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A numerically efficient, accurate, and easily implemented integration scheme over convex Voronoi polyhedra
(VP) is presented for use in ab initio electronic-structure calculations. We combine a weighted Voronoi tessellation
with isoparametric integration via Gauss-Legendre quadratures to provide rapidly convergent VP integrals for a
variety of integrands, including those with a Coulomb singularity. We showcase the capability of our approach
by first applying it to an analytic charge-density model achieving machine-precision accuracy with expected
convergence properties in milliseconds. For contrast, we compare our results to those using shape-functions and
show our approach is greater than 105 times faster and 107 times more accurate. A weighted Voronoi tessellation
also allows for a physics-based partitioning of space that guarantees convex, space-filling VP while reflecting
accurate atomic size and site charges, as we show within KKR methods applied to Fe-Pd alloys.
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I. INTRODUCTION

A variety of science and engineering research problems re-
quire multicentered integrals that cannot be solved analytically
due to the complex domains of integration. The total energy
and potential in any site-centered, electronic-structure calcu-
lation involves the evaluation of three-dimensional integrals
over convex Voronoi polyhedra (VP).1 Although a number of
numerical integration techniques have been proposed,2–6 an
efficient, accurate, reliable, and easily implemented scheme is
still lacking. Prior methods often rely on detailed analysis of
symmetry properties of the integration domains and, hence,
limit their applicability to arbitrary atomic geometries and
structures. A major continuing need is an integration method
over space-filling VP that has a high degree of accuracy with
a minimal computational effort and that is sufficiently generic
so that it can be used in most electronic-structure application
codes.

For example, the “exact” linear muffin-tin orbital (EMTO)
method7 uses an approach from Gonis et al.8 to overcome VP
integration issues for the Poisson potential, but it is extremely
slowly convergent; various Korringa-Kohn-Rostoker- (KKR)
based codes, such as the linear-scaling multiple-scattering
(LSMS),9 utilize shape functions to perform VP integrations,
which, as we show, is slowly convergent and limited in ac-
curacy; the full-potential linear augmented wave10 (FLAPW)
method avoids VP integrals (via nonoverlapping muffin-tins
and Fourier methods over the entire unit cell), but never
determine site-VP-specific properties and require a larger
number of spherical harmonic basis functions and a huge
number of plane waves.

We present such an algorithm by combining a weighted
VP tessellation1,11 with isoparametric methods12 to provide
rapidly convergent integrals for various integrands, including
Coulomb singularities. For generality, we use a radical
plane construction13 (RPC) or power diagrams14 to guar-
antee convex, space-filling VP. For electronic-structure use,

physics-based weights are optimally chosen as ratios of radii
determined from the topology of the electronic density.15

Isoparametric transformations then permits analytical map-
ping of polyhedra subdomains to a bi-unit cube, which are
then simply integrated by Gauss-Legendre quadratures. For
any VP we only need evaluate numerically the integrands,
Jacobian, and weights at Gauss points for a relatively fast and
accurate integral, and with no issues regarding divergence.

We showcase our isoparametric method by two means.
First, we evaluate various electronic integrals analytically
using a well-known charge-density model by van Morgan,16

and show directly the accuracy and efficacy of our numerical
method. Second, we implement the method in an all-electron
KKR code17 and apply it to a phase stability study of face-
centered-cubic, (dis)ordered FePd. We exemplify the accuracy
for formation enthalpies and the insensitivity of results to the
choice of spherical-harmonic basis set (L expansion) due to
the use of weighted VP.

We organize the paper as follows: After Sec. II on the
background, we describe in Sec. III the RPC tessellation and
weights that we merge with an isoparametric integration via an
analytic dual-coordinate transformation, known in the finite-
element community, to create a general and optimal integration
scheme. In Sec. IV, we describe the van Morgan charge-density
model to assess the performance of any integration method. In
Sec. V, we address the accuracy, convergence, and timings
of this isoparametric scheme for close-packed structures;
machine-precision accuracy with expected convergence is
found, with millisecond timing for each VP. Our approach
is greater than 105 times faster and 107 times more accurate
than that with shape functions. Finally, we discussed the results
for application to FePd, then conclude in Sec. VI.

II. BACKGROUND

Given any atomic configuration, the first step to compute
any site-centered integral quantity is to perform a Voronoi
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(a)                                            (b) 

FIG. 1. (Color online) Tessellation via (a) geometry and (b) RPC.
The “size” of little (big) atoms is over (under) estimated in (a),
affecting properties, whereas (b) reflects atomic “size” if radii are
determined from charge densities (see text).

tessellation of the space in and around the molecule or solid,
including possible empty sites to improve, for example, a site-
centered basis set. Standard geometric (i.e., the Wigner-Seitz)
tessellation subdivides space into VP such that every point
within a VP cell has the property of being closest to one and
the same site, and that each polyhedral face is orthogonal to and
bisects the line segments joining the site centers (see Fig. 1).
However, in most materials (e.g., size-mismatched alloys), it
is a poor subdivision of space, making VP that correspond
to the smaller (larger) atoms too large (small);15 see Fig. 1.
Such errors impact solid-state and biological problems where,
for example, an accurate interstitial volume is required for
reliable predictions of thermostability of cavity-filling mutants
in proteins,18 or for statistical models in continuum systems
where packing geometry plays a key role.19

