons
[Eq. (21) or Eq. (22)]. By using the dyadic Green’s function
satisfying

∇ × ∇× ↔
G (r,r ′,ω) − ω2

c2
εbg(r,ω)

↔
G (r,r ′,ω)

= δ(r − r ′)
↔
1 , (32)

we can rewrite Eq. (9) as

Ě
+

(r,ω) = Ě
+
0 (r,ω) + μ0ω

2
∫

d r ′ ↔
G (r,r ′,ω) · P̌

+
ex(r ′,ω),

(33)

where Ě
+
0 (r,ω) represents the electric field in the background

(Ĥem) system, and it is defined as

Ě
+
0 (r,ω) ≡ iμ0ω

∫
d r ′ ↔

G (r,r ′,ω) · J̌0(r ′,ω). (34)

From Eq. (10), Ě
+
0 (r,ω) satisfies44

[Ě
+
0 (r,ω),Ě

−
0 (r ′,ω′)]

= [Ě
+
0 (r,ω),Ě

+
0 (r ′, − ω′)]

= δ(ω − ω′)
μ0h̄ω2

i2π
[
↔
G (r,r ′,ω)−

↔
G

∗
(r,r ′,ω)]. (35)

The expression of
↔
G (r,r ′,ω) in a planar system (dielectric

multilayer) is already known67 and will be shown in Sec. III.
Substituting Eq. (33) into Eq. (22), we obtain a simultane-

ous equation set for exciton operators under the rotating-wave
approximation (RWA) as

∑
μ′

Sμ,μ′(ω)b̌μ′(ω) =
∫

d r P∗
μ(r) · Ě

+
0 (r,ω) + Ďμ(ω)

+
∑
λ,ν

(h̄ωμ + h̄ων − h̄�λ)Fλ,μ,ν

×
∫ ∞

−∞
dω′{b̌(1)

ν (ω′ − ω)
}†Bλ(ω′), (36)

where the coefficient on the left-hand side is defined as

Sμ,μ′(ω) ≡ [h̄ωμ − h̄ω − iγex/2]δμ,μ′

−μ0ω
2
∫

d r
∫

d r ′ P∗
μ(r)·

↔
G (r,r ′,ω) · Pμ′(r ′).

(37)

The last term of Eq. (37) represents the self-energy due to
the retarded interaction through the electromagnetic fields and
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to the longitudinal Coulomb interaction. Further, Eq. (21) for
b̌(1)

μ (ω) in the linear regime is also rewritten as

∑
μ′

Sμ,μ′(ω)b̌(1)
μ′ (ω) =

∫
d r P∗

μ(r) · Ě
+
0 (r,ω) + Ďμ(ω).

(38)

This simultaneous linear equation set is solved by calculating

the inverse matrix
↔
W (ω) = [

↔
S (ω)]−1, and the commutation

relation of b̌(1)
μ (ω) is derived in Ref. 44 as

[
b̌(1)

μ (ω),{b̌(1)
μ′ (ω′∗)}†]

= δ(ω − ω′)
h̄

i2π
[Wμ,μ′(ω) − W ∗

μ′,μ(ω)], (39a)

[
b̌(1)

μ (ω),b̌(1)
μ′ (−ω′)

] = 0. (39b)

Further, Eq. (36) is rewritten as

b̌μ(ω) 	 b̌(1)
μ (ω) +

∑
μ′,λ,ν

Wμ,μ′(ω)(h̄ωμ′ + h̄ων − h̄�λ)

×Fλ,μ′,ν

∫ ∞

−∞
dω′{b̌(1)

ν (ω′ − ω)
}†Bλ(ω′), (40)

and, by substituting this into Eq. (33), the electric field involv-
ing RHPS is expressed under the RWA and the approximations
discussed in Sec. II C as

Ě
+

(r,ω) 	 Ě
+
0 (r,ω) +

∑
μ

Eμ(r,ω)b̌(1)
μ (ω) + ĚNL(r,ω),

(41)

where

Eμ(r,ω) ≡ μ0ω
2
∫

d r ′ ↔
G (r,r ′,ω) · Pμ(r ′), (42)

Ě
+
NL(r,ω) =

∑
μ,μ′,λ,ν

Eμ(r,ω)Wμ,μ′(ω)(h̄ωμ′ + h̄ων − h̄�λ)

×Fλ,μ′,ν

∫ ∞

−∞
dω′{b̌(1)

ν (ω′ − ω)
}†Bλ(ω′). (43)

F. Input and output fields

Here, we must pay attention to the electric field Ě
+
0 (r,ω)

in the background system, which represents not only the field
from matter to an observing point r but also the field from r
to the matter. This means that the latter contribution must
be removed from Eq. (41) to calculate observables, while
the other terms involving b̌(1)

μ (ω) and ĚNL(r,ω) represent the
contribution emitted from the matter. While such a calculation
has been usually treated by the input-output relations,41,59–63

we use the following treatment based on the dyadic Green’s

function
↔
G (r,r ′,ω) for Ě

+
0 (r,ω).

We separate Ě
+
0 (r,ω) into an input field Ě

+
0,IN(r,ω) from r

to the matter and an output field Ě
+
0,OUT(r,ω) from the matter

to r as

Ě
+
0 (r,ω) = Ě

+
0,IN(r,ω) + Ě

+
0,OUT(r,ω). (44)

By considering the causality, the output field at time t should
be correlated only with fields at t ′ < t , and the commutation
relation should be written as

[Ě
+
0,OUT(r,ω),Ě

−
0 (r ′,ω′)]

= 1

(2π )2

∫ ∞

−∞
dt ′

∫ ∞

t ′
dt eiωt−iω′t ′[Ê0(r,t),Ê0(r ′,t ′)]

= δ(ω − ω′)
μ0h̄ω2

i2π

↔
G (r,r ′,ω), (45)

where we use the fact that the dyadic Green’s function
↔
G

(r,r ′,ω) satisfying Eq. (32) is the retarded correlation function
of the electric field:44,68

−μ0ω
2

↔
G (r,r ′,ω)

= 1

ih̄

∫ ∞

t ′
dt eiω(t−t ′)〈[Ê0(r,t),Ê0(r ′,t ′)]〉. (46)

