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In this work we study the Casimir effect with three-dimensional topological insulators including the effects
of temperature and uniaxial anisotropy. Although precise experimental values for the optical properties of these
materials are yet to be established, a qualitative analysis is still possible. We find qualitatively that the reported
repulsive behavior and the equilibrium point are robust features of the system, and are favored by low temperatures
and the enhancement of the optical response parallel to the optical axis. The dependence of the equilibrium point
with temperature and with the topological magnetoelectric polarizability characteristic of three-dimensional
topological insulators is also discussed.
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I. INTRODUCTION

Since Casimir wrote his seminal paper,1 proposing that
two uncharged metallic plates should attract in vacuum due
to quantum fluctuations, still little is known of how to revert
the sign of the force and obtain repulsion or levitation. The
generalization of the theory to include dielectric bodies2 has
made it possible to achieve, very recently, repulsion with test
bodies immersed in a dielectric fluid.3 However, achieving re-
pulsion in vacuum, which would have important consequences
for device applications,4,5 is still to be experimentally tested.
Theoretically, there have been several proposals to achieve
such a situation. The first proposal considered magnetic
versus nonmagnetic situations6 and more recent proposals
include the use of metamaterials7–9 and geometry to induce
repulsive scenarios.10 Importantly, it has also been shown
that for general dielectric-dielectric situations, there is no
repulsive behavior in vacuum.11 In a recent paper,12 two of
us suggested that repulsive behavior could be achieved by
using topological insulators.13–16 The topological nature of
these materials17,18 provides a magnetoelectric term modifying
the response to an external electromagnetic field, which can
then cause the Casimir effect to reverse sign at short distances
and remain attractive at large distances.12 Consequently, at an
intermediate distance deq, the Casimir force vanishes and a
stable configuration is possible.

In this paper, we aim to include the effect of temperature
and uniaxial anisotropy to this behavior, two relevant factors
in experimental situations. It is well known by now that
anisotropy can modify the Casimir force by changing the form
of the reflection coefficients,5 and has been studied in the
context of repulsive interactions,19 even including the effect
of temperature.20 In the present paper we address the question
of whether uniaxial anisotropy and temperature can enhance
or destroy the repulsive behavior in the context of topological
insulators, and in what cases can this occur. To achieve this goal
we derive the reflection coefficients for a generic anisotropic
topological insulator, a result which to our knowledge is absent
in the topological insulator literature. With the help of these, we
find that low temperatures favor the repulsive behavior and we

determine that enhancing uniaxial anisotropy in the direction
parallel to the optical axis also acts to increase repulsion.

To our knowledge, precise optical characterization of
these materials is still lacking, and thus it remains an open
question if real materials are to show repulsion at these
distances. Nevertheless, throughout the paper, we use choices
of parameters which can be relevant for topological insulators
such as TlBiSe2 (Ref. 21) (see also the concluding paragraph
in Ref. 12), which have mainly low dielectric permeability at
zero frequency ε(0) and small magnetoelectric polarizability
θ . We do not restrict the study only to these values but explore
other regions of parameters for completeness.

The work is structured as follows. Section II is devoted to
review the formalism and notation on which we rely on. To do
so, we will briefly review the isotropic case at zero temperature
(T = 0) discussed in Ref. 12, to which we will add the depen-
dence of the minimum with the topological magnetoelectric
polarizability, not discussed in Ref. 12. Details of the proof of
the existence of repulsion are left for Appendix A. In Sec. III
we will study the effect of temperature on the Casimir energy
as a function of distance, both analytically and numerically.
We will also discuss the position of the minimum as a function
of temperature and topological magnetoelectric polarizability
θ . Details of the analytical results can be found in Appendix B.
In Sec. IV we will discuss the effect of uniaxial anisotropy on
the Casimir energy at T = 0. First, we will explicitly write
the Fresnel coefficients for this case, leaving the details of the
derivation for Appendix C. In the remaining part of this section
we will consider different values for the relevant parameters
and discuss their effect on the position of the minimum. Finally,
in Sec. V we will present the results for the case of a uniaxially
anisotropic topological insulator at T �= 0 to end with Sec. VI,
which includes a summary of results and some concluding
remarks regarding real systems.

We emphasize that the numerical results presented in this
paper explore regions of parameters without any restricting
assumption other than a positive energy condition inherent
to magnetoelectric couplings, discussed in Sec. III B. On
the other hand, in order to derive analytical results, some
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feasible assumptions are to be considered, such as small
magnetoelectric coupling, all of which apply only to the results
in Appendix B, and hence will be discussed in the mentioned
Appendix.

II. CASIMIR-LIFSHITZ FORCE BETWEEN
TOPOLOGICAL INSULATORS AT T = 0

It is well known from different approaches that the
Casimir energy density stored by two dielectric parallel plates
(labeled 1 and 2) of area A, separated by a distance d, at zero
temperature (T = 0) can be written as2,5,22,23

Ec(d)

Ah̄
=

∫ ∞

0

dξ

2π

∫
d2k‖
(2π )2

log det[1 − R1 · R2e
−2k3d ], (1)

where k3 =
√

k2
‖ + ξ 2/c2 is the wave vector perpendicular to

the plates, k‖ is the vector parallel to the plates, and ξ is the
imaginary frequency defined as ω = iξ . The matrices R1,2 are
2 × 2 reflection matrices containing the Fresnel coefficients
such that

R =
[

Rs,s(iξ,k‖) Rs,p(iξ,k‖)

Rp,s(iξ,k‖) Rp,p(iξ,k‖)

]
, (2)

where Ri,j describes the reflection amplitude of an incident
wave with polarization i which is reflected with polarization
j . The label s (p), equivalent to TE (TM) modes, describes
parallel (perpendicular) polarization of the electric field with
respect to the plane of incidence. The Casimir force per unit
area on the plates is obtained by differentiating expression (1):
F = −∂dEc(d). A negative (positive) force, or equivalently a
positive (negative) slope of Ec(d), corresponds to attraction
(repulsion) of the plates.

In order to calculate the Casimir energy, one needs to
compute the reflection coefficients. These coefficients relate
the amplitude of the incident and reflected electric fields for
different polarizations. Since the normal components of D and
B and tangential components of E and H must be continuous
along the interface, one can obtain the reflection amplitudes by
solving Maxwell’s equations at each side and then imposing
the mentioned matching conditions for the fields (see below).

A. Topological insulators: The model

Following Ref. 12 we will consider a Casimir system
composed by two topological insulator plates separated by
a distance d, shown in Fig. 1. The electromagnetic response
of three-dimensional topological insulators, which determines
the reflection coefficients, is governed by the Lagrangian

L = L0 + Lθ = (E · D + B · H) , (3)

with the difference that now the constitutive relations for the
electric displacement field D and the magnetic field H are
given by

Di = εijEj + αθ

π
Bi, (4)

Hi = (μ)−1
ij Bj − αθ

π
Ei. (5)

FIG. 1. (Color online) Topological insulating plates separated by
a distance d covered with a thin ferromagnetic layer of thickness
l � d (not to scale). Changing the sign of the magnetization of one of
the plates (parallel or antiparallel to the surface normal) is equivalent
to changing the sign of (either) θ1,2.

The first term of each constitutive equation is the usual electro-
magnetic term defined in terms of the dielectric function ε(ω)
and magnetic susceptibility μ(ω), giving rise to the ordinary
electromagnetic term in the Lagrangian (3) which we label L0.
We restrict ourselves to nonmagnetic topological insulators so
μ = 1. The second term in each constitutive equation is a
nontrivial axionic24 or topological magnetoelectric term,17,18

which gives rise to a topological Lθ term in the Lagrangian.
Time-reversal symmetry indicates that θ = 0,π (mod 2π )
being θ = π the case for topological insulators and θ = 0
the case for trivial insulators.