Given these deficiencies, various proposals have been made
to place the dividing plane subject to atomic size. Richard20

suggested using the ratio of the distance between atoms and
dividing plane to be equal to the ratio of the corresponding
atomic radii, but this does not reflect bonding. RPC weights the
distance to each atom by subtracting the squared atomic radius
from the squared Euclidean distance,13,14 which guarantees
convex and space-filling VP, but radii must be provided.
Other generalizations include the introduction of nonplanar
boundaries between atoms.21 For site-centered methods, the
convex, space-filling property is critical; for example, in KKR
the scattering matrices are only defined for convex VP, but the
spherical-harmonic basis must reflect accurately the spherical
density of each site or else the basis must be augmented (e.g.,
plane waves in FLAPW10 or spherical waves22). Notably, the
VP tessellation benefits from a judicious choice of weights
related to electron density.15

With a Voronoi tessellation in hand, a scheme must be
chosen to perform VP integrations. In one dimension, there
are many numerical techniques that easily achieve accurate
results. Yet, accurate and fast techniques for three-dimensional
integrands with unusual domains such as those found in
molecular or solid-state calculations remain an active area
of study.23 We now mention some key previous work: Ellis
and Painter2 used Diophantine integration24 in molecular
calculations, with convergence as O(N−1/2) to O(N−1) for
N sample points—just better than Monte Carlo. Becke25 used
standard Voronoi partitioning with simplifications introduced
to reduce multicenter integrals to a sum of single-center ones,

with less-detailed convergence studies than we provide here;
we find that it uses slightly more points than ours for low
(∼10−3) accuracy and much slower convergence for higher
precision. More recently, Gaussian product formulas have been
found useful when awkward domains of integration were split
into tractable subdomains.26 It is, however, not only the form
of the integration domain but also behavior of the integrand
that may necessitate the use of product formulas and further
subdivision of the subdomains.

For site-centered basis sets, there are limited choices of sub-
division for convex VP domains. Baerends and coworkers3,5

broke each VP into subpolyhedra formed by the nucleus and
its base of one of the VP faces followed by further subdivision
of the face into connected sets of triangles and quadrilaterals.
Averill and Painter4 cropped each VP by an inscribed sphere to
form an interstitial region associated with each VP face; hence,
interstitial integrals are expressed as a sum of integrals over
cropped pyramids. (In finite systems, a separate subdomain is
the bounding part of the space outside the local atomic VP.)
We use an analytic transformation to a bi-unit cube for the
cropped integrals; an approach similar, but not the same as,
Baerends and coworkers,3,5 as we shall discuss. Also, unlike
previous methods we use the underlying charge density to
chose an optimal subdomain of integration. In all-electron
methods, the wave function and potential have cusps and
singularities near the nuclei, respectively; these functions
are easily integrated over spherical domains, although the
“interstitial” region (between the sphere and VP facet) has
a complex shape. We utilize the charge-density topology and
the behavior of the integrands to determine the VP (spherical
and interstitial) subdomains.

Although various integration methods have been proposed,
the accuracy attained has usually been poor compared to
the computational effort expended, typically a modest (7–8
digit) accuracy required a large number of sampling points.
The desire, of course, is to approach machine-precision
accuracy with a modest number of sampling points. While
noting some similarities with previous methods,4,5 the present
approach is unique in features and, particularly, is efficient and
accurate for polyatomic systems; also it has the advantage of
being conceptually simple and easy to implement. We verify
that accurate (14 digit) integration over various kernels is
achieved with a modest number of Gauss points. Moreover,
when combined with the use of physics-based weighted VP,
an insensitivity to site-centered basis sets is possible while
achieving high accuracy, as we show.

III. METHOD

The partitioning of space in and around a molecule or
solid into convex polyhedra by RPC is described, followed
by an analytic dual-coordinate transformation (isoparametric
mapping) of a bi-unit cube to obtain the shape of any specific
facet subdomain of each VP. Dissection of each VP can be
accomplished in two ways: Either each VP (1) is divided into
subdomains formed by the pyramid between face and a site’s
origin; or (2) is split into an inscribed sphere domain and
a sum of interstitial domains between the sphere and each
facet plane. We then find the integral at each VP as a sum
over the Gauss quadratures by numerical evaluation of the
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integrands, weights, and Jacobian of the transformation. If the
integrand is evaluated at known Gauss points, only sampling
points determine the error; however, if a numerical (discrete)
grid is used, then interpolation error needs to be ameliorated.

A. Weighted Voronoi radical plane construction

In unweighted tessellations, the subspace of points closer
to an atom centered at ri than any other atom centered at rj

is considered the VP about atom ri . For an atom on the edge
of a molecule, the “polyhedron” will be unbounded; that can
be amended by introducing an extra dividing plane that is
tangent to the inscribed sphere of the unbounded cell. The best
choice will be the plane that also minimizes the volume in the
resulting cell. Of course, no such edge difficulties can occur
for periodic crystals. In the case of a one-atom crystal, the VP
is simply the Wigner-Seitz (geometric) cell.

For a crystal with atoms of unlike size, the standard Voronoi
partitioning of space assigns too much volume to the smaller
atoms, see Fig. 1(a), and the corresponding VP is unphysical.15

The biased partitioning incorrectly determines the atomic
volumes and the VP structure. A weighted tessellation corrects
by re-weighting the distances to the site centers. This resizing
allows the volume given to each site to grow or shrink in
accord with its size (radius). RPC uses the weighted metric
||r − ri ||2 − R2

i , where Ri is the radius of the ith atom and
||r − ri || is the Euclidean distance between point r and atom
center ri . The advantage of the RPC tessellations is that the
resulting domains are guaranteed to be convex polyhedra13

whose inscribed spheres match the input radii {Ri}; see
Fig. 1(b).

