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Comment on “Critical analysis of a variational method used to describe molecular
electron transport”
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Bâldea and Köppel [Phys. Rev. B 80, 165301 (2009)] have generalized our correlated transport formalism [P.
Delaney and J. C. Greer, Phys. Rev. Lett. 93, 036805 (2004)] to constrain the occupancies of single-electron
orbitals, and then claimed that zero conductivity G = 0 in linear response follows and that our method is
invalid. We show here that it was their incorrect choice to constrain the occupancies of real orbitals that resulted
in G = 0. In a scattering state incident to a barrier with values at ±∞ differing by eV , only the incoming
plane wave component has the bias-independent amplitude of 1, while the outgoing has r which depends
on the voltage V and the barrier geometry. Thus, if occupancies are to be constrained to bias-independent
values in transport, those of complex orbitals such as an incoming plane wave on each side are suitable, while
real orbitals such as sines are not. This is true whether constant current constraints are additionally imposed
or not.
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In a recent paper 1 Bâldea and Köppel have analysed the
linear response of our correlated transport formalism,2 which
involves a minimization of an energy functional subject to
constraints. Doubting the validity of using the Wigner function
constraints to apply open-system boundary conditions, these
authors seek to test the variational approach to transport by
changing the Wigner constraints to another form. The steps in
their argument are as follows:

(1) Generalize our formalism from Wigner constraints Fk

to a class C of Hermitian constraints Qk .
(2) Analyze the current I predicted in linear response to the

voltage V imposed.
(3) Make a particular choice QBK

k = α
†BK
k αBK

k ∈ C.
(4) Show that the linear-response matrix elements

〈�n|QBK
k |�0〉 are real.

(5) Deduce that I is zero within linear response.
(6) Conclude that our formalism’s minimization of an en-

ergy functional is inappropriate, for any boundary conditions.
The key step is (3), for we agree that if this choice of QBK

k

in step (3) is made, then the matrix elements of step (4) are
real, and agree that (4) ⇒ (5): in fact, I is zero even beyond
linear response. This Comment shows that the particular QBK

k

chosen in step (3) are not a physically correct choice as they
fail to break time-reversal symmetry. Hence, the conclusion in
step (6) is unjustified.

The deduction (4) ⇒ (5) is simply understood mathemati-
cally as a consequence of time-reversal symmetry T . Expand-
ing the wave function � in the real basis of Slater determinants
�i built from the real molecular orbitals of the junction, we
find that our Hamiltonian H is a real matrix in this basis, as are
the constraint matrices 〈�i |QBK

k |�j 〉 by the same logic as step
(4) and the constraint 〈�|1|�〉 = 1 on the norm. Therefore, if
� ′ minimizes 〈� ′|H |� ′〉 subject to these constraints, so does
� ′∗. The variational approach assumes a unique solution � up
to an overall phase, so we must have � ′∗ = eiθ� ′ for some
real θ . Therefore � = eiθ/2� ′ is purely real and carries no
current [giving step (5)]. In fact, the current will be zero even
beyond linear response: time-reversal symmetry has not been

broken. This deduction remains true if we introduce constraints
〈�|Ii |�〉 = 〈�|Ii+1|�〉,i = 1,2,3 . . ., to ensure the current
operators Ii at grid points xi have the same (unconstrained)
expectation value; if � has constant current I at the xi , then
�∗ will also have constant current −I there; again, if � is a
solution, so is �∗.

Bâldea and Köppel accept that our Wigner constraints
Fk ∈ C as previously applied have complex matrix ele-
ments 〈�n|Fk|�0〉 and nonzero linear-response current. Thus,
choices for constraints having complex matrix elements and
nonzero current are very possible, so it is puzzling that Bâldea
and Köppel select from their generalized set C of constraints
in step (3) creation and destruction operators αBK

k and α
†BK
k

for states |αBK
k 〉, which give the nonphysical result of zero

linear-response current.
Let us examine the |αBK

k 〉 that Bâldea and Köppel choose in
step (3) to get more physical insight into why their current is
zero. In their paper,1 α

† BK
k and αBK

k are creation and destruction
operators for single-electron states |αBK

k 〉 in the left electrode,
which are obtained by diagonalizing their equation (6),

HL = μL

∑
l�qL,σ

a
†
l,σ al,σ −

∑
l�qL,σ

tl,σ (a†
l,σ al−1,σ + a

†
l−1,σ al,σ ) ,

a standard Hamiltonian for a one-dimensional chain with
nearest-neighbor hopping. Here, qL is the index of the right
end of this left electrode, μL is the on-site energy, tl,σ is the
hopping matrix element, and σ sums over spin. Their equation
(21) again shows that the α

†BK
k and αBK

k create and destroy the
eigenstates of HL; they write

HL =
∑

k

εkα
†
kαk,

where k runs over the eigenstates of HL, with eigenvalues εk .
A similar argument applies to the right electrode Hamiltonian
HR , with the replacements l → r,μL → μR and l � qL −→
r � qR . The full Hamiltonian of their paper also has a
central region where the electron-electron interaction may
be present, and hopping terms between these three regions.
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Our discussion will confine itself to the |αBK
k 〉 of the left

electrode for simplicity, as the extension to both electrodes
is straightforward.