In the same manner, the input field at t should be correlated
only with fields at t ′ > t , and the commutation relation is
derived as

[Ě
+
0,IN(r,ω),Ě

−
0 (r ′,ω′)]

= 1

(2π )2

∫ ∞

−∞
dt ′

∫ t ′

−∞
dt eiωt−iω′t ′ [Ê0(r,t),Ê0(r ′,t ′)]

= −δ(ω − ω′)
μ0h̄ω2

i2π

↔
G

∗
(r,r ′,ω). (47)

Actually, Eqs. (45) and (47) reproduce Eq. (35). By using the
output field Ě

+
0,OUT(r,ω) in the background system, we define

the scattering field excluding the input one as

Ě
+
RHPS(r,ω) ≡ Ě

+
(r,ω) − Ě

+
0,IN(r,ω)

= Ě
+
LIN(r,ω) + Ě

+
NL(r,ω), (48)

where Ě
+
LIN(r,ω) is the linear component of the electric field

excluding the input field as

Ě
+
LIN(r,ω) = Ě

+
0,OUT(r,ω) +

∑
μ

Eμ(r,ω)b̌(1)
μ (ω). (49)

By deriving commutation relations of ĚLIN(r,ω) and
ĚNL(r,ω) from Eqs. (35), (39), and (45), we can evaluate
the observables of RHPS.

III. PRACTICAL CALCULATION

Next, we apply the theoretical framework discussed in the
previous section into multilayer systems embedding a CuCl
layer, and derive expressions of one-photon scattering intensity
and two-photon coincidence intensity by RHPS. An incident
light beam propagates along the z axis (perpendicular to the
surface), and photon pairs emitted into the x-z plane are
considered (in-plane wave vector is in x direction). We suppose
that center-of-mass motions of excitons and biexcitons are
confined in the CuCl layer with thickness d existing at
0 < z < d. Since we consider a large enough thickness d

compared to the Bohr radii of exciton (0.7 nm) and of biexciton
(1.5 nm),65 the relative motions of excitons and biexcitons are
not strongly modified from the ones in bulk crystals, and all
the information of the relative motion is described by factors
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M and � in Eqs. (8) and (30). As seen in Fig. 2(a), the
center-of-mass wave functions of excitons and biexcitons are
expanded by a series of sinusoidal functions as

gbx
k̄,m

(r) = gex
k̄,m

(r) = θ (z)
eik̄x

√
S

√
2

d
sin(qmz), (50)

where θ (z) gives unity for 0 < z < d and zero otherwise, k̄ is
the in-plane wave number, S is the normalization area in the
x − y plane, and qm = mπ/d is the confinement wave number
in the z direction for m = 1, 2, . . .. We consider εbg(r,ω) as a
discontinuous steplike function in the z direction representing
the background dielectric constant in each layer, and it does not
depend on ω nor r‖. In the case of the multilayer structure in
Fig. 2(b), εbg(r,ω) gives the background dielectric constant εex

bg
for excitons at the CuCl layer; otherwise it gives the dielectric
constant of each layer. According to Ref. 67, if z′ is in the
CuCl layer, the dyadic Green’s function satisfying Eq. (32) is
expressed as

↔
Gk̄ (z,z′,ω) ≡

∫
d r‖

∫
d r ′

‖
e−ik̄(x−x ′)

S

↔
G (r,r ′,ω)

= − 1

i2kex
bg

[↔
G

V

k̄ (z,z′,ω)+
↔
G

H

k̄ (z,z′,ω)

]

− ezez

εex
bgω

2/c2
δ(z − z′), (51)

where kex
bg

2 = εex
bgω

2/c2 − k̄2, and eξ is the unit vector in ξ

direction. When z is in layer j with dielectric constant εj , the
tensors in Eq. (51) are written as

↔
G

V

k̄ (z,z′,ω) = eyeyGV
k̄

(z,z′,ω), (52)

↔
G

H

k̄ (z,z′,ω) =
⎛
⎝ DzD′

z 0 iDzk̄

0 0 0
−ik̄D′

z 0 k̄2

⎞
⎠ GH

k̄
(z,z′,ω)√

εex
bgεjω2/c2

, (53)

where Dz ≡ ∂/∂z and D′
z ≡ ∂/∂z′. Equations (52) and (53),

respectively, describe the propagation of V- and H-polarized
fields, and, according to Ref. 67, GV/H

k̄
(z,z′) is expressed as

follows.
When z is in the CuCl layer (0 < z < d),

GV/H

k̄
(z,z′)

= eikex
bg|z−z′| + eikex

bgzR̃
V/H

L

[
eikex

bgz
′ + R̃

V/H

R eikex
bg(2d−z′)]M̃V/H

+ e−ikex
bg(z−d)R̃

V/H

R

[
eikex

bg(d−z′) + R̃
V/H

L eikex
bg(d+z′)]M̃V/H .

(54a)
When z is in the leftmost semi-infinite region,

GV/H

k̄
(z,z′) = e−ikLzT̃

V/H

L

[
eikex

bgz
′ + R̃

V/H

R eikex
bg(2d−z′)]M̃V/H .

(54b)
When z is in the rightmost semi-infinite region,

GV/H

k̄
(z,z′) = eikRzT̃

V/H

R

[
eikex

bg(d−z′) + R̃
V/H

L eikex
bg(d+z′)]M̃V/H .

(54c)

FIG. 2. (Color online) (a) Center-of-mass wave functions of
excitons and biexcitons in a CuCl film. Simple sinusoidal functions
vanishing at surfaces are supposed. (b) Cavity structure considered in
Figs. 9 and 10. The Bragg mirrors consist of PbBr2 and PbF2. On the
transmission side, a high reflectance is achieved by a mirror with 16
periods to suppress the leakage of photons in this direction. On the
incident side, only 4 periods are supposed to guarantee rapid radiative
decay of entangled photons.

Here, R̃
V/H

L(R) represents the generalized reflection coefficient
for the V/H -polarized field from the CuCl layer against
the left(right)-hand neighboring, and T̃

V/H

L(R) is the generalized
transmission coefficient from the CuCl layer to the left(right)
most region. The derivation of these coefficients is shown
in Ref. 67. Further, kL(R)

2 = εL(R)ω
2/c2 − k̄2 is the wave

number in the left(right)most region with dielectric constant
εL(R), and the factor M̃V/H is defined as M̃V/H = [1 −
R̃

V/H

L R̃
V/H

R ei2kex
bgd ]−1.