B. Physics-based definition of atomic size

To provide the weights (radii) for RPC, we must choose
the “size” (radii) of each atom. A simple choice is the
atomic radii from empirical or theoretical tables27 which,
however, is not site specific nor does it reflect bonding.
For electronic-structure use, a judicious choice for each site
(atomic or empty) are the minimum radii selected from the
set of saddle-point radii (SPR) in the total electronic charge
density, which reflect atomic “size.”15 Initiating a calculation,
these SPR can be estimated by overlapping the isolated-
atom charge densities in the desired structural positions,
similar to Löwdin potentials.15 For a spherical-harmonic basis,
we have shown that this SPR representation, even within
atomic-sphere approximation, dramatically improves basis-
set convergence and energetics in size-mismatched systems
compared to full-potential methods.15,28 Site charges now
also obey electronegativity rules, as found also with Bader
topological (nonconvex) cells.15,28 Full details of applications
are available in Ref. 15.

For RPC, given the site locations (structure) and SPR
(weights), we use our modified version of Bernal’s FORTRAN

software29 to generate the VP information (vertices, faces,
edges, etc.). Figure 2 shows the VP generated for a B2 cell
with atoms of equal size and a tetragonally-distorted bct cell
with atoms of unequal size.

A

A

A

B

FIG. 2. (Color online) VP for two-atom unit cells with two
inscribed radii. (left) B2 cell with equal radii each of type A, and
(right) bct cell with unequal radii of type A and B.

C. Dual coordinate transformation and Gauss quadrature sums

Having divided the system into VP, there are two ways
to proceed depending on the nature of the integrand f (r).
For simple integrands, separate each VP integration over a
numerous simple polyhedra associated with each VP face
and perform a Gauss quadrature sum, and the method works
straightforwardly. If f (r) has singularities near the origin, or
if it is accessible only on a sparse grid, then two major VP
subdomains need to be handled separately (i.e., inside and
outside of the inscribed sphere). If f (r) is spherical, the integral
is one-dimensional and easy to perform accurately, whereas the
second, interstitial domain is more challenging; see Fig. 3 for
an fcc example.

The interstitial has too unusual a boundary for direct
determination of suitable sampling points and their weights.
To find the sampling points, we transform a bi-unit cube
−1 � x,y,z � 1 into each pieces of the interstitial formed by
each VP face and the site center but cropped by the inscribed
sphere. If any face has more than four vertices, points are
added within the face (uniformly distributed) so that each
face can be subdivided into polygons always having at most
four vertices (a quadrilateral base); as a result, no interstitial
subdomain has more than eight corners, like the cube. The
same map used on the Gauss-Legendre points tells us the
sampling positions in each interstitial subdomain. Note that
one could use a triangular base, but we find that, while both
subdivisions give the same results, the quadrilateral requires
less operations; hence, it is more efficient.

For clarity, consider a one-atom fcc crystal, as in Fig. 3(a),
where the VP consists of 12 quadrilateral faces which are

(a)                                                     (b)

FIG. 3. (Color online) (a) VP of an fcc structure with twelve
quadrilateral faces and an inscribed (touching) sphere. (b) A section
of the VP shown as a single truncated pyramid.
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divided into 12 cropped pyramids. Pick one, as in Fig. 3(b),
and introduce spherical coordinates (r,θ,φ) so that the z axis
is perpendicular to the VP face. Within each piece, the radius
r runs from the inscribed radius R to the pyramid base (or VP
face). To consider the case where the inscribed sphere integral
is not done separately, take R → 0 in what follows, and each
pyramidal piece will no longer be cropped.

Before we map the cube to this element, we must find a
transformation that flattens the curved interior surface. Choose
any three of the four corner vertices formed by the intersection
of the pyramid and the inscribed sphere. These three points
are taken to define an interior plane. Now consider a cross
section of the element at fixed angle φ or θ , which resembles
Fig. 4(a). Note ln is the distance from center of the inscribed
sphere to the point of intersection of the radius vector with the
interior plane. lf is the distance to intersection with base plane
(or face). Then the map

r = 1

lf − ln
[lf (R − ln) + r ′(lf − R)] (1)

will radially expand the interstitial piece (unprimed coordi-
nates) so that the surface cut of the inscribed sphere will map
to the interior plane (primed coordinates). Note that the map
as given takes the plane to the sphere because, ultimately, we
want a map from the cube to the interstitial piece. Despite
the simplicity of the map [Eq. (1)], the Jacobian J1 is
nonpolynomial due to the angular dependence of lf (θ,φ) and
ln(θ,φ). The standard determinant form of J1 can be simplified
by considering the volume change of an infinitesimal cell
embedded in a spherical coordinate mesh. The cell will be
stretched radially by a factor of dr/dr ′ = (lf − R)/(lf − ln).
And, because the cell will be translated radially from r ′ to r ,
the base area will change from r ′2d� to r2d�. Thus, the total
volume change (ratio) of the cell will be (lf −R)

(lf −ln)
r2

r ′2 .
Having flattened the interior curved surface, we then

perform a second mapping from this hexahedra to a bi-unit
2 × 2 × 2 cube, as depicted in Fig. 5. Let (x ′,y ′,z′) and
(x ′′,y ′′,z′′) be the coordinates before and after the transfor-
mation, respectively. Mathematically, we can connect them
using the expression

[ x ′ y ′ z′ ] = 1

8
[ 1 x ′′ y ′′ z′′ x ′′y ′′ y ′′z′′ x ′′z′′ x ′′y ′′z′′ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 −1 1 1 −1 −1 1

−1 −1 1 1 −1 −1 1 1
1 1 1 1 −1 −1 −1 −1

−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1
−1 1 −1 1 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x ′
1 y ′

1 z′
1

x ′
2 y ′

2 z′
2

x ′
3 y ′

3 z′
3

x ′
4 y ′

4 z′
4

x ′
5 y ′

5 z′
5

x ′
6 y ′

6 z′
6

x ′
7 y ′

7 z′
7

x ′
8 y ′

8 z′
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where the index in the subscript (1 to 8) indicates the vertex
number in Fig. 5. In this map, we have reverted to describe the
hexahedral element in cartesian coordinates (x ′, y ′, z′) rather
than the spherical (r ′, θ ′, φ′).

