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Delaney and Greer [DG incorrectly assert that in Phys. Rev. B 80, 165301 (2009)] (denoted as I) we have
“generalized” a transport approach proposed by them. In reality, we have criticized and demonstrated the complete
failure of that approach. The Comment is based on the false supposition that real orbitals are constrained in I.
We show that the complex orbitals suggested by DG as a way-out solution merely represent a particular case of
the general case considered in I, which do not in the least affect our conclusion. The scattering states mentioned
in their abstract in a sentence that is not substantiated by the main text of the Comment pertain to the correct
Landauer approach. They have nothing in common with the incorrect DG variational approach. In conjunction
with the issues raised by DG, we show that, astonishingly, by uncritically imposing the Wigner constraints in
their original work [Phys. Rev. Lett. 93, 036805 (2004)], DG actually constrained the outgoing and not incoming
charge carriers, which makes absolutely no sense for transport.
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I. INTRODUCTION

Delaney and Greer (DG) claimed1 that the current J in a
two-terminal setup can be determined by a constrained energy
minimization of a finite cluster consisting of the molecule
of interest and (small) parts of electrodes (Au13-clusters1)
subjected to a bias V , completely decoupled from an infinite
environment. According to DG, one should constrain the
current to be position independent, and the distributions of
incoming electrons at the left and right boundaries (qL,R) for
V �= 0 to coincide with those for V = 0 of the same finite
isolated cluster. By arguing that the single-particle momentum
Fermi distributions (FDs) f FD

κ can not be employed for
correlated systems, they constrained the Wigner function
(WF) of incoming electrons f (qL,R,p <

> 0) .1 In our previous

works,2,3 we demonstrated the lamentable failure of this WF
approach for the simplest typical models used in nanotransport.
Reference 4 (hereafter, I) emerged from our efforts to rescue
the DG method by replacing the WF constraints criticized
in Ref. 2 with physically justified boundary constraints, first
and foremost in terms of FDs. The predicted current within
the linear-response limit was again completely unphysical
(J = 0), so we had to ineluctably conclude that this modified
DG approach is also incorrect.

In the Comment,5 DG claim (i) that our constraints prevent a
broken time-reversal symmetry and, therefore, the result J = 0
holds even beyond the linear response, and (ii) that we used
real orbitals, which concomitantly constrain incoming and
outgoing electrons. (iii) Although DG accept that our idea
to constrain populations “is an interesting alternative to the
Wigner function,” they argue that, to get J �= 0, it is essential
to use the complex orbitals obtained by applying periodic
boundary conditions for electrodes. (iv) Further, DG assert
that, in their work, they “were careful. . . to only constrain the
Wigner function f (qL,p) for p > 0 on the left and f (qR,p)
for p < 0 on the right” such that “it is only the incoming,
propagating states that are constrained.”

Responding briefly, claim (i) is incorrect, claim (ii) misses
any real basis, claim (iii) does not remedy their approach

because the complex orbitals discussed by them solely
represent a particular case of the general case of I, and
claim (iv) demonstrates that, even if the WF were a true
momentum distribution, amazingly, in their work,1 DG did not
constrain the incoming but rather the outgoing majority charge
carriers.

II. POPULATION CONSTRAINTS DO NOT PREVENT A
BROKEN TIME-REVERSAL SYMMETRY

As already noted, the demonstration of I refers to linear re-
sponse. DG argue that the result J = 0 also holds even beyond
the linear response and is the consequence of constraining
real particle number operators Qκ ≡ α†

κακ , which yields a
real many-body wave function � incompatible with a broken
time inversion. Unless otherwise specified, we use throughout
the notations and definitions of I and ignore the spin for
simplicity.

Let us show that this claim is incorrect. Let |�〉 =∑
n An |�n〉 be a general many-body state exactly expanded

in terms of the complete set of the real eigenstates of the
Hamiltonian H of the cluster at V = 0, H |�n〉 = En|�n〉.
The coefficients An are allowed to be complex. Accepting the
DG challenge, we generalize in this section our analysis of I
beyond the linear-response limit considered there. We do not
single out the ground state |�0〉, unlike e.g., Eq. (10) of I,
and we consider the general matrix elements of the relevant
operators [external bias Hamiltonian W and current operator
at site q, jq = ietq(a†

qaq+1 − a
†
q+1aq)]

Wnm ≡ 〈�n|W |�m〉=Wmn; Qκ
nm ≡ 〈�n|α†

κακ |�m〉=Qκ
mn,

(1)