When the boundary is included, the action corresponding
to the Lagrangian (3), S0 + Sθ , is a fair description of the
topological insulator only when a time-reversal breaking
perturbation is induced on the surface to gap the surface
states.17 Along the lines of similar situations,12,17,25 in this
work we consider that the time-reversal perturbation is a
magnetic coating of small thickness l � d (d will be of the
order of μm) which gaps the surface states. In the described
situation, θ is quantized in odd integer values of π such that

θ = (2n + 1)π, (6)

where n ∈ Z, determined by the nature of the coating, but
independent of the absolute value of the magnetization of the
coating. Positive or negative values of θ are related to different
signs of the magnetization on the surface,25 which we consider
is perpendicular to the plane of the plates. Each topological
insulator plate is characterized by the frequency-dependent
dielectric function ε(ω) and the quantized magnetoelectric
term θ . Being a topological contribution, θ is defined in
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the bulk as a constant whenever the bulk Brillouin zone is
defined.18 Nevertheless, at the surface, the effective action
must be valid as long as the condition l � d is fulfilled,
where magnetic effects from the covering magnetic layer could
renormalize its value, and the system should be treated as a
layered system. We henceforth assume that this is not the
case and consider only the region where l � d (nm � μm in
practical terms).

The parasitic magnetic forces between the magnetic layers
can be estimated following Ref. 26. The dipole-dipole inter-
action is of the order of attoN at distances of 50 nm and the
magnetic Casimir force26 is ∼1 fN. Since we will be dealing
with distances of the order of μm the magnetic forces will be
even smaller compared to the Casimir force that is of the order
of pN.12 Thus, we neglect the parasitic magnetic interactions,
and focus only on the Casimir force experienced by the plates.

B. Results for isotropic topological insulator plates at T = 0

In this section we review for completeness the case of two
isotropic topological insulator plates discussed in Ref. 12 and
extend some of the results. The topological part Sθ in the
action does not modify Maxwell’s equations as long as the
constituent relations are changed according to (4) and (5),
taken at this stage to be isotropic.

From these, we can obtain the reflection matrices (2) by
imposing the continuity of the tangential component of H
and the normal component of D. For a plate described by
the optical responses θi and εi(ω) immersed in vacuum the
reflection matrices are given by27,28

Ri = 1

	

(
1 − n2

i − ᾱ2
i + niχ− 2ᾱi

2ᾱi −1 + n2
i + ᾱ2

i + niχ−

)
, (7)

where i = 1,2 labels each plate, ᾱi = αθi

π
, α is the fine structure

constant (α = e2

h̄c
), ni = √

εi(ω) is the refractive index of each
plate, 	 = 1 + n2

i + ᾱ2
i + niχ+, and

χ± =
ξ 2 + k2

‖ ± (
ξ 2 + k2

‖
n2

i

)
√(

ξ 2 + k2
‖
) (

ξ 2 + k2
‖

n2
i

) . (8)

It is possible to show that when ᾱ = 0, and after a little
algebra, these coefficients reduce to the ordinary Fresnel coef-
ficients for a dielectric-dielectric interface.29 By its definition,
	 is always positive and the off-diagonal terms have an overall
sign governed by the sign of θi .

Introducing these matrices in (1) and assuming that both
topological insulators are described by an oscillator model of
the form

ε(iξ ) = 1 +
∑

i

ω2
e,i

ξ 2 + ω2
R,i + γR,iξ

, (9)

it was shown12 that two different situations could arise:
(1) When the topological terms had the same signs, i.e.,
sgn(θ1) = sgn(θ2) the Casimir force was attractive for all
distances, and (2) when the signs were opposite sgn(θ1) =
−sgn(θ2), it was shown both analytically and numerically
that a repulsive region at small distances appeared. At large
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FIG. 2. (Color online) (a) d̄eq as a function of θ1 for different
values of θ2 ranging from π to 5π . The solid blue line represents
d̄eq ∝ |θ1θ2|. (b) d̄eq as a function of θ ≡ θ1 = −θ2 (black curve with
dots). The behavior deviates from θ2 (bottom curve red) reasonable
for small θ . Beyond θ = 17π the equilibrium point is lost (see text).
For both figures the remaining parameters of the model were fixed to
ωe

ωR
= 0.45.

distances, attraction was recovered and the two regimes were
separated by a minimum in the Casimir energy: an equilibrium
point. The dependence of the minimum was studied for a
one-oscillator model, showing that the repulsive behavior was
favored by reducing the ratio ωe

ωR
. A detailed version of the

proof of the existence of a minimum, together with the analytic
analysis of the large and short distances limits of the Casimir
energy are given in Appendix A.

To end this section we complete the analysis made in
Ref. 12 by studying the explicit dependence of the position
of the equilibrium point (deq) with θ1 and θ2. We define for
convenience the adimensional distance d̄ ≡ ωR

c
d. Whenever

the condition sgn(θ1) = −sgn(θ2) is satisfied, it is easy to study
numerically the dependence of d̄eq, the equilibrium position
as a function of both θ1,2. The analysis is shown in Fig. 2.
In Fig. 2(a) we plot d̄eq against θ1 for different values of θ2

ranging from π to 5π . A numerical fit indicates that for small
magnetoelectric couplings the dependence is given by

d̄eq ∝ |θ1θ2|. (10)
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For higher magnetoelectric couplings, the behavior deviates
from the simple θ2 law. This is shown in Fig. 2(b), where
we plot θ ≡ θ1 = −θ2. For high values of θ the equilibrium
position grows faster to larger distances. Beyond a critical
value, the magnetoelectric part of the reflection coefficients
overwhelms the ordinary dielectric part giving rise to purely
repulsive behavior and the equilibrium position disappears,
which is analogous to the ε(0) → 1 limit discussed in Ref. 12.
The inclusion of temperature will modify further (10), as
shown in the next section.

As a final comment for this section we mention that the
obtained dependence of the minimum with θ suggests that
an analytic way of deriving this result might be possible,
especially in the case where θ1 = −θ2. Nevertheless, the
derivation of this result is not transparent from this formalism,
although other formalisms23 can shed more light on the issue.

III. CASIMIR-LIFSHITZ FORCE BETWEEN ISOTROPIC
TOPOLOGICAL INSULATORS AT T �= 0

In this section we include the effect of temperature for
isotropic plates and we discuss how the repulsive behavior can
be affected by changes in temperature.

A. Inclusion of finite temperature effects

To take into account finite temperature effects within the
Lifshitz theory, one must assume that the system is in thermal
equilibrium. As a first step, the formal replacement5,23

h̄

2π

∫ ∞

0
dξ ←→ kBT

∞∑
l=0

′
(11)

in (1), together with the replacement of ξ with ξl = 2π kBT
h̄

l, the
discrete Matsubara frequencies, takes into account the effect of
temperature. We have defined kB to be Boltzmann’s constant
and the prime denotes that the term l = 0 contains a prefactor
1
2 compared to other terms in the sum. This set of substitutions
imply some assumptions which we now briefly discuss.

First of all we note that formally the dielectric function
can also have temperature dependence through the parameters
ωRi

, ωei
, and γi defined in (9). Although to our knowledge

there is no experimental data for topological insulators, these
parameters are almost temperature independent for most
dielectrics and so we exclude this effect in our analysis.
In addition, it is known that all dielectrics have nonzero
conductivity σ (T ) at T �= 0, which modifies the dielectric
function through ε(ω,T ) = ε(ω) + i4π σ (T )

ω
. For dielectrics

σ (T ) depends on the band gap 	: σ (T ) ∼ exp(− 	
2kBT

).
Topological insulators such as Bi2Se3 have 	 ∼ 0.3 eV

(Ref. 30) and so we can neglect this contribution as a first
approximation for temperatures below T ∼ 3 × 103 K, which
is enough for practical purposes. Nevertheless, it is possible to
show5 that the inclusion of the finite conductivity term within
the Lifshitz formalism leads to a violation of Nernst theorem
which states that the entropy should tend to zero when T → 0.
Physically this is related to the appearance of a drift current,
which leads to Joule heating and violates the condition of
thermal equilibrium, necessary to apply the Lifshitz theory.
Hence, the inclusion σ (T ) is therefore not justified within

the Lifshitz theory and leads to large, unphysical thermal
corrections which do not account for experimental data.5

Either way, we are forced to neglect this contribution. Other
effects of temperature on the coating are discussed in Sec. VI.