The Jacobian of the transformation J2 that turns the
hexahedra into a bi-unit cube is

J2 =

∣∣∣∣∣∣∣
∂x ′
∂x ′′

∂x ′
∂y ′′

∂x ′
∂z′′

∂y ′
∂x ′′

∂y ′
∂y ′′

∂y ′
∂z′′

∂z′
∂x ′′

∂z′
∂y ′′

∂z′
∂z′′

∣∣∣∣∣∣∣ . (3)

Thus, the volume integral over the interstitial region
transforms to a volume integral over a cube. This can be
expressed using Gaussian-Legendre integration as∫

�IS

f (r)d3r =
∫ 1

−1

∫ 1

−1

∫ 1

−1
d3r′′f (r′′) J1 J2

=
Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

f (x ′′
l , y ′′

m, z′′
n)J (x ′′

l , y ′′
m, z′′

n)

×wl(x
′′
l ) wm(y ′′

m) wn(z′′
n), (4)

where J = J1J2, and Nl , Nm, and Nn are the number of
quadrature points along x ′′, y ′′, and z′′ axes, respectively. The

Gauss points xi and weights wi are known analytically from the
zeros of the Legendre polynomial, so Eq. (4) is straightforward
to evaluate. Calculation time is primarily spent in numerically
evaluating the analytically derived Jacobians J1 and J2 for the
two successive transformations and the f (x ′′, y ′′, z′′); hence,
quite fast. This isoparametric approach achieves machine-
precision error for VP integrals involving volume, charge-
densities and potentials. The function f (x ′′, y ′′, z′′) should be
evaluated at the specified xi points; if, however, f is only

R

r

l f
r

ln

 (a)                                                              (b)

FIG. 4. Cross section of the cropped pyramid (a) before radial
scaling and (b) after radial scaling.
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FIG. 5. (Color online) Two-step coordinate transformation: (1)
Bottom curved surface (a) to the interior plane (b) via the Jacobian
J1, and (2) hexahedra in (b) to the isoparametric (2 × 2 × 2) bi-unit
cube (c) via the Jacobian J2.

defined on a discrete grid, the function must be interpolated to
each xi , in which case interpolation error is the major error that
should be ameliorated to achieve high-accuracy integration.
Generally, if f (x ′′,y ′′,z′′) is a polynomial of order p1, p2, and
p3 along the three directions, respectively, then the number of
sampling points N required to integrate the quantity exactly for
a simple polyhedra domain is (p1

2 + 1) × (p2

2 + 1) × (p3

2 + 1).
For the case where we separate the integral over the inscribed
sphere and integrate the interstitial over a domain that is
curved, the transformation makes the integrand effectively
nonpolynomial; therefore, more Gauss points will be required.

Our method is distinguished from that in Refs. 3 and 5 by
the choice of transformations as well as partitioning space via
the weighted VP. We transform the Gauss-Legendre sampling
points inside a bi-unit cube into the truncated pyramid by
(1) cubic polynomial mapping of the corner points of the
cube to the corner points of the truncated pyramid (given
by J2), and then (2) by performing a linear mapping (in
radius) of the interior plane (or side closest to origin) onto
the relevant cut of the inscribed sphere (given by J1). Our
Jacobian J ≡ J1J2 is always smooth and well behaved, even
for a highly skewed pyramid. Baerends et al.3,5 have noted
that their choice of coordinates can cause their intermediate
functions to behave poorly (i.e., the J diverges) when the
pyramid has wide opening angles, or a strongly skewed face.
For our J to diverge, the interior plane would need to (nearly)
touch the pyramid base plane; but, with the interior plane
defined as the one passing through three of the intersection
points of the inscribed sphere and the edges of the pyramid,
this could only happen if the sphere touched one of the corners
of the VP, which can never happen. In addition, the present
procedure requires minimally fewer function evaluations.

D. Symmetry considerations

We could take advantage of the symmetry of the VP
and crystal. We consider two kinds of symmetry. First, the
point-group symmetry of the crystal structure identifies the
set of inequivalent sites in the cell, which reduces computa-
tional time to that over inequivalent sites only. The second
symmetry is associated with individual polyhedra. Because
each polyhedra consists of various quadrilaterals associated
with their faces, we can identify the symmetry-equivalent
pyramids by applying a set of symmetry operators over each
polyhedra around the symmetry-unique atoms. By integrating
only over symmetry-inequivalent pyramids corresponding to
each symmetry-inequivalent atom and weighting them with

their degeneracy, an appreciable savings in computer time
would be obtained for systems with high symmetry. For
example, there are 12 facets for VP in an elemental fcc structure
so, at a minimum, we could perform an integration over one
VP facet and multiply the result by 12; however, because each
facet is four-fold symmetric, we could do 1/4 of the VP facet
and multiply the result by 48, reducing VP integration by 1/48
of above integrations timings.

E. All-electron implementation

Our method is conceptually simple and easy to implement
in any general electronic-structure code, with additional ad-
vantages for site-centered methods. For a spherical-harmonic
basis, integrating separately over the inscribed sphere directly
eliminates the Coulomb singularities due to the Jacobian
within spherical coordinates. Also, using the optimal SPR
basis15 we have better basis-set convergences and site charges.
We have included this isoparametric method in a small set of
RPC routines to determine the VP (vertices, faces, and edges).
For complex cells, our algorithm has the flexibility to control
the desired precision to balance the computational cost.