From Eqs. (50) and (51), we can evaluate the coefficient

matrix
↔
S (ω) [Eq. (37)] and numerically calculate the inverse

matrix
↔
W (ω) = [

↔
S (ω)]−1. From Eq. (38), the amplitude of

excitons is obtained in the linear regime by

〈
b̌(1)

μ (ω)
〉 =

∑
μ′

Wμ,μ′(ω)
∫

d r P∗
μ′(r) · 〈Ě

+
0 (r,ω)〉. (55)

Here, 〈Ě
+
0 (r,ω)〉 represents the pump field, i.e., the ampli-

tude of electric field in the background dielectric system
Ĥem, and can be derived by the standard transfer matrix
method67 in the case of dielectric multilayers. For simplicity,
we consider a monochromatic laser light with frequency
ωin with in-plane wave number k̄in. Concerning the pump
power Iin (〈Ě

+
0 〉 ∝ √

Iin), there is a scaling law for the
intensity of entangled photons as explained below. In the
present paper, since we only consider the 1s exciton and
the lowest biexciton level, the exciton states are labeled by
polarization direction ξ = {x,y,z}, in-plane wave number k̄,
and index m of center-of-mass motion as μ = {ξ,k̄,m}, and
the biexciton states are labeled by λ = {k̄,m}. Considering
the conservations of energy and in-plane wave vector, the
amplitude of biexciton is evaluated by Eq. (23), and we denote
it as

Bk̄,m(ω) = δk̄,2k̄ in
δ(ω − 2ωin)B̃2k̄in,m(2ωin). (56)
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Further, the linear and nonlinear components of the scattering
field [Eqs. (49) and (43)] are simply rewritten as

Ě
+
LIN,k̄(z,ω) = 1√

S

∫
d r‖ e−ik̄x Ě

+
LIN(r,ω)

= Ě
+
0,OUT,k̄(z,ω) +

∑
ξ,m

Eξ,k̄,m(z,ω)b̌(1)
ξ,k̄,m

(ω),

(57)

Ě
+
NL,k̄(z,ω) = 1√

S

∫
d r‖ e−ik̄x Ě

+
NL(r,ω)

=
∑
ξ,m

ENL
ξ,k̄in,k̄,m

(z,ωin,ω){b̌(1)
ξ,2k̄in−k,m

(2ωin − ω)}†,

(58)

where the coefficients are evaluated by the following quantities
and functions:

Eξ,k̄,m(z,ω) = μ0ω
2M

√
1

d

∫
dz′ ↔

Gk̄ (z,z′,ω) · eξ sin(qmz′)θ (z′), (59)

ENL
ξ,k̄in,k̄,m

(z,ωin,ω) =
∑

ξ ′,ξ ′′,m′,m′′,n

Eξ ′′,k̄,m′′ (z,ω)W{ξ ′′,k̄,m′′},{ξ ′,k̄,m′}(ω)(h̄ωξ ′,k̄,m′

+ h̄ωξ,2k̄in−k̄,m − h̄�2k̄in,n)F{2k̄in,n},{ξ ′,k̄,m′},{ξ,2k̄in−k̄,m}B̃2k̄in,n(2ωin), (60)

F{2k̄in,n},{ξ ′,k̄,m′},{ξ,k̄′,m} = δξ,ξ ′δk̄′,2k̄in−k̄�

(
2

d

)3/2 ∫
dz θ (z) sin(qnz) sin(qmz) sin(qm′z), (61)

S{ξ,k̄,m},{ξ ′,k̄′,m′}(ω) = [h̄ωξ,k̄,m − h̄ω − iγex/2]δξ,ξ ′δk̄,k̄′δm,m′

− δk̄,k̄′μ0ω
2|M|2

∫
dz

∫
dz′ θ (z)θ (z′)eξ ·

↔
Gk̄ (z,z′,ω) · eξ ′ sin(qmz) sin(qm′z′). (62)

Further, from the commutation relations (39) and (45), the
following relations are derived for ω > 0 and ω′ > 0 as

[Ě
+
LIN,k̄(z,ω),Ě

+
NL,k̄′(z,ω′)]

= δk̄′,2k̄in−k̄δ(ω + ω′ − 2ωin)
↔
H

LN

k̄in,k̄
(z,z′,ωin,ω), (63a)

[Ě
+
LIN,k̄(z,ω),Ě

−
NL,k̄′(z′,ω′)] =↔

0 , (63b)

[Ě
−
NL,k̄(z,ω),Ě

+
NL,k̄′ (z′,ω′)]

= δk̄,k̄′δ(ω − ω′)
↔
H

NN

k̄in,k̄
(z,z′,ωin,ω), (64a)

[Ě
+
NL,k̄(z,ω),Ě

+
NL,k̄′ (z′,ω′)] = ↔

0 , (64b)

where the tensors are defined as

↔
H

LN

k̄in,k̄
(z,z′,ωin,ω) ≡ h̄

i2π

∑
ξ,ξ ′,m,m′

Eξ,k̄,m(z,ω)

×W{ξ,k̄,m},{ξ ′,k̄,m′}(ω)ENL
ξ ′,k̄in,2k̄in−k̄,m′

× (z′,ωin,2ωin − ω), (65)
↔
H

NN

k̄in,k̄
(z,z′,ωin,ω) ≡ h̄

i2π

∑
ξ,ξ ′,m,m′

ENL∗
ξ,k̄in,k̄,m

(z,ω)

× [W{ξ,2k̄in−k̄,m},{ξ ′,2k̄in−k̄,m′}(2ωin − ω)

−W ∗
{ξ ′,2k̄in−k̄,m′},{ξ,2k̄in−k̄,m}(2ωin − ω)]

×ENL
ξ ′,k̄in,k̄,m′ (z′,ωin,ω). (66)

From these commutation relations, we calculate the one-
photon scattering intensity and the two-photon coincidence
intensity. When the background field Ě0,k̄(z) is the vacuum
state in the scattering direction determined by k̄ and only has
the quantum fluctuation, we obtain the following relations for
the initial condition |0〉, which is not affected by the exciton-
exciton scattering:

Ě
+
0,k̄(z,ω)|0〉 = Ě

+
0,OUT,k̄(z,ω)|0〉 = Ě

+
LIN,k̄(z,ω)|0〉

= Ě
−
NL,k̄(z,ω)|0〉 = 0. (67)

When we measure the one-photon scattering intensity in the
direction k̄ at position z with polarization direction ξ and
frequency ω by resolution �ω, the intensity is represented
as

C
(1)
ξ,k̄in,k̄

(z,ωin,ω) =
∫ ω+�ω/2

ω−�ω/2
dω′dω′′

× 〈Ě−
RHPS,k̄,ξ

(z,ω′)Ě+
RHPS,k̄,ξ

(z,ω′′)〉

= �ω

[↔
H

NN

k̄in,k̄
(z,z,ωin,ω)

]
ξ,ξ

, (68)

where Ě±
RHPS,k̄,ξ

is the ξ component of Ě
±
RHPS,k̄ and [· · ·]ξ,ξ ′

extracts the (ξ,ξ ′) component of the tensor. Here, it is worth
noting that this one-photon scattering intensity is proportional
to Iin

2, the square of the pump power, reflecting the power
dependence of the biexciton creation. The z dependence of
this function only represents the scattering direction to the
left- or right-hand side, if the leftmost and rightmost regions
are nonabsorptive. On the other hand, when we measure
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the two-photon coincidence between the scattering fields of
(ξ1,k̄1,z1,ω1) and (ξ2,k̄2,z2,ω2), the intensity is represented as

C
(2)
ξ1,ξ2,k̄in,k̄1,k̄2

(z1,z2,ωin,ω1,ω2)

=
∫ ω1+�ω/2

ω1−�ω/2
dω′

1dω′′
1

∫ ω2+�ω/2

ω2−�ω/2
dω′

2dω′′
2

×〈Ě−
RHPS,k̄1,ξ1

(z1,ω
′
1)Ě−

RHPS,k̄2,ξ2
(z2,ω

′
2)

×Ě+
RHPS,k̄2,ξ2

(z2,ω
′′
2)Ě+

RHPS,k̄1,ξ1
(z1,ω

′′
1)〉. (69)

By using the above commutation relations, we finally get

C
(2)
ξ1,ξ2,k̄in,k̄1,k̄2

(z1,z2,ωin,ω1,ω2)

= δk̄2,2k̄in−k̄1
δ̃(ω1 + ω2,2ωin)C(2)S

ξ1,ξ2,k̄in,k̄1
(z1,z2,ωin,ω1)

+C
(2)N
ξ1,ξ2,k̄in,k̄1,k̄2

(z1,z2,ωin,ω1,ω2)

+ (�ω)2δk̄1,k̄2
δ̃(ω1,ω2)

[↔
H

NN

k̄in,k̄1
(z1,z2,ω1)

]
ξ1,ξ2

×
[↔
H

NN

k̄in,k̄2
(z2,z1,ω2)

]
ξ2,ξ1

. (70)

Here, the function δ̃(ω,ω′) gives unity for ω 	 ω′ and zero
otherwise. The first term represents the signal intensity, i.e., the
number of correlated photon pairs, which satisfies the energy
conservation ω1 + ω2 	 2ωin by resolution �ω, and the signal
intensity is calculated as

C
(2)S
ξ1,ξ2,k̄in,k̄1

(z1,z2,ωin,ω1)

≡ (�ω)2
∣∣∣[↔

H
LN

k̄in,2k̄in−k̄1
(z2,z1,ωin,2ωin − ω1)

]
ξ2,ξ1

∣∣∣2
.

(71)

This expression is invariant by exchanging the two observing
conditions, and it is also proportional to Iin

2, because one
entangled-photon pair is emitted from one biexciton. On the
other hand, the second term in Eq. (70) is nonzero for arbitrary
pair ω1 and ω2, and represents the accidental coincidence
of emitted photons from independent biexcitons, and it is
represented as the product of two one-photon scattering
intensities as

C
(2)N
ξ1,ξ2,k̄in,k̄1,k̄2

(z1,z2,ωin,ω1,ω2)

≡ C
(1)
ξ1,k̄in,k̄1

(z1,ωin,ω1)C(1)
ξ2,k̄in,k̄2

(z2,ωin,ω2). (72)

This is also invariant by exchanging the two observing
conditions, and proportional to Iin

4. The third term in Eq. (70)
represents the interference between the two observing points
and is nonzero only for ω1 	 ω2. Therefore, we neglect this
term in the following discussion.

According to Sec. 3.10 in Ref. 11, we suppose the
translational masses of excitons and biexcitons as mex =
2.3m0 and mbx = 2.3mex, respectively, where m0 is the
free-electron mass. These masses were measured by RHPS
experiments.11,50,51 However, in our calculation, we do not
consider the mass difference between transverse and longi-
tudinal excitons. From Sec. 3.2 in Ref. 11, the transverse
exciton energy at band edge is h̄ωT = 3.2022eV, the LT
splitting energy is � = 5.7meV, and the background dielectric

constant of CuCl is εex
bg = 5.59. Further, according to Sec. 3.7

in Ref. 11, the binding energy of the biexciton lowest level
is � = 32.2 meV. The energy of excitons including the
center-of-mass kinetic energy is written as

h̄ωξ,k̄,m = h̄ωT + h̄2

2mex
(k̄2 + qm

2). (73)

The biexciton energy is

h̄�k̄,m = 2h̄ωT − � + h̄2

2mbx
(k̄2 + qm

2). (74)

We use the other biexciton parameters reported in Ref. 53:
The phenomenological damping width is γbx = h̄/50 ps =
13.2 μeV, and the effective volume is |�|2 = (4000/2) ×
(0.541 nm)3/4 = 80 nm3, where 0.541 nm is the lattice
constant of CuCl, and 4000 is a parameter representing the
nonlinear strength. In most of all calculations, we consider the
exciton nonradiative damping width as γex = 0.5 meV.