Having considered these points, we will assume that the
formal substitution (11) is enough to take into account the
effect of temperature on the Casimir effect in anisotropic
topological insulators.

B. Results at T �= 0 isotropic plates

Once the method to include temperature effects is es-
tablished, we analyze the case of two isotropic topological
insulating plates described by (9) at T �= 0. The Lifshitz
equation (1) transforms for finite temperatures to

Ec(d)

A
= kBT

∞∑
l=0

′∫
d2k‖
(2π )2

log det[1 − R1 · R2e
−2k3d ], (12)

where the transverse momentum k3 is now evaluated at discrete
frequencies ξl such that k3 =

√
k2

‖ + ξ 2
l /c2. It is convenient to

define the adimensional temperature T̄ :

T̄ ≡ 2πkBT

h̄ωR

. (13)

Frequencies in the optical region T̄ = 1 correspond to tem-
peratures T ∼ 2 × 103 K, while frequencies in the microwave
region T̄ = 3.7 correspond to temperatures T ∼ 300 K. Since
we will be interested in the latter (the topological insulator
TlBiSe2 has a resonance frequency21 at ωR = 56 cm−1) our
plots will range from T̄ = 0 to T̄ = 10. We note that the
behavior is dominated by low-frequency resonances as long as
higher resonance frequencies have similar oscillator strengths
in (9) (see the auxiliary material in Ref. 12). Because of
this, and the absence, to our knowledge, of broad frequency
experimental data regarding the optical response of topological
insulators (due mainly to their interest as thermoelectrics),
we assume that this is the case and restrict ourselves to a
one-oscillator model throughout the paper. Nevertheless, as
optical data becomes available, it is simple to implement
these techniques and substitute the relevant parameters in the
model since the overall assumptions will still hold (namely,
the insulating behavior and the existence of a topological
magnetoelectric polarizability).

We end here the discussion regarding the model and the the-
oretical tools and we now proceed to analyze both numerically
and analytically the results obtained from integrating (12).

1. Classical (T → ∞) and quantum (T → 0) limits

To get some insight into the finite temperature behavior of
the system, one can ask what happens to the Casimir force in
the (formal) limits when T → ∞ and T → 0. Trivially, if one
first sets T → 0, expression (1) is recovered and the analysis
of Ref. 12 still holds. Hence a region of repulsion is expected
to exist if the topological magnetoelectric polarizabilities of
the plates have different signs. For high temperature, T → ∞,
also referred to as the classical limit, all the terms in the l

sum above are exponentially suppressed except for the l = 0
term.5 Thus, for isotropic plates, the dielectric function can
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be replaced by the zero-frequency dielectric function. Let us
derive the reflection coefficients in this case.

Directly from (7), and taking into account that n2
i = εi , the

reflection coefficients at zero frequency take the form

rs = 1

	l=0
[1 − ε(0) − ᾱ2 +

√
ε(0)χ−(0,k‖)], (14)

rs = 1

	l=0
[−1 + ε(0) + ᾱ2 +

√
ε(0)χ−(0,k‖)], (15)

rsp = 2ᾱ

	l=0
= rps, (16)

where 	l=0 = 1 + ε(0) + ᾱ2 + √
ε(0)χ+(0,k‖). From their

definition (8), the functions χ± at zero frequency can be
expressed in terms of ε(0) only (k‖ dependence cancels in
this limit):

χ± =
√

ε(0)

(
1 ± 1

ε(0)

)
. (17)

Bringing together all simplifications the reflection coefficients
(7) take the form

Ri = 1

2[ε(0) + 1] + ᾱ2

(−ᾱ2 2ᾱ

2ᾱ 2(ε(0) − 1) + ᾱ2

)
, (18)

We emphasize that, although similar in structure, these
reflection coefficients are different from the ones obtained at
zero temperature and d → ∞ in Appendix A by rescaling the
Casimir energy density with d.

One can introduce this expression in (12) and study the
behavior of the Casimir energy as a function of the two

parameters of the model: ε(0) = 1 + ω2
e

ω2
R

and θ1,2. In this case
one can rescale the integration variables with d and focus on
the force defined as F = −∂dEc(d), which takes the form

Fcl(d) = kBT

d3π
f [ε(0),θ1,θ2], (19)

where f is a complicated integral expression of the parameters
(see Appendix B for details). It is evident from the functional
form of (19) with d that in the classical limit the Casimir force
is either attractive or repulsive for all distances, depending only
on the sign of f . Thus, in contrast to the zero-temperature case,
no equilibrium point is expected.

When sgn(θ1) = sgn(θ2), no repulsion is obtained for any
values of the parameters, as expected from the results in
Ref. 12. Whenever sgn(θ1) �= sgn(θ2), it is possible to draw
the diagram of Fig. 3, where the attractive and repulsive
behaviors are shown as a function of the two parameters
for the particular case where θ1 = −θ2 ≡ θ . To understand
this diagram, one first has to note that the topological
magnetoelectric polarizability has an upper bound to satisfy the
positive energy condition31 for magnetoelectric materials. In
the present context, this condition implies that α|θ |

π
<

√
ε(0),

which excludes the black region on the right-hand side of
Fig. 3. The other two regions indicate attractive (white top
region) or repulsive (green low region) behavior. From this
diagram it is transparent that even in the classical limit of very
high temperature there exists a region of parameters where
complete repulsion is obtained. It is relevant to point out that

FIG. 3. (Color online) Attraction vs repulsion in the classical limit
(T → ∞) as a function of ωe

ωR
and θ

π
, where θ1 = −θ2 ≡ θ . The white

upper region shows attraction while the lower green region shows
repulsion. The black region is a forbidden region for the parameters
due to the positive energy condition α|θ |

π
<

√
ε(0) (see text).

a low dielectric response is needed for this to happen. High
topological magnetoelectric polarizability also enhances the
repulsive behavior.

Can one understand the origin of repulsion in the classical
limit analytically? The answer is in fact affirmative. For small
θ1,2 and 1 − ε(0), it is possible to write a closed analytical
form for the Casimir force of the parameters, although for the
sake of clarity we leave this to Appendix B. In addition to this,
we have included a discussion of the classical limit in terms of
the Casimir energy density (see Appendix B) in the spirit of
Ref. 12 by studying the relative strength of the diagonal and
off-diagonal reflection coefficients. Both approaches lead to
the same result: Repulsion is possible in the classical limit for
a certain range of parameters, which are summarized in Fig. 3.
Having studied these limiting cases, we know proceed to the
general case where T �= 0.

2. T �= 0: The general case

The effect of increasing temperature for a situation where
sgn(θ1) = −sgn(θ2) is presented in Fig. 4. In general, tem-
perature acts against repulsive behavior, driving it toward
shorter distances as temperature increases. The evolution of
the equilibrium position with respect to the adimensional
temperature T̄ is shown in Fig. 4(b). For high values of T̄

(T̄ > 5) it is possible to complete Eq. (10) (valid for small
values of θ1,2) to write

d̄eq ∝ |θ1θ2|
T̄

. (20)

This simple relation, extracted from numerical data, shows
that for small topological magnetoelectric charge and high
temperature both effects compete as regards to the equilibrium
position.
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FIG. 4. (Color online) (a) Casimir energy density [in units of
E0 = Ah̄c/(2π )2(ωR/c)3] as a function of the dimensionless distance
d̄ for ωe

ωR
= 0.45 for temperatures ranging from T̄ = 0 to 10 and

θ1 = −θ2 = 3π . Temperature pushes the repulsive behavior to shorter
distances. (b) Equilibrium distance as a function of temperature.
(c) Casimir energy density [in units of E0 = Ah̄c/(2π )2(ωR/c)3] as a
function of d̄ for ωe

ωR
= 0.16 for temperatures ranging from T̄ = 0 to

10. For values where there is repulsion, decreasing the temperature
shifts the curve toward smaller distances, as shown inside the inset
figure.