FIG. 6. (Color online) Logarithmic (base 10) error in interstitial
volumes for six structures. Ni(i = l,m,n) is the number of Gauss
points along x̂ ′′, ŷ ′′, and ẑ′′, respectively, with Nn < Nl = Nm due
to a smaller caliper along ẑ′′. Dark (blue) lines indicate minimum
number of points along ẑ′′ (total points listed below plots) to achieve
13 decimal accuracy.

045105-5



ALAM, KHAN, WILSON, AND JOHNSON PHYSICAL REVIEW B 84, 045105 (2011)

This software is used to implement the (un)weighted VP-
based isoparametric integration in our all-electron, KKR-CPA
code.17 We discuss these results in Sec. V. Details of the
calculations are as follows: The Green’s function and related
integrals use an external angular-momentum cutoff up to
Lmax = 3 (i.e., s, p, d, and f symmetries), as needed. Energy
integrations of the Green’s functions are done by contour
integration30 via Gauss-Chebyshev methods with 18 energy
points. We use the local spin-density approximation (LSDA)
as parametrized by von Barth and Hedin.31 The Brillouin zone
integrations use the Monkhorst and Pack32 special k-point
method with 203 points in the full zone. For disordered alloys,
we use the coherent-potential approximation33 (CPA) based on
the screened CPA34 to incorporate more properly the metallic
screening due to charge correlations in the local chemical
environment.

IV. AN EXACTLY SOLVABLE MODEL

To illustrate the numerical convergence and accuracy, we
use van Morgan’s exactly solvable charge-density model.16

Many standard electronic-structure kernels can be exactly
evaluated for the van Morgan density and potential, so the error
in the numerical integrals can be precisely determined. We
verify that accurate results are found with a modest number of
Gauss points that depend on structure, and machine-precision
can be achieved by increased number of points, slightly
increasing computational time.

We showcase the convergence of volume and charge
conservation, the [ρ(r)V (r)] integral evaluated for kinetic
and/or Coulomb energy, and more highly varying functions
in l and r. Apart from the cubic structures, we have also tested
the convergence of the interstitial volume integral for more
complex crystal structures. In the timings below, we have not
utilized the associated symmetry of the crystal and the VP, so
that the results reflect the most inequivalent case.

A. The van Morgan test problem

The van Morgan16 test charge density is defined as

ρ(r) = B

K∑
n=1

ei Tn·r, (5)

where Tn are the nearest-neighbor reciprocal lattice vectors,
and B is a scale factor. We will take B = 1 for simplicity. (From
the Bauer expansion, a plane wave requires, in principle, an
infinite number of spherical harmonics to be fully represented.)
Because �VP and �MT are known exactly for any crystal
structure, it is often convenient, especially for site-centered
methods, to divide the VP into two volumetric regions: the
volume of inscribed sphere �MT and the volume within the
interstitial region �IS, so that �VP = �IS ∪ �MT.

First, we can precisely assess the numerical error associated
with volume conservation via∫

IS
d3r = �IS = �VP − �MT, (6)

where �MT = 4πR3/3, and, for example, R is 1/2,
√

2/4,
and

√
3/4 for sc, fcc, and bcc (in units of lattice constant), re-

spectively. The left-hand-side numerical integral is compared
with the analytical result available for the right-hand side. For

FIG. 7. (Color online) For the van Morgan problem for sc, bcc,
and fcc, (left) the logarithmic (base 10) error in the interstitial charge
[i.e., ε = (QIS

calc − QIS
exact)/Q

IS
exact] and (right) absolute error in VP total

charge (i.e., ε = QVP
calc − QVP

exact). Other details are as in Fig. 6.

example, the VP volumes are 1, 1/4, and 1/2 (in units of lattice
constant cubed) for sc, fcc, and bcc, respectively.

Second, we can assess the integrations associated with
charge conservation, including the determination of electronic
chemical potential or Fermi energy. With ρ(r) having no
zero-mode component in its Fourier expansion, the integral of
charge over a VP cell must be identically zero; hence, charge
neutrality requires that

Qtotal =
∫

VP
ρ(r)d3r = 0. (7)

Subdivision of the VP yields

QIS =
∫

�IS
ρ(r)d3r = −

∫
�MT

ρ(r)d3r. (8)

Next, we can assess numerical errors for the ρ(r)V (r)
integral, which can be expressed as

[ρV ]IS =
∫

�IS
ρ(r)V (r)d3r

= 4πK�IS

|Tn|2 −
∫

�MT
ρ(r)V (r)d3r. (9)
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FIG. 8. (Color online) For the van Morgan
problem for sc, bcc, and fcc, the logarithmic
(base 10) error in the interstitial [ρV ] integral.
Other details are as in Fig. 6.

The exact analytic solutions of the above kernels for three
cubic structures (sc, fcc and bcc) are given in Appendix.
However, noncubic structures are numerically no more dif-
ficult or error prone than these cubic cases (but they cannot be
performed analytically). Besides band energy (an eigenvalue
summation requiring a Fermi energy) and exchange correla-
tion, the above three integrals reflect the main integrations
contributing to DFT total energies, for example.