Because of the translational symmetry in the x − y plane,
the in-plane wave number in the system is conserved. In
the following discussion, we suppose that the pump field is
perpendicular to the layers, and biexcitons have zero in-plane
wave number. Then, a scattered photon with k̄ makes a
pair with the one having −k̄. However, their frequencies
are different in general satisfying the energy conservation
ω1 + ω2 = 2ωin. In the present paper, we define the scattering
angle θ as k̄ = (ωT/c) sin θ , which is approximately equal to
the scattering angle in vacuum.

IV. RESULTS

By using the theoretical framework discussed in the
previous sections, we calculate the scattering spectra by bulk
crystal and by thin film in Sec. IV A. In Sec. IV B, we discuss
the difference of entangled photon generation by thin film
compared with the one by bulk crystal, and show the thickness
dependence of generation efficiency and performance by
RHPS. Finally, we discuss the generation from a DBR cavity
embedding a CuCl layer in Sec. IV C.

A. Scattering spectra

Figure 3 shows forward (transmission side) scattering
spectra of RHPS from a CuCl film with thickness d = 7μm.
We plot C

(1)
ξ,k̄in=0,k̄=(ωT/c) sin θ

(z > d,ωin,ω) as a function of ω

for scattering angles θ = 0◦, 30◦, and 60◦, and the spectra
are summed over the polarization direction ξ = {x,y,z}. The
CuCl film exists in vacuum, and the pump frequency is tuned
to the two-photon absorption involving biexcitons as h̄ωin 	
h̄ωT − �/2. Actually, h̄ωin is not exactly h̄ωT − �/2, because
we must also consider the phase-matching condition (wave
vector conservation) between two polariton branches and a
biexciton one.11 Since the shapes of scattering spectra do not
depend on the input power Iin, we plot the scattering intensity
with arbitrary units. The decay paths of biexcitons are depicted
in Fig. 1. As seen in Fig. 3, at θ = 0◦, we can find multiple
peaks at h̄ω − h̄ωT 	 −�/2 = −16.1 meV and a single peak
at h̄ω − h̄ωT 	 −� = 32.2 meV. The latter is called the
MT peak, which is emitted by the biexciton relaxation into
the transverse exciton level (exciton-like polariton).11 The
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FIG. 3. Forward scattering spectra from a CuCl film with thick-
ness d = 7μm. The film exists in vacuum, and the pump beam is
perpendicular to it. The pump frequency ωin corresponds to the
two-photon absorption involving biexcitons. The results for scattering
angles θ = 0◦, 30◦, and 60◦ are plotted with different lines as functions
of scattering frequency ω.

remaining polariton with frequency ω 	 ωT propagates back-
ward, but it cannot go outside the film because of the
absorption. On the other hand, the multiple peaks at h̄ω −
h̄ωT 	 −16.1 meV originate from the biexciton relaxation
into two polaritons, and the peak structure is due to the
interference inside the film with d = 7μm. Increasing the
scattering angle, the entangled peaks are split into lower and
higher energy sides satisfying the energy and wave vector
conservations as discussed in Ref. 37. These peaks are the
LEP and HEP, and the intensity of HEP is usually smaller
than that of LEP, because of the strong absorption near the
bare exciton energy ωT. The angle dependence of the peak
positions obeys the relation shown in Ref. 37. The peak at
h̄ω − h̄ωT 	 −�bx − �LT is called ML, which is emitted by
the biexciton relaxation into the longitudinal exciton state. The
emitted photon cannot go outside when θ = 0◦ because it is
polarized in the z direction (longitudinal), and the remaining
exciton also cannot go outside due to the strong absorption
even for θ > 0◦.

Figure 4 shows the polarization-resolved scattering spectra.
The film thickness is also d = 7μm and the scattering angle
is θ = 60◦. H and V represent the horizontal and vertical
polarizations, respectively, with respect to the scattering plane.
The ML peak consists of only H-polarized light, because
V-polarization does not contain the longitudinal component.
Concerning the LEP and HEP peaks, their intensities depend
on the polarization direction. This is a general aspect at nonzero
scattering angles, because the reflectance at the surface is in
general different for the two polarizations. When we resolve
the spectra with circular polarizations, the spectra of left- and
right-polarizations are the same for any scattering angles and
any frequencies.

Figure 5(a) shows the polarization-resolved scattering spec-
tra at thickness d = 200 nm. The scattering angle is θ = 60◦
and the pump frequency is tuned to excite the m = 6 biexciton
state. Compared with the spectra by bulk crystal in Fig. 4, there
are more than two peaks in the LEP-HEP frequency region. The
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FIG. 4. The scattering spectra of horizontal (H) and vertical (V)
polarizations are shown. The film thickness is d = 7μm, and the
scattering angle is θ = 60◦. The other parameters are the same as in
Fig. 3.

peak positions are different for H and V polarizations, and they
do not obey the angle-frequency relation for bulk crystal.37

The spectral shape can be interpreted by the exciton-photon
coupled modes17,18,21,32,33,35 in the thin film, which have been
discussed in relation with the radiative decay of excitons in
the nano-to-bulk crossover regime.22–25 Due to the breaking of
translational symmetry in the z direction, the lower and upper
polaritons in bulk material are no longer good eigenstates.
Instead, we obtain the exciton-photon coupled modes with
discrete energy levels and radiative decay rates in the case
of thin film. A created biexciton spontaneously decays into
these coupled modes with emitting a photon conserving the
energy and in-plane wave vector. By using the method in
Ref. 18, we calculated the exciton-photon coupled modes with
V polarization in the film with d = 200 nm, which are shown
in Fig. 5(b), and the modes with H polarization are shown in
Fig. 5(c). The dashed lines represent the dispersion relation of
exciton-polariton in bulk crystal, and the horizontal bars are
the coupled modes in the thin film. The length of each bar
represents the sum of radiative and nonradiative decay rates,
and the center is the resonant frequency. Since the H-polarized
modes includes the longitudinal components, there are also
the exciton-like modes with longitudinal exciton energy. The
higher frequency parts of the scattering spectra in Fig. 5(a)
apparently reflect the structure of the coupled modes shown
in Figs. 5(b) and 5(c), and the peaks in lower frequency
part appear satisfying the energy conservation. In this way,
the scattering spectra of thin films are qualitatively different
from the bulk one, and they depend on the film thickness,
surroundings, and in-plane wave number obeying the change
of exciton-photon coupled modes as discussed in Ref. 18.
Furthermore, in contrast to the spectra for bulk crystal in Fig.
4, the emission near the exciton resonance ω 	 ωT can go
outside the film, because of the large radiative decay rate in
the thin film. From these results, the measurement of scattering
spectra of RHPS can be considered a powerful tool34 to
observe the exciton-photon coupled modes in nanostructured
materials in addition to the previously performed nonlinear
optical experiments.17,33
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FIG. 5. (a) Polarization-resolved scattering spectra for thickness
d = 200 nm and scattering angle θ = 60◦. The film exists in vacuum
and the pump frequency is tuned to resonantly excite the m = 6
biexciton state. (b) Dashed lines are the exciton-polariton dispersion
relation in bulk crystal. The horizontal bars represent the exciton-
photon coupled modes with V polarization in the film with d =
200 nm. The bar length is the sum of radiative and nonradiative decay
rates and the center is the resonance frequency. (c) The H-polarized
modes are plotted. Because of the breaking of translational invariance
in the z direction and the nonzero scattering angle, the longitudinal
excitons are also optically allowed.