One can summarize the results for this section as follows. In
the classical limit, one can have either attraction or repulsion,

regardless of the distance. Starting with attraction at the
classical limit, i.e., T̄ → ∞, decreasing temperature will
develop a deeper minimum which will shift to longer distances,
as shown in Figs. 4(a) and 4(b). Consistent with the discussion
presented at the end of Sec. II B, in some special cases where
the magnetoelectric is bigger than a critical value one can end
with repulsion at T = 0 without a minimum.

Starting from repulsion in the classical limit will not
develop a minimum when decreasing T̄ , but it will shift the
curve of repulsive behavior toward larger distances to end with
repulsion in the quantum limit. This is shown in Fig. 4(c). It
must be noted that for this to happen, a very low ε(0) is needed
when θ ∼ π , and as θ is increased, higher ε(0) are capable of
giving rise to the complete repulsive behavior. Therefore we
expect this not to be the relevant situation for real topological
insulators, which have low θ , but rather the one presented in
Fig. 4(a). An extension of this analysis could be relevant for
other magnetoelectric materials such as Cr2O3 that can present
higher axion coupling as well as more general magnetoelectric
couplings.32

We note for completeness that when both topological
magnetoelectric couplings have equal signs, temperature acts
to increase attraction, as expected from ordinary dielectrics.

We finish this section with a technical comment regarding
the commutativity of the limits. We have discussed the
high- and low-temperature limits, and studied the distance
dependence numerically. At this point, one might ask whether
the limits commute, i.e., if one evaluates first the d → 0 or
d → ∞ limit first and then consider T → 0 and T → ∞,
would the result remain as stated above? The fact is that in
some cases, the limits commute while in others they do not.
In particular, it is clear from expression (12) that the limits
d → ∞ and T → ∞ will commute. It is easy to show that, in
either order, both result into the same reflection coefficients
given by (18). For the case when d → 0 and T → 0 a
similar situation occurs and the limits also commute. The
interesting case is, however, when d → 0 and T → ∞ (or vice
versa). If one expands the exponential function, then taking
the temperature to infinity breaks down the expansion and
this limit is not reconciled with the T → ∞, d → 0, which
typically gives attraction. Although it might seem surprising at
first, one should recall other physical situations where a similar
situation happens, with one particularly impressive example
taking place when calculating the dc or minimal conductivity
of graphene, where the order of evaluating the limits is crucial
(for a recent review of the problem, see Ref. 33, Sec. IV A).
Nevertheless, it should be noted that, with the numerical results
in mind, there is a way around the puzzle by imposing that we
take the limits in such a way that the product T d is a constant.
In this way, l = 0 is the leading term in the sum (12) and
we recover the reflection coefficients (18) relevant for high
temperature, making the limits commute.

IV. CASIMIR FORCE BETWEEN TOPOLOGICAL
INSULATORS WITH UNIAXIAL ANISOTROPY

AT T = 0

In this section we again set the temperature to zero and
focus on the effect that uniaxial anisotropy has on the repulsive
behavior.
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A. Anisotropy in topological insulators

For a given material, its linear response to an electromag-
netic wave, or in turn, its reflection coefficients defined in
(1), depend strongly on the dielectric tensor εij , the magnetic
susceptibility tensor μij , and the magnetoelectric tensor θij .
Since we are dealing with nonmagnetic topological insulators,
we will assume that μij = δij , although we shall derive
the reflection coefficients for the general case in which the
susceptibility is considered.

Crystal symmetry defines the other two tensors. Due
to time-reversal symmetry, for topological insulators the
magnetoelectric tensor can only have the form θij = θδij with
θ = π [mod(2π )] for topological insulators and θ = 0 for
ordinary insulators.34 It is interesting to note that, for general
magnetoelectric crystals, other magnetoelectric couplings can
be present in the action (3), and θij could have a more
elaborate form,34,35 which could in principle affect the sign
of the Casimir force. We will restrict ourselves to the case of a
constant isotropic magnetoelectric tensor θij = θδij , relevant
for crystalline topological insulators.34

The form of εij is also determined by crystal symmetry and
one can distinguish the cubic, uniaxial, and biaxial crystals.35

The simplest case, the cubic structure, has εij = ε(ω)δij , which

is just the isotropic case considered in previous sections.
Although interesting as a first approximation,12 this model
is incomplete for topological insulators. The prototypical
examples of topological insulating crystals Bi2Se3, Bi2Te3, and
Sb2Te3 (Refs. 21, 36, and 37) or the thallium-based III-V-VI2

compounds21,38–40 have rhombohedral symmetry, which fall
into the category of uniaxial crystals and hence we will focus
on this case, leaving biaxial crystals aside. Uniaxial crystals
have a definite optical axis which coincides with the principal
crystal axis. The dielectric tensor can thus be written in the
form εij = diag(ε⊥,ε⊥,εz), where the optical axis is aligned
with the z axis. In all our calculations, the optical axis of the
two Casimir plates are supposed to be aligned so that no torque
is induced in the system.5

B. Fresnel coefficients for topological insulators
with uniaxial anisotropy at T = 0

Fresnel coefficients are derived from Maxwell’s equations
by imposing continuity relations for the normal components
of D and tangential components of H, as discussed above for
the isotropic case (see Appendix C). After some tedious but
straightforward work, one obtains the reflection matrices for
an anisotropic topological insulator-vacuum interface:

Ri = 1

	an

(
(μ⊥kz − q ′)(ε⊥kz + q ′′) − q ′′kzμ⊥ᾱ2 2ᾱq ′′μ⊥kz

2ᾱq ′′μ⊥kz (ε⊥kz − q ′′)(μ⊥kz + q ′) + q ′′kzμ⊥ᾱ2

)
, (21)

where 	an = (μ⊥kz + q ′)(ε⊥kz + q ′′) + q ′′kzμ⊥ᾱ2, k2
z =

ω2

c2 − k2
‖ , q ′2 = ω2

c2 ε⊥μ⊥ − k2
‖

μ⊥
μz

, q ′′2 = ω2

c2 ε⊥μ⊥ − k2
‖

ε⊥
εz

, and
ᾱ = αθ/π . To compute the Casimir energy, one should
define these in the imaginary frequency axis and perform the
substitution ω = iξ . We stress that these reduce to the ordinary
anisotropic coefficients presented in Appendix C when ᾱ = 0.
They also reduce to the isotropic reflection coefficients (7)
when μ and ε are isotropic.

To investigate the effect of anisotropy it is necessary to
model the dielectric response of the material. In general,
insulators can be described by its resonance frequencies, and
hence we model ε⊥ and εz with a sum of oscillators:

εz(iξ ) = 1 +
∑

i

ω2
ez,i

ξ 2 + ω2
Rz,i

+ γz,iξ
, (22)

ε⊥(iξ ) = 1 +
∑

i

ω2
e⊥,i

ξ 2 + ω2
R⊥,i

+ γ⊥,iξ
. (23)

We have evaluated the dielectric function at imaginary fre-
quencies, as demanded by Eq. (1). The parameters ωe⊥,i

and
ωez,i

indicate the strength of the oscillator while ωR⊥,i
and

ωRz,i
account for the resonance frequencies of the oscillators.

Finally, we include the damping parameters γ⊥,i and γz,i for
completeness, although they do not play a mayor role on
Casimir physics.

A multiple-oscillator model does not significantly alter the
general behavior of the Casimir force12 and so, in order to

clarify the effects that different parameters have on the Casimir
energy density, we will restrict the models (22) and (23) to
one-oscillator models. In this scheme we will investigate two
aspects: (i) the effect of modifying the relative strength of the
parallel component against the perpendicular, i.e., ωez

over ωe⊥
and (ii) the effect of the relative movement of the position of
the resonance frequencies ωR⊥ and ωRz

.