B. Complex varying integrands

The general method we have presented here can integrate
over any arbitrary polyhedra for any complicated function,
such as those with high angular momentum or those that
are strongly varying with(out) exponential decay. Here we
showcase a set of strongly varying integrands that are critical
for evaluating the near-field contributions to the Poisson
equation (in the so-called moon region) for site-centered,
electronic-structure methods;35 namely,

alm =
∑
R �=0

∫
VP

dr′ρR(r′)
Ylm( ̂r′ + R)

|r′ + R|l+1
, (10)

where Ylm are the spherical harmonics and there is a Madelung
summation over R. It is a rapidly decaying function with
increasing l and, to achieve high precision of this piece of
the Coulomb potential, rather high values of l are required.
Convergence of the above integral for various {lm} values
is shown in the next section. We have also tried other more
strongly varying functions and again achieved accurate results
with a modest number of Gauss points. As will be discussed
elsewhere, most codes that implement the correct Poisson

solution for space-filling VP cannot do the integrals for skewed
VP, or they are not accurate enough due to use of, for example,
shape functions (an example appears below).

V. RESULTS AND DISCUSSION

A. Accuracy

To illustrate the convergence of isoparametric integration,
Fig. 6 shows the logarithmic error in interstitial volume for
six structures (i.e., 1-atom cubics, 2-atom hcp, and 2-atom B2
and bct). Each point on the graph represents the result for a
combination of quadrature points (Nl,Nm,Nn). From Fig. 5(a),
it is clear that the cropped pyramid has a thinner dimension
along the z axis compared to the other two axes. Therefore, we
use less quadrature points along ẑ′′ than along x̂ ′′ and ŷ ′′ [i.e.,
Nn < (Nl,Nm)]; in particular, we used Nl = Nm. An accuracy
of around 10−3 is already reached with only Nl = Nm = 4
points along x̂ ′′ and ŷ ′′. The darker line in each panel shows
the minimum number of quadrature points along ẑ′′ to achieve
convergence to 13 decimal places. For example, the minimum
number of Gauss points along ẑ′′ for a bcc structure to attain an
error less than 10−13 is two. The minimum number of points
(Nl,Nm,Nn) required is listed below each subpanel.

The convergence of the charge density integral (Q) is
given in Fig. 7. The left panel shows the logarithmic error
in the interstitial charge QIS for the cubic structures. The right
panel shows the absolute error εVP = QVP

calc − QVP
exact in the

total charge integral. The charge convergence requires more
points to yield a similar level of accuracy. For example, to
achieve an accuracy of up to the third decimal place, the bcc
structure requires 8 points along x̂ ′′ and ŷ ′′ compared to the 4
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points needed for the sc and fcc structures. Higher accuracy
requires more points for the bcc case due to its wider and more
asymmetric interstitial region.

Figure 8 shows the convergence of the interstitial [ρV ]
integral for the cubic structures. It is interesting to notice that
the [ρV ] integral converges almost at the same rate as the ρ

integral (left panel of Fig. 7) and does not take any longer for
all three structures. The bcc structure in this case also requires
comparatively more points to converge for the same reason
as in the previous paragraph. We have analyzed other relevant
integrands (often used in electronic-structure calculations) as
well and found either a similar or a slightly slower rate of
convergence.

In Table I, we list the minimum number of points required
to get the interstitial volume, charge, and [ρV ]-integral
convergence to more than the 13th decimal for each structure.
The number of points required are given as {Nl = Nm,Nn}.
Table II shows similar results for the full VP integral of
strongly varying functions in Eq. (10) for various {l,m} values,
exhibiting oscillatory angular dependence with l-dependent
spatial decay. In spite of its strongly varying nature, the number
of Gauss points {N} required to achieve an accuracy of up to
10 decimal places is not large and is comparable to that of the
ρ and ρV integrals shown in Table I.

The accuracy of all our integrals is limited by the
accuracy of the VP boundary (vertices, faces, and edges)
information generated from Bernal’s software.29 We have
modified Bernal’s original (binary-math, single-precision)
code to improve its efficiency and extend its accuracy, and we
were able to achieve just below 10−13. We have verified that our
main limitation in accuracy is due to lack of a double-precision
real code. By rewriting the software from scratch, which is
a considerable effort beyond the scope of the present work,
we could certainly achieve machine precision. Therefore, all
integration results will be limited to just below 10−13; with
improved accuracy of VP information, machine-precision is
achievable with similar Gauss points described.

B. Efficiency

To contrast the VP construction timings, we compare to
the time required to expand the shape function (or three-
dimensional step function) into spherical harmonics.36 The
shape-function approach is often used in the community
when needing site-dependent quantities. The EMTO, KKR,
LSMS, APW, etc. methods, for example, typically report
site-quantities, and KKR Green’s function methods require
site-dependent VP scattering matrices.

The shape-truncated function for a VP is defined as

σ (r) =
{

1, r ∈ �

0, r �∈ �,
(11)

where � is the VP region. The expansion of σ (r) in spherical
harmonics yields the angular momentum decomposition

σL(|r|) =
∫

r̂
d r̂ Y ∗

L( r̂ ) σ (r) ≡ σL(r), (12)

where the integration is over the angles r̂ ≡ (θ,φ) and L ≡
(l,m). The shape function is used to simplify the numerical
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FIG. 9. (Color online) Timings to achieve a specific level of
interstitial-charge accuracy for cubic structures using shape function
(left) versus isoparametric (right) integration. Shown in panels is
the logarithmic error in the interstitial charge (top), and the times
to construct VP boundary information (bottom) and to integrate
(middle). Isoparametric integration is >105 times and achieves
machine precision.

integration of any function f (r) over the polyhedron volume
� as

F =
∫

�

f (r)σ (r)d3r

=
Lmax∑
L=0

∫
dr r2σL(r)

∫
�

d�YL( r̂ )f (r), (13)

especially if it is well represented by spherical harmonics.
The expansion coefficients σL(r) must be truncated at a very

high Ltrunc � Lmax to achieve an accurate representation of the
VP shape and to obtain a reliable integral value. For example,
for an fcc structure, ρ(r) is well represented using L � 8 (i.e.,
Lmax = 8), but the shape-function should have Ltrunc � 4Lmax

to have converged σL�8(r) that will yield an accurate integral.
As we shall see, this Ltrunc will limit the accuracy of the
integrals in the codes that use this approach, making the
shape-function approach unacceptable for general (non-high-

TABLE I. Convergence for the interstitial volume, charge, and
[ρV ] integrals for various crystal structures. {Nl = Nm,Nn} are the
optimal number of points for each structure to reach an accuracy of
at least 13 decimal places. V C, QC and [ρV ] stands for the volume,
charge and [ρV ]-integral convergence.