J q
nm ≡ −i〈�n|

(
jq − jq0

)|�m〉≡ Iq
nm − Iq0

nm = −J q
mn, (2)

where q0 is an arbitrary fixed site. Notice that all the
above calligraphic symbols denote real quantities. The DG
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constrained energy minimization yields

∑
n,m

A∗
nAm

[
(En − ω) δnm + Wnm

−
∑

κ

λκQκ
nm − i

∑
q �=q0

χqJ q
nm

]
= min , (3)

where ω, λκ , and χq are real Lagrange multipliers. The
constraints are (see I)∑

n,m

A∗
nAmQκ

nm = Qκ
00, (4)

∑
n,m

A∗
nAmJ q

nm = 0, (5)

∑
n,m

A∗
nAm = 1. (6)

The minimization with respect to An and A∗
n of Eq. (3) yields

∑
m

Am

[
(En − ω) δnm + Wnm

−
∑

κ

λκQκ
nm − i

∑
q �=q0

χqJ q
nm

]
= 0, (7)

∑
m

A∗
m

[
(En − ω) δnm + Wnm

−
∑

κ

λκQκ
nm + i

∑
q �=q0

χqJ q
nm

]
= 0. (8)

Notice the reversed sign of the last term in the square brackets
of Eqs. (7) and (8). It is due to the antisymmetry expressed in
Eq. (5), which is related to the fact that the matrix elements
in the Hermitian current operator are purely imaginary, i.e.,
Iq

nm are real. By rephrasing, this reflects the fact that, if the
state |�〉 = ∑

n An|�n〉 corresponds to a current J [�] ≡ +J ,
the state |�∗〉 = ∑

n A∗
n|�n〉 corresponds to a current J [�∗] =

−J . To determine the expansion coefficients (and the Lagrange
multipliers), one must solve Eqs. (4)–(8), and then the position-
independent current can be computed as

J ≡ Jq = i
∑
n,m

A∗
nAmIq

nm = i

2

∑
n,m

(A∗
nAm − AnA

∗
m)Iq

nm. (9)

As visible in Eqs. (7) and (8), An and A∗
n obey different

equations: the An’s are allowed to be complex, hence, |�〉
is also allowed to be complex. The phase factors A∗

n/An =
exp(−2iφn) are allowed to depend on n, and Eq. (9) allows
a nonvanishing current within or beyond linear response. To
conclude, the constraint of populations, Eq. (4), allows an
irreversible flow (broken “time”-reversal symmetry) J �= 0.

The DG argumentation of the Comment that � is neces-
sarily real is incorrect because (a) on one hand, it eliminates
an important aspect and (b) on the other hand, it introduces an
unjustified assumption:

(a) DG seem to have realized that current conservation is
a serious inconsistency of their argumentation; noteworthy,
the steps (1)–(6) listed in the Comment omit the current

conservation. DG first discuss the minimization ignoring the
current conservation. This amounts to illegitimately excluding
the last term of Eqs. (3), (7), and (8) above.

(b) Even with this impermissible omission of the imaginary
terms, Eqs. (4)–(8) do not automatically imply real coefficients
An. The unknown An can be complex even if all the
other quantities entering these equations are real (remember
x2 + 1 = 0). Then, to more “convincingly” argue that our
constraints do not break the time-reversal symmetry, DG
make an unjustified supposition: they simply postulate that
“the variational approach assumes a unique solution � . . . .”
The DG variational approach is a well-defined mathematical
problem. Whether a solution exists and is furthermore unique
can not be “assumed” in any mathematical problem. This
should be demonstrated an imperious requirement particularly
in the case of such an approach, whose shortcomings are so
amply documented.2–4

In fact, it is just the opposite sign of the last term in the
square brackets of Eqs. (7) and (8) that is related to the broken
“time” inversion expressed by the transformation � → �∗,
J → −J mentioned by DG. So, an irreversible flow (broken
“time” inversion) with constrained particle occupations is very
possible, and the DG claim is incorrect.