C. Effect of the relative strength of the parallel component
against the perpendicular component

To study this effect we simplify Eqs. (22) and (23) to
unmask the effect under study [i.e., point (i) above]. Redefining
the parameters in units of ωR⊥ ,

εz(iξ ) = 1 + ω2
ez

ξ 2 + 1 + γ ξ
, (24)

ε⊥(iξ ) = 1 + ω2
e⊥

ξ 2 + 1 + γ ξ
. (25)

In this case we have chosen ωR⊥ = ωRz
and γ ≡ γR⊥ = γRz

=
0.01 in units of ωR⊥ . To study the effect of changing the relative
strength of the dielectric components, we may fix ωez

= 0.45
(in units of ωR⊥) and change ωe⊥ in the interval 0 − 1. The
results are shown in Fig. 5. We have fixed θ1 = −θ2 = 0 (i.e.,
the topologically trivial anisotropic case) in Fig. 5(a), θ1 =
θ2 = π in Fig. 5(b), and θ1 = −θ2 = π in Fig. 5(c).
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FIG. 5. (Color online) Effect of changing the relative oscilla-
tor strengths between parallel and perpendicular components of
the dielectric function on the Casimir energy density [in units
of E0 = Ah̄c/(2π )2(ωRz

/c)3] as a function of the dimensionless
distance d̄ with (a) θ1,2 = 0, (b) θ1 = θ2 = π , and (c) θ1 = −θ2 = π .
(a) Attraction is obtained as no magnetoelectric term is included.
(b) Both magnetoelectric couplings have the same sign and so
no repulsion occurs. (c) Repulsion appears at short distances.
Increasing ωe⊥ makes the minimum shift to lower distances
while increasing its depth. Therefore, repulsion is favored by the
condition ωez

> ωe⊥ .

Figure 5(a) is a reference figure where only anisotropy is
studied with θ = 0. In this case, attraction occurs since θi = 0
and there is no mixing of polarizations since the diagonal
component in (21) is zero (see Appendix C). As ωe⊥ grows,
the tendency is to favor attraction and to increase the absolute
value of the Casimir energy at a given distance. In Fig. 5(b) the
magnetoelectric terms have an equal sign and so no repulsion
is obtained, just as it is expected from the isotropic case.12

When θ1 and θ2 have an opposite sign, θ1 = −θ2 = π , the
Casimir energy develops a minimum, shown in Fig. 5(c). The
actual distance at which the minimum appears is shifted to
shorter distances as ωe⊥ is increased. This enables to draw the
conclusion that for the minimum to shift to larger distances,
or in other words, for the repulsive behavior to be enhanced,
the material in question has to favor the strength of oscillators
in the direction parallel to the optical axis.

Physically, repulsion in this system is due to the mixing of
polarizations.12 Thus, suppression of repulsion can be traced
back to the relative suppression of the off-diagonal terms
in (21) versus the diagonal terms, just as in the anisotropic
case studied in Ref. 12. When increasing ε⊥ and fixing εz

to a constant, the off-diagonal terms vanish, confirming the
numerical analysis.

D. Effect of the relative position of the oscillator frequencies

To study this case, the dielectric functions of both compo-
nents can be written as

εz(iξ ) = 1 + ω2
e

ξ 2 + 1 + γ ξ
, (26)

ε⊥(iξ ) = 1 + ω2
e

ξ 2 + β + γ ξ
. (27)

In this case we have chosen ωe⊥ = ωez
≡ ωe = 0.45 and as

before γ = 0.01 (in units of ωR⊥). The parameter β ≡ ω2
R⊥

ω2
Rz

determines the relative position between both oscillators: For
β > 1, ε⊥ has a higher resonance frequency than εz and for
β < 1 the opposite situation occurs. Again we have fixed θ1 =
−θ2 = 0 in Fig. 6(a), θ1 = θ2 ≡ θb = π in Fig. 6(b), and θ1 =
−θ2 ≡ θc = π in Fig. 6(c).

As in the previous case, Fig. 6(a) a reference figure where
only parameter β is modified. We have chosen the values of
β ranging from β = 10−3 to β = 103, so a broad range of
situations are represented. In this situation, attraction occurs
since θi = 0 and there is no mixing of polarizations. As β

grows, the tendency is to favor attraction and to increase the
absolute value of the Casimir energy at a given distance. In
Fig. 6(b) the magnetoelectric terms have an equal sign and so
no repulsion is obtained. Figure 6(c) shows how the minimum
is shifted to lower distances as ωR⊥ is increased, i.e., β is
increased. Hence, for the repulsive behavior to be favored, the
material in question has to favor low resonance frequencies in
the parallel direction, while high frequencies in the perpendic-
ular direction. This is consistent with the behavior discussed
above, where suppression of ε⊥ enhances repulsion. In this
case, increasing β suppresses ε⊥ and favors repulsion [this
effect is analogous to the effect discussed in Ref. 12 (auxiliary
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FIG. 6. (Color online) Effect of changing the relative positions
of the oscillator resonances between parallel and perpendicular com-
ponents of the dielectric function on the Casimir energy density [in
units of E0 = Ah̄c/(2π )2(ωRz

/c)3] as a function of the dimensionless
distance d̄ with (a) θ1,2 = 0, (b) θ1 = θ2 = π , and (c) θ1 = −θ2 = π .
(a) Attraction is obtained as no magnetoelectric term is included.
(b) Both magnetoelectric couplings have the same sign and so no
repulsion occurs. (c) Increasing ωR⊥ makes the minimum shift to
higher distances while decreasing its depth. Therefore, repulsion is
favored by increasing β. (See text.)

information), where a higher oscillator frequency was studied
and seen to enhance repulsion]. We summarize the results of

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
−4

−3

−2

−1

0

1

2

d̄

E
C

/E
0

T̄ = 1
T̄ = 2
T̄ = 3
T̄ = 4
T̄ = 5
T̄ = 7

0 0.02 0.04 0.06 0.08 0.1
−20

−16

−12

−8

−4

0

2

d̄

E
C

/E
0

ω
e ⊥/ω

R ⊥ = 0

ω
e ⊥/ω

R ⊥ = 0.2

ω
e ⊥/ω

R ⊥ = 0.4

ω
e ⊥/ω

R ⊥ = 0.6

ω
e ⊥/ω

R ⊥ = 0.8

ω
e ⊥/ω

R ⊥ = 1

FIG. 7. (Color online) Casimir energy density [in units of
E0 = Ah̄c/(2π )2(ωR,z/c)3] and θ1 = −θ2 = π including anisotropy
and temperature effects: (a) Effect of changing the temperature from
T̄ = 0 to 7 with ωe,z = 0.45, ωe,⊥ = 0.3, and β = 5. (b) Effect of
varying ωe,⊥ = 0–1 with T̄ = 5, ωe,z = 0.45, and β = 5.

this section in what follows. From the numerical results one
can readily infer what conditions are necessary for repulsion to
be observed, given that the topological magnetoelectric terms
of the two materials have opposing signs. For the repulsive
behavior to appear at the largest distances possible, one should
search for a material where the direction parallel to the optical
axis has a bigger oscillator strength than the corresponding
strength of the oscillator in the parallel direction ωez

> ωe⊥ .
Further enhancement of the repulsive behavior can be achieved
if the oscillator resonances in the direction perpendicular to
the optical axis are at higher frequency than resonances for
the parallel direction, i.e., ωRz

> ωR⊥ . In both situations, ε⊥
is suppressed relative to εz and the mixing of polarizations is
maximized.

With these numerical calculations we have established the
main directions to enhance repulsive behavior with topological
insulators at low temperature. We now discuss the effect of
temperature on these findings.
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V. CASIMIR FORCE BETWEEN TOPOLOGICAL
INSULATORS WITH UNIAXIAL ANISOTROPY AT T �= 0

The result of including the two effects subject of this work,
temperature and anisotropy, together is shown in Fig. 7. To
illustrate that the repulsive behavior is still present we study
two different cases. In the first of them, corresponding to
Fig. 7(a), we vary the adimensional temperature from T̄ = 0
to T̄ = 7 while fixing the uniaxial anisotropy parameters and
θ1 = −θ2 = π . In particular, we fix the oscillators strengths
to ωez

= 0.45, ωe⊥ = 0.3, and the relative position of the
resonances to β = 5, i.e., the perpendicular oscillator is shifted
by a factor of 5 with respect to ωRz

. As expected by previous
sections, the figure proves that temperature works against the
repulsive behavior, shifting repulsion to shorter distances as
temperature is increased. In a second situation we illustrate
the effect of varying anisotropy at a given temperature. In this
case, we fix the temperature to T̄ = 5, the oscillator strength in
the parallel direction to ωez

= 0.45, and β = 5 while varying
ωe⊥ from ωe⊥ = 0 to ωe⊥ = 1. The results show that enhancing
perpendicular response, even at finite temperature, favors
repulsive behavior. Consistently with previous sections, with
the equal signs of θ1,2, the system returns to attraction at all
distances.