B. Entangled-photon generation

Next, we discuss the entangled-photon generation by
RHPS. Figure 6 shows polarization-resolved spectra of two-
photon coincidence measurement. We plot only the signal
intensity C

(2)S
ξ1,ξ2,k̄in=0,k̄1=(ωT/c) sin θ

(z1 > d,z2 > d,ωin,ω) as a
function of scattering frequency ω of a photon (the other
photon has frequency of 2ωin − ω). In Fig. 6(a), the pairs
with ξ1 = ξ2 = H and ξ1 = ξ2 = V are considered, and the
cross-linear pairs (HV and V H ) have no correlation, because
the photons are emitted from the lowest biexciton level with
zero angular momentum. Two film thicknesses 7μm and
200 nm are considered, and the parameters are the same
as in Figs. 4 and 5, respectively. In the two calculations,
we considered the same pump power. Since the spectra are
symmetrical about ωin, we show only the high-frequency part
ω > ωin. While similar as the scattering spectra in Fig. 4,
the signal intensities of HH and of V V are not the same
in general, when the scattering angle is nonzero. Therefore,
the ideal entanglement in Eq. (25b) is not generally obtained,
and the entangled state also has RR and LL components,
whose spectra are shown in Fig. 6(b). Although this is a
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FIG. 6. The two-photon coincidence (signal) intensity is plotted
as a function of scattering frequency ω of one of emitted photons.
The spectra are resolved by the polarization of the two photons. CuCl
films with thicknesses d = 7 μm and 200 nm are considered, and
the scattering angle is θ = 60◦. The same pump power is supposed
for both thicknesses. (a) The polarization directions of two photons
are resolved in H and V axes. The collinear pairs (HH and V V ) are
correlated, and the cross-linear pairs (HV and V H ) are not generated
from the lowest biexciton level in a film. (b) The polarization
directions are resolved for circular polarization basis. Not only the
pairs of left (L) and right (R) circularly polarizations are obtained,
but LL and RR pairs are also generated for θ > 0. The spectra of
LR and RL are the same, and those of RR and LL are also the same.
The spectra of 200 nm are magnified by factor 80 in both (a) and (b).
Since the spectra are symmetrical about ωin, only the high-frequency
side ω > ωin is shown.

general property of bulk crystals, the situation is different in
the case of the nano-to-bulk crossover regime. As seen in
Fig. 6(a), we can obtain the same signal intensities for HH

and V V at frequencies h̄ω − h̄ωT = −9.8 and −7.7 meV for
d = 200 nm, and the signal intensities of RR and LL become
nearly zero at frequency −8.8 meV in Fig. 6(b), while it is
slightly different from the peak frequency −8.2 meV of the LR

spectrum. These results mean that the state of emitted photon
pairs can be modified by tuning the film thickness, scattering
angle, and scattering frequency in the case of thin films. For
example, at frequency −8.8 meV for d = 200 nm, we can get
the entangled state (|LR〉 + |RL〉)/√2, while the proportions
of |HH 〉 and |V V 〉 components are not equal as seen in Fig.
6(a), because the polarization bases of the two photons are
different for θ �= 0. On the other hand, at frequencies −9.8 and
−7.7 meV, we get the entangled pairs with the same HH and
V V proportions, while they contains RR and LL components.

Furthermore, even if the scattering angle is θ = 0◦, in
contrast to the bulk case, the scattering peaks are not at ω = ωT

in general in the case of thin films. Therefore, the maximally
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FIG. 7. (a) The generation efficiency (signal intensity) from a
CuCl film with thickness d = 200 nm is plotted as a function of
scattering frequency ω. The biexciton state m = 6 is resonantly
excited, and the scattering angle is θ = 0◦. (b) The spectrum of
the corresponding performance P . The generation efficiency and
the performance are normalized in the same manner as in Fig. 8.
(c) The exciton-photon coupled modes for θ = 0◦ in the film are
plotted, while θ = 60◦ in Fig. 5(b).

entangled photon pairs are obtained by frequency filtering for
the emission at θ = 0◦. Figure 7(a) shows the spectrum of
signal intensity (generation efficiency) obtained by a CuCl
film with thickness d = 200 nm for scattering angle θ = 0◦.
The proportions of HH and V V are the same, and RL and
LR pairs are not emitted. As seen in Fig. 7(a), the peaks
appear not at ω = ωin but close to the resonance frequencies
of the exciton-photon coupled modes shown in Fig. 7(c) (but
not just at the resonance frequency because we get strong
absorption near the exciton resonance frequency ωT). In this
way, compared to bulk crystals10,13 and also to simple quantum
dots,4,5,7 the nano-to-bulk crossover regime has a variety of
degrees of freedom to control the generated entangled state.

