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Coulomb drag in graphene single layers separated by a thin spacer
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Motivated by very recent studies of Coulomb drag in a graphene-BN-graphene system we develop a theory
of Coulomb drag for the Fermi-liquid regime, for the case when the ratio of spacer thickness d to the Fermi
wavelength of electrons is arbitrary. The concentration (n) and thickness dependence of the drag resistivity is
changed from n−3d−4 for the thick spacer to n−1| ln (nd2)| for the thin one.
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Coulomb drag in bilayer semiconductor systems is a very
interesting phenomenon, providing unique information about
many-body effects.1–4 Since the role of electron-electron
interactions in graphene, which is a two-dimensional material
with extraordinary electronic and structural properties,5–9 is a
controversial issue (for a review, see Ref. 10), it is important
to study of Coulomb drag in graphene in order to clarify the
situation.

Theoretical11,12 and experimental13,14 studies of Coulomb
drag in graphene have been performed. The theory11 deals with
the case of a thick spacer (kF d � 1, where kF is the Fermi
wave vector of graphene and d is the spacer thickness), and the
results are in a good agreement with the corresponding experi-
mental data13 (the effects of trigonal warping12 seem to be neg-
ligible). Very recently, the group of Geim and Novoselov has
performed experiments with graphene on a substrate of BN,
also using BN as a spacer between two graphene single layers,
and observed drag for much thinner spacers.14 Here we present
a theory generalizing that of Ref. 11 for arbitrary values of kF d.

We start with a general expression for drag conductivity1,2

based on the lowest-order perturbation theory in interlayer
Coulomb interactions (we consider only the case of identical
layers 1 and 2; qualitatively all the basic physics remains the
same for the case of different doping of two layers):
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where �x is the nonlinear susceptibility of electrons in the
layer, EF is their Fermi energy, T is the temperature, and U12

is the Fourier component of the screened interlayer Coulomb
interaction which reads, for the case of identical layers,

U12(q,ω) = uc(q)

[1 + vc(q)�(q,ω)]2 − [uc(q)�(q,ω)]2
, (2)

where vc(q) and uc(q) are the Fourier components of bare
Coulomb interactions within the layer and between the layers,
respectively, and �(q,ω) is the polarization operator of the
electron gas in graphene. In vacuum, vc(q) = 2πe2/q and
uc(q) = vc(q) exp (−qd) and expression (2) coincides with
Eq. (A2) from Ref. 1.

Since typical frequencies contributing to the integral in
Eq. (1) is of the order of kBT /h̄, one can assume, for low
enough temperatures, that the screening is static and replace
U12(q,ω) by U12(q,0).

In the ballistic regime (which means that the distance
between the layers d is much smaller than the mean free
path within the layer l) one can calculate for the case of
graphene11
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q
(3)

at ω → 0, where τ = l/v is the mean-free-path time and v ≈
106 m/s is the Fermi velocity.

Assuming that σD � σ where σ is the inlayer conductivity,
the drag resistivity is ρD = −σD/σ 2. The Drude formula for
the case of graphene is

σ = e2

πh̄2 EF τ, (4)

thus, the drag resistivity does not depend on τ .
As a result, the drag resistivity for the case of identical

graphene layers takes the form
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The quantity U12 in Eq. (5) is given by expression (2) with the
static polarization operator for graphene (see, e.g., Refs. 15
and 16)
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To find vc(q) and uc(q), one needs to solve the electrostatic
problem taking into account different screening by the sub-
strate, spacer, and air. Let us assume that the dielectric medium
is three layers,with the dielectric constant distribution

ε =

⎧⎪⎨
⎪⎩

ε1, z > d,

ε2, d > z > 0,

ε3, z < 0.

(7)

The calculations are quite standard (see, e.g., Ref. 17).
However, for the reader’s convenience we present them here
with some details.