VI. DISCUSSION AND CONCLUSIONS

In this work we have studied the effect of anisotropy
and temperature on the repulsive Casimir effect with three-
dimensional topological insulators. We have found that the
repulsive behavior is still present even when including these
effects. In particular, increasing temperature tends to reduce
repulsion, similar to what is expected from different situations,
such as metamaterials.41 On the other hand, enhancing the
optical response in the direction parallel to the optical axis
of the topological insulator works in favor of repulsion. This
can be achieved either by increasing the relative strength of the
oscillator in the parallel direction or by searching for resonance
frequencies which suppress the perpendicular response. We
have also determined that both effects together still allow for
repulsion. All these effects can be understood as an enhance-
ment of the off-diagonal terms in the reflection coefficients,
which favors polarization mixing and thus repulsion, when-
ever the signs of the topological magnetoelectric terms are
opposite in both plates. Although these specific conclusions
are reached, it is difficult to draw conclusions for real materials
since the optical response of topological insulators still
needs further experimental characterization. In particular, val-
ues for the optical parameters are still lacking, in contrast with
other materials which are traditionally useful for measuring
the Casimir force.5,42 Nevertheless, in this work, we have
aimed also to establish a theoretical framework for handling
anisotropy in topological insulators in the context of their
optical properties, which to our knowledge was absent in the
literature. The reflection coefficients for anisotropic materials
can also be helpful in achieving the optical characterization of
these materials and could be relevant for metrology purposes,
as suggested in previous works.43,44 This theoretical work on
anisotropy might also be used as a starting point for the study of

the Casimir force in situations involving other magnetoelectric
materials.

A final issue left out in this work is the effect of temperature
on the magnetic coating. Even though magnetic interactions
were shown to be irrelevant,12 temperature will have an effect
on the magnetization. In particular, the magnetic moments will
fluctuate with increasing temperature and destroy ferromag-
netism when the system is over the Curie temperature (Tc) of
the coating. This temperature depends on the specific coating
material, which should be an insulating or semiconducting
ferromagnet with as high as possible Curie temperature.
Although ferromagnets are usually metallic, examples of
insulating ferromagnets exist, for example, oxides such as the
rare-earth oxide EuO with Curie temperature close to 70 K,45

and have been synthesized and used in the past, such as the
ferromagnetic insulator GdN. The latter has been shown to
have a Curie temperature close to 60 K,45 it can be grown as a
thin film of thickness ∼6 nm (Ref. 46) and could be a suitable
candidate for the ferromagnetic covering.

In conclusion, we expect that the tools and behaviors
studied in this work might lead toward a complete optical
characterization of topological insulators, a first step toward
Casimir-like experiments in which the description of factors
such as temperature and anisotropy should be relevant.
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APPENDIX A: PROOF OF THE EXISTENCE OF THE
MINIMUM AT T = 0: LARGE AND SHORT DISTANCE

LIMITS OF THE CASIMIR ENERGY DENSITY

In this Appendix we give detailed information and expres-
sions of the some results presented in Ref. 12, so this work
is self-contained. We prove the existence of the minimum by
discussing the high- and low-frequency limits of the Casimir
energy density. The Casimir energy stored between the plates
is given by

Ec(d)

Ah̄
=

∫ ∞

0

dξ

2π

∫
d2k‖
(2π )2

log det[1 − R1 · R2e
−2k3d ], (A1)

where Ri is the 2 × 2 matrix defined in (7). To prove the
existence of the minimum, we assume that the reflection
coefficients are given by expression (7) and that the dielectric
function satisfies the following two analytical properties:
(1) finite dielectric permittivity at zero frequency [ε(0) <

∞] and (2) high-frequency transparency, ε(ω) → 1 when
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ω → ∞. For an insulator one can assume the dielectric
function is given in (9). For simplicity let us assume that

ε(iξ ) = 1 + ω2
e

ξ 2 + ω2
R + γRξ

, (A2)

although the derivation does not depend on the analytical form
of the dielectric function as long as it fulfills the mentioned
conditions (the proof holds for more than one oscillator). For
analytical traceability we assume the particular situation where
θ1 = −θ2 (where labels 1 and 2 identify the Casimir plates).

The first step is to rescale Ec(d) with d. If in the expression
for Ec(d), ξ and k‖ are rescaled to contain d, an overall factor
1/d3 appears in front of the integral. The reflection matrices
are to be evaluated now at the rescaled frequency and momenta
ξ/d and k‖/d. Thus, all of the d dependence can be transferred
to the reflection matrices and the overall 1/d3 prefactor. The
expression for the energy is

Ec(d)

E0
= 1

d3

∫ ∞

0
dξ

∫
d2k‖ log det

[
1 − R1

[
ξ

d
,
k‖
d

]

· R2

[
ξ

d
,
k‖
d

]
e−2k3

]
, (A3)

where k
2(r)
3 = ξ 2 + k2

‖ is defined through the rescaled variables
(which include c the speed of light in vacuum and ωR) and
E0 = Ah̄c/(2π )2(wR/c)3, where A is the area of the plates.
The key point is that reflection matrices are evaluated at these
rescaled variables, with a rescaled dielectric function:

ε(iξ/d) = 1 +
(

ωe

ωR

)2

(
ξ

d

)2 + 1 + γR

ωR

ξ

d

. (A4)

The two conditions imposed to ε(iξ ) ensure that the reflection
matrices are not singular in the limits ξ/d → 0 and ξ/d → ∞.
Hence, Ec(d → 0) → ±∞ and Ec(d → ∞) → 0.

The way the integrand approaches these limits determines
the sign of Ec(d). For instance, if the integrand is positive at
small distances and negative at large distances, necessarily a
minimum exists at an intermediate distance. When θ1 = −θ2,
this is exactly what happens [unless ε(0) = 1, where both
limits are positive and hence long range repulsion is obtained],
as it will be shown in what follows.

We now evaluate the integrand in (A1). When θ1 = −θ2 =
θ , the reflection matrices describing both topological insulators
can be written as

R± =
[

rs(iξ,k‖) ±rsp(iξ,k‖)

±rsp(iξ,k‖) rp(iξ,k‖)

]
. (A5)

Introducing this inside (A1) the integrand follows:

I = log det
[
1 − R+ · R−e−2k

(r)
3

]
= log

[
1 + e−2k

(r)
3

(
2r2

sp − r2
p − r2

s

) + e−4k
(r)
3

(
r2
sp − rprs

)2 ]
.

Notice that the last term, although always positive, will play
no role in what follows since it is always suppressed over the
first term (note that rs,rp,rsp < 1).

1. The limit of short distances

For d → 0 and using the high-frequency transparency of the
dielectric function, we now show that |ri | � |rsp| (i = s,p):

Notice first that the denominator 	 defined in (7) is common
to all terms so it cannot play a role on the relative magnitude
of the coefficients. We hence study the behavior of χ− at small
distances, given by

χ−

(
ξ

d
,
k‖
d

)
=

ξ 2 + k2
‖ − (

ξ 2 + k2
‖

n2
2

)
√(

ξ 2 + k2
‖
) (

ξ 2 + k2
‖

n2
2

) . (A6)

Remembering that at small distances (large frequencies) we
have transparency, n2

2(ξ/d) = ε(ξ/d) → 1, and then we see
that χ− → 0 and

rs = −ᾱ2

2 + ᾱ2 + χ+
= −rp

and

rsp = 2ᾱ

2 + ᾱ2 + χ+
,

since the first are of order O(α2) and the second are
of order O(α) (remember that ᾱ is proportional to the
fine structure constant α), we have that |ri | � |rsp| (i =
s,p). Hence the integrand is positive [since the integrand
has the form I = ln(1 + A)] where and so Ec(d → 0) →
+∞.