Structure {Nl,Nn}V C {Nl,Nn}QC {Nl,Nn}ρV

sc {18,2} {20,6} {18,8}
bcc {15,2} {26,8} {26,10}
fcc {13,5} {12,6} {12,6}
hcp {12,5}
B2 {15,2}
bct {12,5}
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symmetry) structures, where Ltrunc should be significantly
larger than in the cubic cases to achieve the same level of
accuracy as for fcc.

Figure 9 shows accuracy and computer time for isoparamet-
ric (right panel) and shape-function (left panel) methods for sc,
fcc, and bcc, for a direct comparison. The rate of convergence
is given with respect to the number of Gauss points along each
dimension for the present method and with respect to lmax for
a fixed radial grid using shape functions. The present method
attains error in the van Morgan interstitial charge below 10−13

with less computational time. The shape-function technique
cannot achieve an accuracy better than 10−7 with lmax = 16; an
extremely expensive calculation due to the high-L expansion.
Hence, our method provides some significant advantages over
existing approaches.

The bottom panel shows the time required to generate the
boundary information necessary to achieve a certain level
of accuracy. For both methods, most of the time is spent in
determining the VP boundaries. The present method generates
this information in terms of neighbors, vertices, faces, and
edges for each VP. The shape-function method gets the VP
shape in terms of an L expansion on a specific radial grid.
Clearly, the shape-function method requires >104 times more
time than the present method. The middle panel shows the
time (in ms) required to sum the final expression for the
integration for both VP or shape function. The present method
is faster by >7 times. Overall, using no symmetry (degeneracy)
information to reduce the computational time, we achieve
�105 times faster integration with 106 times less error.

C. Application to FePd

We present the formation enthalpy, 
Ef , for fcc-based
ferromagnetic (FM) (dis)ordered Fe-50%Pd; that is, A1 solid-
solution and ordered L10, from an unweighted (equal) VP
and SPR-weighted VP, giving an optimal partitioning of space
for integration and a concomitantly improved basis set, as

TABLE II. Convergence of fcc alm in Eq. (10) versus {l, m} (R
is summed to 8th neighbor shell). {N} is the number of points per
direction for 10 decimal place accuracy.

l m {N}aL
[alm]numerical [alm]exact

0 0 12 0.009 951 109 455 0.009 951 109 341
2 0 12 0.000 000 000 000 0.000 000 000 000
4 0 14 −9.449 717 387 589 −9.449 717 387 292
4 4 14 −5.647 286 285 886 −5.647 286 285 399
6 0 16 −10.626 482 313 14 −10.626 482 313 81
6 4 16 19.880 328 021 19 19.880 328 021 74
8 0 18 65.840 245 144 25 65.840 245 144 10
8 4 18 24.759 271 364 01 24.759 271 364 34
8 8 19 37.723 807 706 70 37.723 807 706 99
10 0 21 135.852 078 523 4 135.852 078 523 9
10 4 21 −136.893 105 843 2 −136.893 105 843 8
10 8 24 −162.935 386 290 1 −162.935 386 292 8
12 0 24 −205.205 030 788 5 −205.205 030 787 8
12 4 26 −493.649 392 083 8 −493.649 392 082 9
12 8 26 544.811 362 712 9 544.811 362 713 5
12 12 26 −261.804 641 588 3 −261.804 641 588 3

described in Sec. III B and shown in Fig. 2. Formation energies
are highly relevant for phase stability; see Ref. 28 for an
example application to phase stability of magnetic-storage
materials.

Table III shows the 
Ef for FM L10 and A1 phases
versus the external Lmax for the local spherical basis. Using
the weighted-VP integration, results become significantly less
sensitive to Lmax, which is especially clear for the energy
difference 
Eo−d between ordered and disordered phases,
which remains almost constant, in contrast to the unweighted
case. Our weighted integration yields formation energetics
in very good agreement with that observed for L10.37 The
weighted-VP integration thus provides accurate results, a
minimal basis set in terms of angular momentum cutoff, and
a significant reduction in matrix-inversion time because of the
now-permitted use of the lower rank of the KKR matrices
N (Lmax + 1)2, where N is the number of atoms in the unit
cell.

We could not find enthalpy data for the FM-A1 phase.
Therefore, we provide 
Eo−d

PM in the paramagnetic phase
(via disordered local moment state), which is related to the
order-disorder temperature.28 Indeed, for the weighted-VP
case, 
Eo−d

PM is 82 meV (or 952 K), which is close to the
order-disorder temperature of 1050 K38 and shows that the
disordered phase results are now accurate, too.

Large-scale boundaries are critical in materials science;
for example, for mechanical properties as pinning centers
for mageto-anisotropy. As a test of the present weighted-VP
integration, we calculated the [001] antiphase boundary planar
defect energy of L10-FePd, a long-period structure with
32 atoms per cell with varying interstitial regions. We find
910 mJ/m2 versus 890 mJ/m2 from VASP plane-wave calcu-
lations, only ours is about 20 times faster and provides local
properties directly.