To see whether the An’s are indeed complex [thence
whether a current J , Eq. (9), can indeed flow], one has to
solve Eqs. (4)–(8). Beyond linear response, these are coupled
nonlinear equations, and the solution is not necessarily unique.
In I, we do solve this problem for linear response, show that
the solution is unique, and the unphysical result J = 0 is the
outcome of these calculations. Throughout our analysis of the
DG approach,2–4 to be on the safe side, we confined ourselves
to the linear response, wherein the solution is unique and its
lamentable failure can be unambiguously stated. It is possible
that the DG current vanishes beyond the linear-response limit,6

but we can not safely state this. But, if this were the case, it
would have nothing to do with the DG claim; as seen above,
constraining populations does not prevent a broken “time”
inversion. Whether the solution of the nonlinear problem
corresponds to J = 0 or not did not and does not represent our
concern once the linear-response limit is incorrect. This would
be yet another unphysical DG prediction, as we already stated
explicitly in the next-to-last paragraph of Sec. VI in Ref. 2.

III. COMPLEX ORBITALS DO NOT RESCUE
THE DG APPROACH

DG incorrectly claim that we can not constrain only
incoming electrons because our single-particle wave functions
(orbitals) are real, and outgoing electrons become concomi-
tantly constrained. The demonstration of I is general, and (as
in Sec. II) specifying orbitals explicitly is not needed. The DG
claim that we used real orbitals in I is not founded. Let us still
note that, if the orbitals were real, this would be a physical
fact, whatever the quantity to be constrained. The objection
that incoming and outgoing states are entangled would apply
when constraining the WF as well.

DG accept our idea of constraining populations, but claim
that it is essential to choose complex orbitals associated to peri-
odic boundary conditions in electrodes. To demonstrate that the
DG criticism is invalid, let us explicitly work out just this case,
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which is merely a particular case of that considered in I: By
inspecting the second and third lines of Eq. (6) of I, one can im-
mediately realize that our electrodes are described by general
boundary conditions; we wrote, e.g., l � qL and not −ML +
qL < l � qL. It is puzzling that, although DG even reproduce
our expression of HL, they completely overlook this fact.

Assuming periodic electrodes (aqL−ML
≡ aqL

and aqR+MR
≡

aqR
) and homogeneous hopping integrals TL,R in electrodes,

Eq. (22) of I can be written explicitly as

aqL+l = M
−1/2
L

∑
k

αke
2πikl/ML,

aqR+r = M
−1/2
R

∑
p

αpe2πipr/MR . (10)

Throughout, we use l = −ML, . . . , − 2, − 1; r =
1,2, . . . ,MR; −ML/2 � k < ML/2; and −MR/2 � p <

MR/2. With Eq. (10), the Hamiltonians HL, HR , and HD,e of
Eq. (6) of I become (τL,R ≡ tqL,R

, εF = μL = μR)

HL =
∑

k

[εF − 2TL cos(2πk/ML)] α
†
kαk,

HR =
∑

p

[εF − 2TR cos(2πp/MR)] α†
pαp,

HD,e = −τLM
−1/2
L

∑
k

(α†
kaqL

+ a†
qL

αk)

− τRM
−1/2
R

∑
p

(α†
paqR

+ a†
qR

αp). (11)

Further operators affected by the transformation (10) entering
the relevant equations are

W = eV

2

∑
k

α
†
kαk +

∑
q

eVqa
†
qaq − eV

2

∑
p

α†
pαp, (12)

jL = i
e

h̄
τLM

−1/2
L

∑
k

(α†
kaqL

− a†
qL

αk), (13)

jR = i
e

h̄
τRM

−1/2
R

∑
p

(a†
qR

αp − α†
paqR

), (14)

representing the Hamiltonian of the external bias W and the
current operators jL,R at the contacts, respectively. The sites
within the device q = qL + 1, . . . ,qR − 1 are not affected by
Eq. (10), and the corresponding operators (device’s Hamilto-
nian HD and the current within the device jq) can be found
in I.

By inspecting Eq. (11), one can immediately see that, in
spite of the fact that the single-particle wave functions

φk(xl) = e2πikl/ML and φp(xr ) = e2πipr/MR (15)

of Eq. (10) are complex, all the parameters of the Hamiltonian
H = HL + HR + HD,e + HD are real. Consequently, all its
many-body eigenstates |�n〉 are real. All the parameters
entering W are real, so the matrix elements 〈�n|W |�0〉 ≡ Wn

[Eq. (13) of I] are again real. In accord with the general
case of I, the matrix elements of the current operator are
purely imaginary (i.e, real Jq,n). All the matrix elements of
the particle number operators α†