We have to solve the Poisson equation

d

dz

[
ε(z)

dϕ(z)

dz

]
− q2ε(z)ϕ(z) = −4πeδ(z − η), (8)

where ϕ(z) is the electrostatic potential created by the point
charge e situated at x = 0, y = 0, z = η → +0. The only
allowed solution at z < 0 is

ϕ(z) = Aeqz (9)

and at z > d is

ϕ(z) = Be−qz. (10)

For η < z < d it should be tried in the most general form:

ϕ(z) = αeqz + βe−qz. (11)

From continuity of the potential and the normal component
of electric induction Dn = −ε

dϕ

dz
at the boundaries z = 0 and

z = d we find, taking into account Eqs. (9) and (10),
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where the prime means the derivative with respect to z. The
potential ϕ (z) is continuous at z = η [ϕ(−0) = ϕ(+0)] but its
derivative has a jump. Due to Eqs. (8), (9), and (12),

ϕ
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qA − 4πe
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. (14)

At last, we can find from Eqs. (14) and (13) the constants α

and β. The final answer for vc(q) = eϕ(z = 0) and uc(q) =
eϕ(z = d) reads

uc(q)= 8πe2ε2 exp(qd)

q[(ε1 + ε2)(ε3 + ε2) exp(2qd) − (ε1 − ε2)(ε3 − ε2)]
,

vc(q)= 8πe2ε2 exp(qd)[ε2 cosh(qd) + ε1 sinh(qd)]

q[(ε1 + ε2)(ε3 + ε2) exp(2qd) − (ε1 − ε2)(ε3 − ε2)]
.

(15)

For simplicity, we will consider further only the case ε1 = ε2

(which actually takes place in the experimental situation14

where BN is used both as a substrate and as a spacer). In this
case, expression (15) is simplified dramatically:

uc(q) = vc(q) exp(−qd),

vc(q) = 4πe2

q(ε2 + ε3)
, (16)

and

U12 = vc

2(vc�)2 sinh(qd) + (1 + 2vc�) exp(qd)
. (17)

Substituting Eqs. (6), (15), and (17) into Eq. (5) we have
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where

α = 2e2

h̄v(ε2 + ε3)
(19)

is the effective “fine structure” constant (for the combination
of BN with ε2 ≈ 4 and air with ε3 = 1 we have α ≈ 0.87) and
the function F is represented as

F (y) =
∫ ∞

0
dx

x3[
ϕ2(x) sinh(yx) + x(x+4αϕ(x))

8α2 exp(yx)
]2 ,

(20)

where

ϕ (x) =
{

1, x < 1,

1 + x
2

(
cos−1 1

x
−

√
x2−1
x2

)
, x > 1.

(21)

In the limit y � 1,

F (y) ∼= 3ζ (3)

2y4
, (22)

and Eqs. (18) and (20) give the known result11
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where κ = 4αkF is the inverse screening radius.
In the opposite limit, y � 1, with typical values of x ≈

1/y � 1, and one can assume φ(x) ≈ πx/4, which gives

F (y) ∼=
(

8α2

1 + πα

)2

ln
1

y
. (24)

The behavior of drag resistivity as a function of charge
carrier concentration for kF d of the order of one is shown
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FIG. 1. Drag resistivity (18) as a function of charge carrier
concentration, for ε3 = 1, ε2 = 4, T = 120 K: d = 3 nm (dashed
line) and d = 4 nm (solid line).
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in Fig. 1. This result seems to be in a qualitative agreement
with the experimental data,14 but at least it gives the correct
order of magnitude for the drag resistivity. At the same time,
for small enough kF d and α ≈ 1 the interlayer Coulomb
interaction is in general not small, and it is not clear whether
the lowest-order perturbation theory used here will be also
quantitatively accurate or taking into account next-order
contributions will be necessary. The issue requires further
studies, both experimental and theoretical.

Recently two more works on the subject appeared.18,19 The
results of this paper and the other two papers concerning
concentration dependence of the drag resistivity are in an

agreement, namely, in Ref. 18 the same analytical concen-
tration dependence as here, ρD ∝ n−1| ln (nd2)|, was obtained
for the case of thin spacer, whereas in Ref. 19 the numerical
data were fitted by ρD ∝ n−α with α of the order of one.
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