For the high-power generation of the entangled photons,
the important factors are the generation efficiency and also the
statistical accuracy, i.e., the number of unentangled pairs. For
a pump beam with power Iin, the signal intensity S ∝ C(2)S

(amount of entangled pairs) is proportional to Iin
2, while the

noise intensity N ∝ C(2)N (amount of unentangled pairs) is
proportional to Iin

4, because an unentangled pair involves two
biexcitons. This implies that by increasing the pump power
Iin, the S/N ratio decreases in contrast to the increase of S.13

To evaluate the material potential for the generation of strong
and qualified entangled-photon beams, we introduce another
measure termed “performance,” P , defined as the signal
intensity S under a certain S/N ratio α (Iin is tuned to give this
ratio). This quantity P = S2/αN does not depend on Iin and
reflects the material potential. Figure 7(b) shows the spectrum
of the performance. The exciton-photon coupled modes are
shown in Fig. 7(c), and we can find that they govern the spectra
of S of P . However, since the spectrum of the noise (product
of scattering intensities) is different from the signal one,
Figs. 7(a) and 7(b) are slightly different. The most significant
difference is the spectra around ω = ωin ∼ ωT − 16.1 meV.
While both S and P mostly reflect the resonance frequency
of the exciton-photon coupled modes, the performance is
maximized at ω = ωin, because P is strongly affected by
nonradiative damping, which is smallest at that frequency.

Figure 8 shows thickness dependencies of (a) generation
efficiency S/Iin

2 and (b) performance P . The shapes of P

curves do not depend on the choice of α, and the maximum
value is normalized to unity. We also plot the generation effi-
ciency with arbitrary units, because the estimation of absolute
signal intensities are sensitive to the change of measurement
conditions, while the spectral shape and thickness dependence
do not depend on them. For simplicity, we assume that the
two scattering fields are forward and perpendicular to the film
(θ = 0◦) and the frequencies are ω1/2 = ωin ± 0+. The pump
frequency is tuned to the two-photon absorption in bulk
material. The results for nonradiative decay rates γex = 0, 0.1,
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FIG. 8. Thickness dependencies of (a) generation efficiency
S/Iin

2 and (b) performance P . The scattering angle is θ = 0◦ and the
frequencies are ω1/2 = ωin ± 0+. To suppress the interference effect,
outside medium is a dielectrics with εex

bg. The results for γex = 0, 0.1,
0.5, and 1.0 meV are plotted with different lines. The performance is
normalized to the ideal quantity.
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FIG. 9. Thickness dependencies of (a) generation efficiency
S/Iin

2 and (b) performance P . The black lines represent the results
for a bare CuCl film existing in vacuum. The scattering frequencies
are ω1/2 = ωin ± 0+, and the angle is θ = 0◦ (forward). The gray
lines represent the results for DBR cavity embedding a CuCl layer
shown in Fig. 2(b). The mode frequency of the optical cavity is tuned
to ωT, and the scattering is backward with θ = 180◦. In both cases,
γex = 0.5 meV. The performance is normalized in the same manner
as in Fig. 8.

0.5, and 1.0 meV are plotted with different lines. In order to
suppress the oscillation due to the interference as seen in Fig. 3,
we suppose that the CuCl film exists in a dielectric medium
with εex

bg. The results for the film in vacuum are shown in Fig. 9.
In Fig. 8, the oscillating behavior in the nanometer thickness
range is due to the biexciton confinement and the modification
of the energy structure of exciton-photon coupled modes.
The RHPS effectively occurs when the resonance energy of
the coupled mode is just equal to half the biexciton energy. The
maximum performance shown in Fig. 8(b) is the ideal quantity,
and it depends on measurement conditions, such as resolutions
of angle and frequency, but not on material parameters.

As seen in Fig. 8(a) and also in Ref. 12, the optimal
thickness for generation efficiency is determined by γex, and
it is on the order of micrometers or more for CuCl crystals.
However, as seen in Fig. 8(b), the performance significantly
decreases from the ideal value at thickness of micrometers for
nonzero γex, because the nonradiative decay easily increases
the amount of unentangled pairs. Therefore, when we use bulk
crystals, the generation efficiency (generation probability for
one pump pulse) is limited by desired statistical accuracy
(S/N ratio).13 However, at thickness from 50 to 1000 nm,
as expected, nearly the ideal performance can be obtained at
particular thicknesses even if γex is nonzero. This is because the
radiative decay is dominant owing to the exciton superradiance
in the nano-to-bulk crossover regime,17,18 and the entangled

pairs can go outside the film without decreasing the amplitude.
Therefore, thin films generally show a high performance,
and this rapid decay is also desired for the high-repetition
excitation, which also recovers the signal intensity while
maintaining the S/N ratio.13

C. With DBR cavity

Although a good performance is obtained at a thickness
of hundreds of nanometers, the generation efficiency of such
thin films is much lower than that of bulk crystals as seen
in Fig. 8(a), and a strong pump power is required to obtain
a sufficient signal intensity at such thickness range. While
the superradiant excitons maintain the large nonlinearity
(excitonic component),17 this low efficiency simply comes
from the small thickness (interaction volume). This problem
can be overcome by using an optical cavity in the strong-
coupling regime, because we can control both the interaction
volume and radiative decay rate using two parameters: quality
factor (Q factor) of cavity and thickness of CuCl. This aspect is
different from simple semiconductor microcavities, in which
the interaction volume and radiative decay rate are respectively
enhanced in strong- and weak-coupling regimes.

Although a high generation efficiency can be achieved by
using a high-Q cavity, we have to simultaneously realize a
rapid radiative decay of entangled photons inside the cavity.
Therefore, we consider a low-Q cavity as reported in Ref. 69,
namely, a CuCl layer with DBRs consisting of PbF2 and
PbBr2 as seen in Fig. 2(b). Here, since the translational
invariance is broken at thickness of nanometers, the generated
photons can go forward and also backward in contrast to
the bulk case. Therefore, we suppose a high reflectance on
the transmission side to suppress the leakage of entangled
photons, and we focus on the backward emission. The DBR
cavity is considered by the background dielectric function
εbg(r,ω) in Eq. (9). The refractive indexes of PbF2 and PbBr2