κακ (κ = p,k) remain real
〈�n|α†

κακ |�0〉 = Qκ (Yκ ≡ 0). Equations (24) and (25) of I
remain unaltered. So, the completely unphysical result (J = 0)

follows as the ineluctable conclusion of applying the DG
method. The labels of the single-particle states of incoming
electrons can be explicitly given (for hole conduction, see
Sec. V): ακ → αkin with 0 < kin < ML/2 and ακ → αpin with
−MR/2 < pin < 0. One can explicitly see that only these
incoming electrons can, and are to be, constrained in Eqs. (12)
and (23) of I or in the present Eq. (4). They do differ from the
outgoing electrons, the labels of which are −ML/2 < kout < 0
and 0 < pout < MR/2, and one can convince oneself explicitly
that outgoing electrons (can) remain unconstrained. So, these
constraints correspond to Fig. 7(c) of Ref. 7 and not to
Figs. 7(a) and (7b), contrary to what the Comment claims.

To summarize, the constraints used by us within the
calculations based on the DG approach allowed a broken
symmetry between incoming and outgoing electrons. Whether
this symmetry is broken or not remained an open result,
which emerged from the DG transport calculations. The result
is that this symmetry is not broken, J = 0, demonstrating
the incorrectness of the DG variational approach, and this
also holds true for the complex orbitals and the associated
electrodes’ periodic boundary conditions, contrary to what the
Comment argues.

Like in the situation encountered in a closely related issue
(see Ref. 3), DG attempt to discuss aspects of the correct
Landauer approach conveying the false impression that they
belong to their incorrect variational approach. In a part that
is not at all substantiated by the main body of the Comment,
in their abstract DG refer to the asymptotic scattering states
and assert that the amplitude of incoming waves is 1(≡ ri)
(i.e., bias independent), while the amplitude r of the outgoing
waves is bias (and barrier) dependent. To this, we comment
as follows. The fact that ri = 1 is constant is nothing but the
trivial consequence of a comfortable normalization. What is
important for a nonvanishing current (broken “time” inversion)
is that ri �= r , and this emerges from valid Landauer’s transport
calcuations. The fact that the DG calculations fail to yield a
broken “time”-reversal symmetry is just the stumbling block
of their variational approach based on a constrained energy
minimization.

IV. WIGNER FUNCTION CONSTRAINTS VERSUS
POPULATION CONSTRAINTS

DG mention that, by constraining the WF, a nonzero current
is possible. In Refs. 2–4, we discussed that, although, luckily,
mathematically this may be possible, the result is completely
unphysical. The inappropriateness of the Wigner constraints
could not be immediately recognized only because, luckily, the
matrix elements of the Fano operator are generally complex.2,3

They are generally complex no matter whether the orbitals are
real or complex (see Refs. 2 and 3); this is not the result of any
“careful” choice of certain complex functions, as incorrectly
claimed by DG. Let us show that this is also the case when the
Comment’s continuous space description is used instead of the
discrete one of Refs. 2 and 4. The Fano operator reads as

F (x,p) ≡ 1

N

∫
dr e−ipr ψ̂†(x − r/2)ψ̂(x + r/2), (16)

where ψ̂†(x) and ψ̂(x) are the electron field creation
and destruction operators. Its general matrix element for
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two arbitrary N -body states |�〉 and |�〉 corresponding
to the multielectronic wave functions �(x1, . . . ,xN ) ≡
〈x1, . . . ,xN |�〉 ≡ 〈0|ψ̂(x1), . . . ,ψ̂(xN )|�〉/√N ! (|0〉 is the
vacuum) and �(x1, . . . ,xN ) ≡ 〈x1, . . . ,xN |�〉 can be easily
expressed as (XN−1 ≡ {x1, . . . ,xN−1})
〈�|F (x,p)|�〉

=
∫

e−ipr�∗
(

XN−1,x − r

2

)
�

(
XN−1,x + r

2

)
d XN−1d r.

(17)

This matrix element is generally complex irrespective of
whether the wave functions �(XN ) and �(XN ) entering
Eq. (17) are real or complex. Equation (17) is general and holds
whatever the employed single-particle wave functions (real
or complex, which need not be specified). The exponential
entering Eq. (17) belongs to the definition of the Fano
operator [Eq. (16)] and has nothing to do with the employed
orbitals. Whatever the latter, it can be artificially split as
exp(−ipr) = exp[ip(x − r/2)] × exp[−ip(x + r/2)]. This is
a trivial splitting, and the superscript of the Comment’s
notation αDG

k for these factors is misleading: DG did not
employ periodic boundary conditions for the small Au13

clusters, which mimic their electrodes of Ref. 1. For this, it
suffices to inspect, e.g., Eqs. (1) and (2) of Ref. 1.