In addition, the magnitude of site excess (or deficient)
charge (i.e., the “charge transfer”) in a solid crucially depends
on the way in which the space is divided into geometric
cells. For space-filling VP, SPR-weighted cells will provide
a more physics-based partitioning of space and more realistic
assessment of charge transfer. Approximate methods like the
popular atomic-sphere approximation (ASA) has an overlap
error; the situation becomes worse for non-close-packed
materials.

TABLE III. Formation enthalpy 
Ef (in meV/atom) for
(dis)ordered ferromagnetic FePd versus Lmax from equal (un-
weighted) and SPR-weighted VP, along with ordering energies

Eo−d. SPR results are much less sensitive to basis-set Lmaxcutoff.
KKR results are compared to other results.

Unweighted VP Weighted VP

Lmax 
Eord
f 
Edis

f 
Eo−d 
Eord
f 
Edis

f 
Eo−d

2 −10.7 +18.6 −29.3 −83.3 −59.4 −23.9
3 −45.7 +8.3 −54.0 −88.8 −63.9 −24.9
4 −30.7 −9.9 −20.8 −86.5 −61.7 −24.8

Expt. (Ref. 37) −98 ± 11
VASP-LDA (GGA) +40(−130)
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TABLE IV. Excess charges within VP or ASA spheres for
(dis)ordered FePd with (un)weighted VP via KKR.

Unweighted Weighted

Method 
Qord 
Qdis 
Qord 
Qdis

VP Fe −0.111 +0.059 −0.032 −0.026
Pd +0.111 −0.059 +0.032 +0.026

ASA Fe −0.139 +0.089 −0.082 −0.051
Pd +0.139 −0.089 +0.082 +0.051

In Table IV, we show the calculated excess charges within
(un)weighted VP sites in A1 and L10 FePd, with comparison
to (un)weighted ASA spheres used in many popular codes.
Reference15 provides details of the ASA approach. Generally,
there is a charge transfer from Fe to Pd, as expected from the
electronegativities.

However, for unweighted cases in the A1 phase, there is
an excess charge on the small (Fe) atom, which is distinctly
unphysical and is due to the tails of the charge density of large
(Pd) atoms being improperly cut off at the smaller radii. When
a weighted VP or ASA is used, this situation is corrected
(the sign changes) because the charge density is now better
represented in the disordered phase.15 For the unweighted L10

case, there is a large depletion of charge on the small (Fe)
atom due to a Madelung effect; however, for the weighted case,
the inscribed sphere reflects more appropriately the extent of
the charge density and, hence, it is a more reliable estimate.
Importantly, there is a large reduction in excess (depleted)
charges for the weighted-VP integration compared to the
weighted-ASA case (now with the correct sign), which shows
the error arising from overlap of spheres.

VI. SUMMARY

We have presented a fast, accurate, and easy-to-implement
method for numerical integration over general VP for poly-
atomic systems. The algorithm combines a weighted Voronoi
partitioning of space with isoparametric integration using the
Gauss-Legendre quadrature formulas of product type, and
does not suffer from any ill behavior with VP shape. In
contrast to other methods, accuracy and convergence was
tested rigorously via an analytic charge-density model, with
machine-precision accuracy for a reasonable number of Gauss
points. We showed also that our algorithm is 105 times faster
and 107 times more accurate than that based on shape functions
used in several electronic-structure codes. Our method could
be used for other types of condensed matter problems requiring
integration over arbitrary convex VP. Here, we implemented
the general method in an site-centered, electronic-structure
code and calculated formation enthalpies for FePd, yielding
good agreement with experiment. The radii to set the Voronoi-
Delauney tessellation weights is obtained from a physics-based
definition (i.e., the saddle points in the total electron density).
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APPENDIX: EXACT SOLUTION FOR CUBIC STRUCTURES

For volume conservation the VP and inscribed volume are
known analytically; the interstitial integral is

�IS
exact = �VP − 4π

3

[
R

(s)
MT

]3
, (A1)

where (s) indicates the lattice type (sc, fcc, or bcc). R
(s)
MT

is the inscribed sphere or (muffin-tin) radius of the lattice
s. For charge conservation, it is straightforward to show
that

QIS
exact = A(s)π

[T (s)]3
[sin α(s) − α(s) cos α(s)], (A2)

where α(s) = T (s)R
(s)
MT, T (s) ≡ |Tn|. A(s) is a normalization

constant whose value is 24, 32, and 48 for the sc, fcc, and
bcc lattice, respectively. Finally, the exact expression for the
ρV integral (9) for the van Morgan charge and potential for
any general lattice can be simplified for the cubic lattices (sc,
fcc, and bcc) as

[ρV ]IS
exact = 4πK (s)[�IS](s)

[T (s)]2
− 4π

[T (s)]3

p(s)∑
i=1

f
(s)
i

×
[

sin γ
(s)
i − γ

(s)
i cos γ

(s)
i[

β
(s)
i

]3

]
, (A3)

where K (s) = K = 6,8,12 and p(s) = 2,3,4 for the three
lattices, respectively, and γ

(s)
i = β

(s)
i α(s).

For the above integral expressions, the coefficients fi and
βi for the sc, fcc, and bcc lattices are

for sc, f1 = f2

K − 2
= K, β1 =

√
2β2 = 2;

for fcc, f1 = 2

K − 2
f2 = 2

K − 2
f3 = K,

β1 =
√

2β2 =
√

3

2
β3 = 2;

for bcc, f1 = 2

K − 4
f2 = 2

K − 4
f3 = 1

2
f4 = K,

β1 = 2√
3
β2 = 2β3 =

√
2β4 = 2.
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