are 1.86 and 2.95, respectively. The gray lines in Fig. 9
represent the backward emission from the cavity, where the
cavity mode frequency is tuned to ωT, γex = 0.5 meV, and the
periods of the incident and transmitted sides are 4 and 16,
respectively (Q factor is 50). This system corresponds to the
weak bipolariton regime15,16 (but the strong-coupling regime
of excitons and photons), where the energy splitting between
polariton and biexciton levels is small compared to their
broadening. This situation is in contrast to those in Refs. 15
and 16, where the strong enhancement of entangled-photon
generation from a quantum well in a high-Q cavity has been
discussed on the basis of the biexcitonic cavity-QED picture
or the strong bipolariton picture. As shown in Fig. 9(a), since
biexcitons are effectively created, the generation efficiency
is significantly enhanced at thickness range of nanometers,
and it is larger than the maximum value by bare CuCl film
existing in vacuum (black line). The enhancement also occurs
when the polariton energy (exciton-photon coupled mode) is
equal to half the biexciton energy, which is consistent with
the results in Refs. 15 and 16. Compared with Fig 8(a),
the period of the oscillation is doubled, because the RHPS
involving biexcitons with odd-parity center-of-mass motion
is forbidden in the one-sided optical cavity. On the other
hand, as shown in Fig. 9(b), at thicknesses of micrometers,
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FIG. 10. (a) The generation efficiency (signal intensity) is plotted
as a function of scattering frequency ω. A CuCl film with thickness
d = 72 nm is embedded in the DBR cavity considered in Fig. 9,
and the other parameters are also the same. (b) The spectrum of
the corresponding performance P . (c) The exciton-photon coupled
modes in the film are plotted in the same manner as in Fig. 5(b).

the performance is suppressed compared with that of the bare
CuCl film. This is because of the multiple reflections inside
the cavity, and the scattered fields nonradiatively decay during
the propagation. In contrast, at thicknesses of nanometers,
particularly at 80 nm, the performance almost maintains the
ideal quantity. This is due to the enhancement of the radiative
decay rate by exciton superradiance, and the enhancement of
generation efficiency is simultaneously obtained by the cavity
effect in the strong-coupling regime.

Finally, in Figs. 10(a) and 10(b), we show the spectra of
generation efficiency and performance, respectively, in the
case of CuCl film with thickness d = 72 nm embedded in
the DBR cavity discussed above. This thickness is chosen to
achieve a high generation efficiency, while the performance
at ω = ωin is 0.86, which is smaller than the maximum value
in Fig. 9(b). However, compared to thin films without the
cavity, the generation efficiency is significantly increased and
the high performance is successfully maintained due to the
rapid radiative decay. Further, while the pump frequency ωin

is assumed to the two-photon absorption frequency in bulk
CuCl in Figs. 10(a) and 10(b), we have numerically checked
that when ωin is correctly tuned to the eigen frequency of a
confined biexciton mode, the generation efficiency is enhanced
more dramatically while maintaining the high performance.

In Fig. 10(c), the exciton-photon coupled modes are plotted
with horizontal bars, and we can find that one mode with
high radiative decay rate exists close to the pump frequency
ωin (two-photon absorption frequency of biexcitons). This
mode corresponds to the lower cavity polariton, and the strong
electric field in the cavity enhances the generation efficiency
of biexcitons due to the cavity-induced double resonance.70

Furthermore, the generated entangled excitons rapidly decay
into photons through this polariton mode, which ensures the
high performance by the same material structure and pump
conditions.

In this way, by using an optical cavity embedding a
CuCl layer with a thickness of nanometers, we can obtain
a high efficiency and a high performance simultaneously.
To avoid the leakage of generated photons, the reflectance
on the transmission side should be high enough, but that
on the incident side should not be high to obtain a rapid
radiative decay rate. Once we choose a cavity structure, we
can numerically determine the optimal thickness of the CuCl
layer, in which an exciton-photon coupled mode has half the
biexciton frequency, a rapid radiative decay rate, and also
large exciton component (large nonlinearity) to achieve a high
performance and a high generation efficiency. Such a coupled
mode is a unique feature in the nano-to-bulk crossover regime.

V. SUMMARY

We have developed a theoretical framework for the in-
vestigation of biexciton-RHPS based on the QED theory for
excitons.44 Compared to the previous theories,12,39 our method
can be applied to the nano-to-bulk crossover regime, because
the center-of-mass motions of excitons and biexcitons are
explicitly considered. Further, we can discuss the polarization
correlation of entangled pairs and also surroundings of the
excitonic layer, such as the DBR cavity structure. While
we considered CuCl films in actual calculation, by treating
several relative exciton levels and by correctly calculating
the center-of-mass wave functions of excitons confined in
finite crystal including the effect of a dead layer,71 our
theoretical framework can be applied to other materials in
principle. Further, by correctly treating the modification of
relative motion of excitons and biexcitons strongly confined
in nanocrystals and also the Pauli exclusion principle, our
framework can be extended for the investigation of a single
quantum dot and the deterministic generation of entangled
photons.

We have calculated the scattering spectra of RHPS from
CuCl films with bulklike and submicron thicknesses. At the
bulklike thickness, the four peaks called MT, ML, LEP, and
HEP are reproduced as observed in experiments. On the
other hand, scattering spectra of the thin film are significantly
modified from the bulk ones, reflecting the exciton-photon
coupled modes in the thin film.17,18,21,33,35 In other words,
the RHPS measurement is also useful to observe the exciton-
photon coupled modes in nanostructured materials34 as well
as the four-wave mixing17,29,35 and the two-photon excitation
scattering.33

In addition to the signal intensity of entangled-photon
generation, we also discuss the performance of material
structures by considering the noise intensity originating from
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two independent biexcitons. Although the signal intensity
is maximized at a thickness of micrometers,12,39 a high
performance is obtained at a thickness of nanometers due to
the rapid radiative decay of excitons. However, the generation
efficiency of such thin films is weaker than the bulk one in
general. We have demonstrated that by using a DBR cavity
embedding an excitonic layer in the nano-to-bulk crossover
regime, the generation efficiency can be enhanced while
maintaining a high performance.

For the pursuit of high-power and high-quality but proba-
bilistic generation of entangled photons, which is essential for
the next-generation technologies of fabrication and chemical
reaction,9 the biexciton-RHPS shows a high generation effi-
ciency compared to the PDC one. From the viewpoint of the
quality of generated entangled pairs, by implementing a DBR

cavity embedding a CuCl nanolayer, the RHPS can show a
high performance while maintaining high efficiency. Such a
structure has also a variety of degrees of freedom to control
the generated states of entangled photons. We believe that our
results make a breakthrough in high-power and high-quality
entangled-photon generation.
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