Let us express the population constraints for the incoming
electrons (p < 0) for the right electrode (R) [Eq. (23) of I]
making use of the Fano operator4 and Eqs. (10):∑

x∈R

∫
〈�|F (x,p)|�〉 = 〈�|α†

pαp|�〉 = 〈�0|α†
pαp|�0〉

=
∑
x∈R

∫
〈�0|F (x,p)|�0〉. (18)

Instead of constraining the above sums over x of the Fano op-
erators (which do represent particle momentum distributions),
DG constrain a single term thereof in either electrode (namely,
x = qL,R),1 which is a quantity that does not represent a
physical momentum distribution. Emerging from an ad hoc
mathematical constraint, it is not at all surprising that the
currents predicted by the DG approach,1 whether they vanish
or not, are completely unphysical, as demonstrated in Refs. 2
and 3. Still, mathematically, the WF constraints used by the
DG approach (can) yield a nonvanishing J even when using
real orbitals, in spite of the “warning bells” that “real wave
functions carry no current” mentioned in the Comment.5

V. CONSTRAINTS FOR n- AND p-TYPE CONDUCTION

In Sec. III, to specify the incoming (outgoing) electrons,
we have naively assumed that the single-particle states with
positive (negative) wave numbers k and p correspond to right
(left) motion. However, they are related via Eqs. (10) to
quasi momenta, which are not necessarily physical momenta.
Especially for later purposes, it is important to demonstrate
that the sign of k and p is related to the direction of the motion
in the real world.

Let us consider the isolated left electrode. Its ground state
is the Fermi sea |F 〉 ≡ (

∏
|k|�kF

α
†
k)|0〉, where the Fermi wave

vector kF is determined by the number of electrons. By using
Eq. (10), one can straightforwardly demonstrate that, at any
position qL + l within the (left) electrode, the average of
the electron number current jqL+l = i(a†

qL+l+1aqL+l − H.c.)

vanishes, 〈F |jqL+l|F 〉 = 0. (Notice the opposite signs of j

and the electric current j of Sec. II for electrons.) Let us also
consider the states (ML/2 > |K| > kF , |K ′| � kF < ML/2)∣∣�el

K

〉 ≡ α
†
K |F 〉, ∣∣�h

K ′
〉 ≡ αK ′ |F 〉. (19)

They represent states with one extra electron (el) and hole (h)
in the Fermi sea, respectively. Straightforward calculations
using Eqs. (19) and (10) yield

〈
�el

K

∣∣jqL+l

∣∣�el
K

〉 = +2
TL

ML

sin
2πK

ML

, (20)

〈
�h

K ′
∣∣jqL+l

∣∣�h
K ′

〉 = −2
TL

ML

sin
2πK ′

ML

. (21)

The sign of the j average does express the real direction
of electron quantum-mechanical motion. So, Eqs. (20) and
(21) demonstrate that the sign of the wave vectors belonging
to the Brillouin zones of Sec. III (symmetric around zero)
specifies the direction of electron motion, and that electrons
and holes with a given wave vector move in opposite directions.
The latter result can also be seen by performing the general
particle-hole transformation e → −e (charge conjugation) and
{ψ̂†(x),ψ̂(x)}→{ψ̂†

h(x) ≡ ψ̂(x),ψ̂h(x) ≡ ψ̂†(x)} ({a†
x,ax} →

{ah †
x ≡ ax,a

h
x ≡ a

†
x}, {α†

κ ,ακ} → {αh †
κ ≡ α−κ ,a

h
κ ≡ α

†
−κ}). By

using Eq. (16), one easily gets

j
h

x = −jx ; jh
x = +jx, (22)

Fh(x, − P ) ≡ 1

N

∫
dr eiP r ψ̂

†
h(x − r/2)ψ̂h(x + r/2)

= −F (x,P ) + const. (23)

In view of the aforementioned, one can conclude that incoming
and outgoing electrons correspond to the wave vectors

0 < kin < ML/2; −MR/2 < pin < 0, (24)
(for electrons)

−ML/2 < kout < 0; 0 < pout < MR/2, (25)

while for incoming and outgoing holes

−ML/2 < kin < 0; 0 < pin < MR/2, (26)
(for holes)

0 < kout < ML/2; −MR/2 < pout < 0. (27)

The fact that the above electron and hole descriptions are
equivalent is trivial in general, but not in the context of
transport approaches aiming at constraining incoming charge
carriers.7 If the charge carriers are electrons (n-type conduc-
tion), the constraints should be imposed to incoming electrons
[Eq. (24)]. In this case, the naive assumption of Sec. III is
justified. However, if the charge carriers are holes (p-type con-
duction), one should constrain the incoming holes [Eq. (26)];
that is, the labels κ in the above Eq. (4), and in Eqs. (12) and
(23) of I, are those given by Eq. (26) and not by Eq. (24).