2. The limit of large distances

When d → ∞ the reflection coefficients take the form

rs = 1 − ε(0) − ᾱ2 + √
ε(0)χ−

1 + ε(0) + ᾱ2 + √
ε(0)χ+

for the diagonal part (with a similar expression for rp) and

rsp = 2ᾱ

1 + ε(0) + ᾱ2 + √
ε(0)χ+

for the off diagonal. We have defined the quantity ε(0) ≡
1 + ( we

wR
)2. In this case, depending on the values of ε(0),

different behaviors emerge. Since ε(0) � 1 we can distinguish
to extreme limits, one where ε(0) = 1 and the other with
ε(0) � 1.

When ε(0) = 1 one can see that we return to the previous
case since the quantity χ− in this limit also goes to zero. Hence
|rsp| � |ri | (i = s,p) is satisfied for all distances and Ec(d) is
always positive.Therefore, using the fact that Ec(d) → 0 when
d → ∞ and that Ec(d) → +∞ when d → 0, we deduce that
there is no minimum and that the force is always repulsive.
This was confirmed by the numerical calculations presented in
Ref. 12. When ε(0) � 1, we see that the opposite condition,
|rs,p| � |rsp|, is satisfied. Even in the worst case when χ−
is smallest, ε(ξ ) in rs is always larger than 2α in rsp. The
integrand at large distances is a negative quantity [since the
integrand now has the form I = ln(1 − B) with B > 0] and so
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Ec(d) approaches zero from negative values [Ec(d) → −∞
for d → ∞]. Since at small distances Ec(d) → +∞, we
conclude that there must be a minimum at an intermediate
distance 0 < dm < ∞, since the function must cross the
d axis.

Notice that when ε(0) is strictly infinity, we recover the case
of an ideal metal where rs,p = ∓1 and rsp = 0, with attraction
at all distances.

To sum up, as we increase ε(0) from 1, a minimum develops
at an intermediate distance dm. This distance shifts to lower
values as we increase ε(0) until, at ε = ∞, we recover the
ideal metal case where complete attraction occurs.

In the case, where θ1 = θ2, the signs inside I change to give

I = log
[
1 − e−2k

(r)
3

(
2r2

sp + r2
p + r2

s

) + e−4k
(r)
3

(
r2
sp − rprs

)2 ]
.

The predominant term inside the logarithm is always negative
and hence the integrand is always negative. Therefore, at
small distances Ec(d) → −∞ and at large distances Ec(d) →
0 approaching this limit from negative values, recovering
attraction at all intermediate distances.

Finally, it can be checked by analogous methods that the
case where one θ is zero and the other one is not (dielectric-
topological insulator case) results in Casimir attraction for all
distances.

APPENDIX B: CLASSICAL LIMIT:
ANALYTICAL EXPRESSIONS

The Casimir force at nonzero temperature is defined as
F = −∂dEc(d), with Ec(d) given by (12)

F (T ,d)

A
= − h̄ω4

R

4π2c3
T̄

∞∑
l=0

′ ∫ ∞

0
dk‖k‖k3Tr

×[(1 − R1 · R2e
−2k3d̄ )−1R1 · R2e

−2k3d̄ ], (B1)

where k3 =
√

k2
‖ + T̄ 2l2 and Ri are the reflection coefficients

of each plate. In this expression the momentum variable is
rescaled in units of ωR and the integral depends only on d̄ and
T̄ . As discussed above, at high temperature, only the l = 0
term contributes since the rest are exponentially suppressed.
Keeping only this term in the integral, one can recast this
expression as

Fcl(d) = kBT

d3π
f [ε(0),θ1,θ2]. (B2)

Integrating this expression for different values of θ1,2 and ε(0),
one obtains the diagram in Fig. 3 (whenever θ1,2 have opposite
signs but equal magnitude θ ).

In order to derive analytical results, further approximations
must be considered. In the rest of this Appendix we will assume
that we are always in the region of small magnetoelectric
coupling ᾱ � 1, which is justified as long as this coefficient
is of the order of the fine structure constant, an assumption to
be expected in real topological insulators. Hence, for small

topological magnetoelectric couplings we can evaluate the
integral to give

Fcl(d) = − kBT

8d3π

[
Li3

(
[ε(0) − 1]2

[ε(0) + 1]2

)

+
(

ᾱ2
1 + ᾱ2

2 + 2ᾱ1ᾱ2
ε(0) + 1

ε(0) − 1

)

× 1

[ε(0) − 1)(ε(0) + 1]
Li2

(
[ε(0) − 1]2

[ε(0) + 1]2

)]
, (B3)

where ᾱ = θα
π

and Lin is the polylogarithm of order n. When
ε(0) → 1, the force takes the simple form

Fcl(d) = − kBT

16d3π
ᾱ1ᾱ2. (B4)

From this last expression it is transparent that one can still get
repulsion in the classical limit when the signs of θ1 and θ2 are
opposite.

As anticipated above, one can analyze the Casimir energy
density in the classical limit in the spirit of Ref. 12, that is,
exploring the relative magnitudes of the diagonal and off-
diagonal parts of the reflection coefficients. In this case, we
assume for simplicity that both topological magnetoelectric
polarizabilities have the same magnitude but can have equal
or opposite signs, i.e., sgn(θ1) = ±sgn(θ2). If we introduce
these reflexion matrices in expression (12) and take the high-
temperature limit (l = 0), after some algebra one arrives at

E±
c (d)

A
= kBT

4πd2

∫ ∞

0
k‖dk‖ log[1−A±e−2k‖ +Be−4k‖ ], (B5)

where the ± corresponds to each of the two cases sgn(θ1) =
±sgn(θ2) and we have rescaled the integral variables with the
distance. The functions A± and B are defined as

A± = 1

D
(4[ε(0) − 1]2 + {4[ε(0) − 1] ± 8}ᾱ2 + 2ᾱ4),

B = ᾱ4

D
,

where D ≡ {2[ε(0) + 1] + ᾱ2}2. Note that these two coeffi-
cients depend on the zero-frequency dielectric function ε(0)
and the absolute value of the topological magnetoelectric
polarizability |θ | as well as its sign in the case of A±.
These functions govern the sign of the integral. Function B

plays a secondary role since it is exponentially suppressed.
It is clear that when ε(0) → 1, the integrand takes the form
I = ln(1 − x), where x is positive or negative depending on
A±. For A−, i.e., sgn(θ1) = −sgn(θ2) and ε(0) → 1, x < 0, so
I > 0, which makes E ∝ kBT

4πd2 , and the force is repulsive since
a negative (positive) force, or equivalently a positive (negative)
slope of Ec(d), corresponds to attraction (repulsion) of the
plates.

Indeed, when one neglects the second term inside the
logarithm in (B5), the integral can be expressed in terms of a
polylogarithm:

E±
c (d)

A
= − kBT

16πd2
Li3(A±). (B6)

The function Li3(A±) has a sign of A±. Therefore, when
A± > 0 (<0) we have attraction (repulsion). Using the fact
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that Li3(x) ∼ x + O(x2) when x → 0 and that A− ∼ − ᾱ2

2
when ε(0) → 1 and to leading order in ᾱ2, we can readily
obtain the Casimir force from (B6), which gives

Fcl(d) = kBT

16d3π
ᾱ2. (B7)

This equation is exactly Eq. (B4) when ᾱ1 = −ᾱ2 = ᾱ.
Consistently, both approaches are equivalent and confirm our
numerical results, where we found that even at high temper-
ature repulsion can occur. Nevertheless, for more realistic
situations where higher values of ε(0) are expected, there
is a competition between parameters, which is represented
in Fig. 3. Only high values of θ can compete with large
enough ε(0) and thus we expect attraction to occur at high
temperatures.