The analysis of this section and of Sec. III makes it now
clear why we preferred to consider the general case in I and
not to enter in unnecessary involved details: they are absolutely
not necessary to understand the unphysical prediction J = 0

037305-4



COMMENTS PHYSICAL REVIEW B 84, 037305 (2011)

of the DG approach, and hence its lamentable failure. Just to
avoid any possible misunderstanding, in Ref. 8 (which DG
misinterpret), we have stated what we already noted at step (ii)
in Sec. II of I, namely, that incoming carriers are constrained.
But, because the incorrect DG claims in the Comment brought
us to enter such details, we can show another shortcoming of
the original DG approach1 related to them, one of many other
aspects,6 which we did not present so far.

In their work,1 DG did not discuss at all whether the
molecule they considered, BDT (benzenedithiolate), exhibits
an n- or a p-type conduction. Uncritically (as also repeated in
the Comment), they merely impose constraints on f (qL,P >

0) and f (qR,P < 0). Even if these WFs were true momentum
distributions, these constraints would be appropriate only if the
charge carriers were electrons [conduction mediated by lowest
unoccupied molecular orbital (LUMO)]. In reality, in BDT,
the majority charge carriers are holes (p-type conduction),
as clearly demonstrated by the recent reliable experiment of
Ref. 9. By inspecting now Eqs. (23) (noting the reversed sign
of P in the left- and right-hand sides), (24), and (27), one is
amazed to see that what DG constrained in Ref. 1 are in fact the
outgoing majority carriers, and not the incoming ones; what
sense does such a constraint make for transport? It is certainly
too simplistic to describe the conduction through BDT merely
as a process mediated by highest occupied molecular orbital
[(HOMO); p-type conduction] instead of accounting for sev-
eral or numerous ionization and electroaffinity levels, but the
fact that the constraints of majority carriers (holes) are unphys-
ical in Ref. 1 is a clear demonstration that uncritically using
Wigner boundaries is completely unjustified. To conclude,
even if all the other DG ingredients were correct (which is
obviously not the case2,3), this very reason irrefutably demon-
strates that the results of Refs. 1 have absolutely no physical
meaning.

In our first work2 that challenged the DG approach
with Wigner constraints,1 we considered uncorrelated and
correlated quantum dots modeled by a single level whose
energy offset from the electrodes’ Fermi level εF = 0 is εg .
The results of the DG calculations presented there (e.g., in
Figs. 2–5 and 7) are for εg � 0, that is, the dot’s level plays
the role of a LUMO (n-type conduction). The charge carriers
are electrons, and our constraints [corresponding to the above
Eq. (24)] refer to incoming electrons.

Both the uncorrelated and the correlated models of Ref. 2
are described by Hamiltonians H (εg) possessing a particle-
hole (or charge-conjugation) symmetry (see e.g., Ref. 10
and citations therein) around εg = 0: Hh(εg) = H (−εg).
Hence, the zero-bias conductance g(+εg) = g(−εg) should
be identical irrespective of whether the level is located above
(+εg) or below (−εg) the electrodes’ Fermi level εF = 0.
It is noteworthy that the charge carriers are electrons for
positive εg and holes for negative εg . As a test for numerical
calculations, we checked that DG calculations for the LUMO
case (εg > 0) constraining the incoming electrons [Eq. (24)]
and for the HOMO case (εg < 0) constraining the incoming
holes [Eq. (26)] yield the same, albeit completely unphysical
linear conductance. [The electric current operator has the
same sign both in the electron and the hole representation,
cf. Eq. (22).] As clearly demonstrated,2 the DG conductance
computed in this way is completely unphysical, but. . . it is

still positive, gDG(εg) � 0, both for positive and negative εg .
That is, with Wigner constraints of incoming carriers, the DG
approach can still “predict” that electrons flow from the lower
potential to the higher potential, and holes flow from the higher
potential to the lower potential.

If we drew the curves of Figs. 3, 5, and 7 of Ref. 2
also for εg < 0,6 by blindly computing the DG conductance
using exactly the DG prescribed constraints1 [i.e., Eq. (24)],
we could have shown another unphysical “prediction” of the
DG approach,1 namely, that the linear conductance can be
negative, gDG(εg < 0) < 0! That is, to comply with the DG
calculations, holes should have to flow. . . from the lower
potential to the higher potential. This results from the fact
that the blind constraints of f (qL,P > 0) and f (qR,P < 0)
erroneously constrain, in fact, the outgoing carriers; this
situation corresponds to Fig. 7(d), and not to Fig. 7(c) of
Ref. 7. Indeed, these Wigner-DG constraints yield a complex
wave function � and a nonvanishing current, but. . . what is
the physical relevance of this broken “time” inversion? As a
matter of fact, it is just such an unphysical imbalance, which is
shown in Fig. 1 (bottom) of Ref. 1 [the counterpart of Fig. (7d)
of Ref. 7 and not of Fig. 7(c), as incorrectly claimed in the
Comment], that breaks the “time” inversion in Ref. 1. In Ref. 2,
we did not show this conductance g(εg < 0) < 0 because the
demonstration of the severe failure of the DG approach with
Wigner constraints was sufficiently convincing, even without
mentioning this “prediction.” However, we have to note it
here since, in spite of the clear evidence of Refs. 2 and 3,
DG still continue to uncritically refer to their work1 in the
Comment.

VI. DISCUSSION AND CONCLUSION

In Ref. 1, DG constrained the WF only because they
claimed that the FD can not be used for correlated transport.
As explained in I, the electrodes inject uncorrelated electrons
even in correlated devices, and constraints can and should be
imposed to the momentum distribution of incoming carriers:
this is precisely the FD f FD

κ ≡ 〈Qκ〉 and not the WF f (x,P ) ≡
〈F (x,P )〉, which is not a true momentum distribution. In
Ref. 11, we present an example demonstrating that using the
sign of the Wigner “momentum” P to specify the direction of
motion in real world is physically inadequate. This example
demonstrates that, although DG “were careful. . . to only
constrain the Wigner function f (qL,p) for p > 0 on the left
and f (qR,p) for p < 0 on the right,” it is not necessarily
true that“it is only the incoming, propagating states that
are constrained” (quotation from the Comment). Fortunately,
using the FDs obviates the need for this equivocal ingredient.
By using the orbital quantum indices (quasimomenta {κ} ≡
{k,p}), one can unambiguously distinguish between incoming
and outgoing charge carriers and constrain only the FD of
the former [cf. Sec. III and Eqs. (24)–(27)]. The fact that
the results obtained by constraining the FD and the WF are
qualitatively different [J = 0 (Ref. 4) versus J �= 0 (Ref. 2)]
merely demonstrates the limited physical content of the WF,
which is well known from standard textbooks.12 Within the
Comment’s argumentation, a current flow is possible only to
the extent to which the WF does differ from the FD.
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There are certainly many possibilities to obtain nonvan-
ishing currents by constraining ad hoc complex Hermitian
operators, since all these generally yield J �= 0 [see Eqs. (18)–
(20) of I]; one needs not be too “careful” for this. It is essential
to choose Hermitian operators, which are associated to ob-
servables able to express the physical reality at the boundaries.
And, according to the present community’s wisdom, a choice
better justifiable physically than the electronic momentum
distributions is not known; DG themselves have to admit
that they represent “an interesting alternative to the” WF.
Most well-established approaches for transport successfully
employ FDs to express open boundary conditions. Examples
include time-dependent approaches [Boltzmann’s equations,
nonequilibrium Green’s functions (NEGF), master equations,
time-evolved wave packets introducing complex absorbing
potentials at boundaries, etc.], which successfully employ
Fermi distributions (FDs). Strictly speaking, a broken time
inversion only exists in such time-dependent approaches. The
irreversible stationary flow J �= 0 results only by taking the
infinite time limit t → ∞ after that of infinite volume L → ∞;
otherwise, the (effective) Hamiltonian remains Hermitian (no
imaginary contributions to self-energies and J = 0). FDs
for carriers flowing from electrodes into a device are also
employed in time-independent treatments, e.g., the uncor-
related scattering Landauer approach. There, an irreversible
flow (broken “time” inversion) is possible (only) because,
from transport calculations (i.e., solving the Schrödinger
equation) for V �= 0, one deduces complex wave functions
and different single-particle states (orbitals) of incoming and
outgoing carriers, which are allowed and are obtained to be
different.