APPENDIX C: FRESNEL COEFFICIENTS
FOR TOPOLOGICAL INSULATORS

WITH UNIAXIAL ANISOTROPY

In this Appendix the Fresnel coefficients for topological
insulators with uniaxial anisotropy will be discussed. First, we
will briefly review the derivation of the reflection coefficients
for an ordinary dielectric-vacuum interface so that the ex-
tension to the topological insulator-vacuum interface is more
transparent.

1. Fresnel coefficients for uniaxial material plates

As an illustrative case, before adding the axionic term, we
proceed to solve Maxwell’s equations for an uniaxial material,
which will demonstrate the procedure to follow below. We
start with an uniaxial material with its optical axis parallel to
the plate’s normal. The corresponding dielectric permittivity
tensor is given by εij = diag(ε⊥,ε⊥,εz) and, for completeness,
the magnetic susceptibility tensor will be included as μij =
diag(μ⊥,μ⊥,μz). The subindex z indicates that the optical axis
is aligned with the z axis, chosen also to be the surface normal.
The procedure is to solve Maxwell’s equation in vacuum,
then inside the uniaxial media, and finally impose boundary
conditions to determine the reflection amplitudes. The first step
is therefore to solve Maxwell’s equations in vacuum by propos-
ing a plane wave solution of the form (see, for instance, Ref. 20)

Ein =
(

A⊥y + A‖
c

ω
(kzx − kxz)

)
ei(kxx+kzz−ωt),

Hin =
(

A‖y − A⊥
c

ω
(kzx − kxz)

)
ei(kxx+kzz−ωt),

for the incoming wave, and

Er =
(

R⊥y − R‖
c

ω
(kzx + kxz)

)
ei(kxx−kzz−ωt),

Hr =
(

R‖y + R⊥
c

ω
(kzx + kxz)

)
ei(kxx−kzz−ωt),

for the reflected wave, where we have used that kin
x = −kref

x

with obvious notation. The Cartesian unit vectors are
represented by x, y, and z, and we define kx = ω

c
sin θi

and kz = ω
c

cos θi , where θi is the angle of incidence. The
problem consists in finding the relative amplitudes A⊥,A‖ and

R⊥,R‖. Their quotients will define the entries of the reflection
matrices (2).

The second step is to solve Maxwell’s equations inside the
uniaxial material. Since there is translational invariance along
the interface, kx must be conserved, so the transmitted wave
can have the form

Et = eei(qz+kxx−ωt), (C1)

Ht = hei(qz+kxx−ωt), (C2)

where q is the transverse transmitted momentum to be deter-
mined by finding the dispersion relation. From the Maxwell
equation ∇ × E = − 1

c
∂B
∂t

, with Bi = μijHj , one can obtain
the conditions for vectors e(z) and h(z), which are

hz = ckx

ωμz

ey,

hx = − cq

ωμ⊥
ey, (C3)

hy = − c

ωμ⊥
(kxez − qex) .

From the Maxwell equation ∇ × H = 1
c

∂D
∂t

with Di =
εijEj , one obtains

ez = − ckx

ωεz

hy,

ex = cq

ωε⊥
hy, (C4)

ey = c

ωε⊥
(kxhz − qhx) .

From the sets (C4) and (C3), after a few steps, one can see
that if ey �= 0, hx �= 0 and hy = 0 ex = 0, q must satisfy

q2 ≡ q ′2 =
(ω

c

)2
μ⊥ε⊥ − k2

x

μ⊥
μz

. (C5)

This is just the transverse electric mode inside the material.
Then, in this case

ey = −ωμ⊥
cq ′ hx. (C6)

In a similar fashion, if ey = 0, hx = 0 and hy �= 0 ex �= 0,
q must satisfy

q2 ≡ q ′′2 =
(ω

c

)2
μ⊥ε⊥ − k2

x

ε⊥
εz

(C7)

and

hy = ωε⊥
cq ′′ ex, (C8)

which corresponds to the transverse magnetic mode inside the
uniaxial crystal.

It is now time to impose the boundary conditions. As
mentioned above, tangential components of E and H must
be continuous along the interface, thus

(A‖ − R‖)
c

ω
= ex, (C9)

(A⊥ + R⊥) = ey, (C10)
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(A‖ + R‖) = hy, (C11)

(R⊥ − A⊥)
c

ω
= hx. (C12)

The last two equations can be further simplified by using
(C8) and (C6) to give

(A‖ + R‖) = ωε⊥
cq ′′ ex = ωε⊥

cq ′′ (A‖ − R‖)
c

ω
,

(R⊥ − A⊥)
c

ω
= − cq ′

ωμ⊥
ey = − cq ′

ωμ⊥
(A⊥ − R⊥).

From these it is clear that the transverse electric and the
transverse magnetic mode are decoupled, a well-known result
from ordinary electromagnetic theory.29 One can now solve
for the quotients R⊥/A⊥ and R‖/A‖ and find the ordinary
reflection coefficients for a uniaxial crystal, which in matrix
form define the reflection matrix

(
E(r)

s

E(r)
p

)
=

⎛
⎜⎜⎜⎜⎝

μ⊥kz−
√

ω2

c2 ε⊥μ⊥−k2
‖

μ⊥
μz

μ⊥kz+
√

ω2

c2 ε⊥μ⊥−k2
‖

μ⊥
μz

0

0
ε⊥kz−

√
ω2

c2 ε⊥μ⊥−k2
‖

ε⊥
εz

ε⊥kz+
√

ω2

c2 ε⊥μ⊥−k2
‖

ε⊥
εz

⎞
⎟⎟⎟⎟⎠

×
(

E(i)
s

E(i)
p

)
, (C13)

where E(r)
s,p and E(i)

s,p are reflected and transmitted electric field,
respectively, for s and p polarizations.

A. Fresnel coefficients for uniaxial material plates with a
topological magnetoelectric response (axion)

It is known from earlier works17,18 that topological insula-
tors contain, together with a dielectric response, a topological
contribution to the magnetoelectric effect originated in an
axion-type Lagrangian. The inclusion of this coupling into
the reflection coefficients was discussed by Ref. 47 for
the isotropic case. Their conclusion was that the tangential
components of E and H were still conserved, although now
H = μ−1B + ᾱE, where ᾱ is the topological magnetoelectric
response or axion term and α is the fine structure constant
(α = e2

ch̄
). Analogously, the inclusion of the topological term to

the boundary conditions given by (C9)–(C12) is implemented
by modifying the last two equations (C11) and (C12) (which
come from the continuity of the tangential component of H )
to give

(A‖ − R‖)
c

ω
= ex, (C14)

A⊥ + R⊥ = ey, (C15)

A‖ + R‖ = hy + ᾱey, (C16)

(R⊥ − A⊥)
c

ω
= hx + ᾱex, (C17)

with hx given by (C6) and hy given by (C8). It is now a matter
of algebra to elucidate the reflection coefficients as above.
Inevitably, the relations become more messy. The reflection
coefficients can be written in matrix form as

(
E(r)

s

E(r)
p

)
= 1

	an

(
(μ⊥kz − q ′)(ε⊥kz + q ′′) − q ′′kzμ⊥ᾱ2 2ᾱq ′′μ⊥kz

2ᾱq ′′μ⊥kz (ε⊥kz − q ′′)(μ⊥kz + q ′) + q ′′kzμ⊥ᾱ2

) (
E(i)

s

E(i)
p

)
, (C18)

where 	an = (
μ⊥kz + q ′) (

ε⊥kz + q ′′) + q ′′kzμ⊥ᾱ2, k2
z =

ω2

c2 − k2
‖ , q ′2 = ω2

c2 ε⊥μ⊥ − k2
‖

μ⊥
μz

, q ′′2 = ω2

c2 ε⊥μ⊥ − k2
‖

ε⊥
εz

, and
ᾱ = αθ/π .

To compute the Casimir energy, one should define these
in the imaginary frequency axis and turn all the frequencies

to ω = iξ . Note as well that these reduce to the ordinary
anisotropic coefficients presented above when ᾱ = 0. They
also reduce to the isotropic reflection coefficients (7) when μ

and ε are isotropic.
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