Because the DG approach is also time independent, the
comparison with Landauer’s approach is most illuminating. At
V �= 0, a current through a device coupled to two electrodes
implies (i) an asymmetry between the incoming and outgoing
carriers at either contact and (ii) a left-right asymmetry. Within
the Landauer approach, the asymmetry (i) is deduced by
solving the Schrödinger equation, which yields a nonvanishing
transmission; the asymmetry (ii) follows from the fact that the
electron distributions (FDs) ensure an asymmetric filling of the
incoming states at either contact [f FD

kin
= θ (εF + eV/2 − εkin )

and f FD
pin

= θ (εF − eV/2 − εpin )].
As explicitly shown above, it is possible to distinguish

between incoming and outgoing states within the DG frame-
work. In Sec. III, the orbitals of Eq. (15) describing elec-
trons in isolated electrodes are identical to those used in
the Landauer approach, and the asymmetry (ii) has been
accounted for exactly in the same way as in Landauer’s
approach. The essential difference between the two approaches
is the transport ansatz employed in the calculations. If the
DG transport ansatz (constrained energy minimization) were
correct, the result would be a broken incoming-outgoing
symmetry [condition (i)] and a nonvanishing stationary (and
also position-independent2,3) current. For uncorrelated sys-
tems, as an alternative to our many-body second quantiza-
tion approach, cumbersome DG calculations could also be
done by using Slater determinants built from single-electron
states ϕk(x) for the coupled source-device-drain system at
V �= 0. If the DG transport ansatz were equivalent to the

Schrödinger equation, the solutions would recover the standard
expressions, e.g., ϕkin (xl) = exp(2πikinl/ML) and ϕkout (xl) =
R(kout) exp(2πikoutl/ML) [|R(kout)| < 1], with kin and kout

given by Eqs. (24)–(27). Conversely, if the Schrödinger
equation were a wrong framework, it would yield the incorrect
DG result R(kout) = 1 (and hence J = 0).

Above, we preferred to respond to and rebut in detail all the
issues raised by the Comment. Still, we note that this analysis
of all the concrete aspects is actually not necessary. In Sec. VII
of Ref. 3, we pointed out more serious reasons as to why the DG
approach fails. This criticism comprises fundamental aspects
not restricted to specific boundary constraints. Our criticism
was presented in Ref. 3 in sufficient detail and will not be
repeated here.

The lamentable failure of the DG approach was demon-
strated for the simplest uncorrelated and correlated, discrete,
and continuous models.2,3 It contradicts well-established
experimental and theoretical results, and it would make little
sense to more amply document the incorrectness in many other
cases.6

Based on ingredients unfounded physically, it is not at all
surprising that the currents predicted by the DG approach
are completely unphysical and agree much more poorly with
experiment than more common approaches, contrary to the
seemingly original success claimed in Ref. 1. In Sec. VIII
of Ref. 3, we clearly showed that a standard NEGF-DFT
calculation yields currents slightly larger by a factor ∼1.5–3,
while DG’s currents1 represent ∼2%–5% of the experimental
currents of the recent accurate experiment of Ref. 9.

Let us summarize the whole debate. The basic DG idea1

was to minimize the energy and appropriately constrain the
electrons coming from electrodes at the contacts. So, what
is important is to constrain the distributions of incoming
charge carriers correctly. To do this, DG used the WF as
if it were a true momentum distribution. In Refs. 2 and 3,
we demonstrated that constraining the WF yields unphysical
results. But, just within the DG framework, it is illogical to
constrain the WF, which is not a true momentum distribution
since the true momentum distribution (FD) can be used.
Our work4 demonstrated that, by constraining the incoming
carriers using FDs, the DG method again yields wrong
results. DG accept our idea of constraining populations but
claim that we constrained populations of real orbitals, and
therefore incoming and outgoing electrons are concomitantly
constrained, and suggest to use complex orbitals. Above, we
show that, by using just the complex orbitals suggested by DG
(in fact, merely a particular case of I), our demonstration of I
is untouched.

To conclude, we reaffirm the conclusion presented earlier in
Refs. 2–4 on the real issue: the variational method proposed by
DG to study the transport based on a finite cluster decoupled
from environment and constraining incoming carriers at the
contacts is conceptually inadequate.
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4I. Bâldea and H. Köppel, Phys. Rev. B 80, 165301 (2009).
5P. Delaney and J. C. Greer, Phys. Rev. B 84, 037304 (2011).
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