The eigenvalues of such a Hamiltonian HL, either semi-
infinite or finite, as in our calculations and those of Bâldea
and Köppel, are singly degenerate and the eigenvectors can
be chosen to be purely real. For the finite chain that Bâldea
and Köppel consider, the discrete eigenstates go to the form
αBK

k (x) = sin kπ
L

x, k = 1,2, · · ·, when the density of sites
approaches infinity over a left electrode covering [0,L]. Real
wave functions carry no current, and their choice may raise
some warning bells in a transport scheme.

The action of QBK
k = α

†BK
k αBK

k on a one-electron wave
function ψ(x) is straightforward:

[
QBK

k ψ
]

(x) = αBK
k (x)

∫
αBK∗

k (x ′)ψ(x ′) dx ′ . (1)

The formula for action on an m-electron wave function
�(x1, . . . ,xm) is a simple extension:
[
QBK

k �
]
(x1, . . . ,xm)

=
∑

i=1,m

αBK
k (xi)

∫
dx ′

i αBK∗
k (x ′

i)�(x1, . . . ,x
′
i , . . . ,xm), (2)

that is,

QBK
k = α

†BK
k αBK

k =
∑

i=1,m

∣∣αBK
k

〉
i

〈
αBK

k

∣∣
i
, (3)

where each projector |αBK
k 〉i〈αBK

k |i acts on the ith coordinate.
The QBK

k operators simply count the occupation of these
real states |αBK

k 〉. Bâldea and Köppel constrain this occu-
pation number under application of a voltage: another real
operator.

The matrix element of these counting operators QBK
k =

|αBK
k 〉〈αBK

k | needed in linear response is simply

〈�n|QBK
k |�0〉 = m

〈
�n

∣∣αBK
k

〉
1

〈
αBK

k

∣∣
1�0

〉
(4)

= m

∫
dx1dx2 · · · dxm �∗

n (x1,x2, . . . ,xm)

×αBK
k (x1)

∫
dx ′

1 αBK
k

∗
(x ′

1)�0(x ′
1, . . . ,xm), (5)

where in the first line we use the antisymmetry of the wave
functions, and in the next lines the definition of |αBK

k 〉1〈αBK
k |1.

Here �0 and the �n are the ground and excited states of
the full system of left electrode, centre, and right electrode,
and may be sums of many determinants �i if there is electron
correlation. Bâldea and Köppel choose �0 and the �n to be
real functions, as is standard, but then all quantities in Eq. (5)
are real and we see clearly why step (4) of their argument is
then true: the orbitals whose occupations they constrain are
real.

The reason why Bâldea and Köppel’s choice of |αBK
k 〉

gives zero current I [their step (5)] is now made physically
clear. They have decided to constrain the occupations of real
states of the left electrode of approximate form sin kπ

L
x, which

gives real matrix elements 〈�n|αBK
k 〉1〈αBK

k |1�0〉. However,
in transport only the occupations of the incoming states are
known beforehand, i.e. on the left, states of the form eiκx

with κ > 0. The occupations of the outgoing states eiκx

with κ < 0 are what are to be worked out by the transport
calculation and will generally be different. In fact, it is
the imbalance between these two sets of occupations that
gives the net current, as Fig. 1 (bottom) of Ref. 2 makes
clear.

This is why we were careful in our transport formal-
ism to only constrain the Wigner function of the incom-
ing states, i.e. f (qL,p > 0) on the left and f (qR,p <

0) on the right. The Wigner distributions allow us to
select between the incoming and outgoing states and it
is only the incoming, propagating states that are con-
strained. Notice that under time reversal T : � −→ �∗, we
have f�(qL,p) = 〈�|F (qL,p)|�〉 −→ 〈�∗|F (qL,p)|�∗〉 =
〈�|F (qL, − p)|�〉 = f� (qL,−p), where F (q,p) is the op-
erator for which 〈�|F (qL,p)|�〉 gives the Wigner function
f�(q,p); that is, time-reversal reflects velocities. Thus, a
contraint on only the incoming electrons explicitly breaks
time-reversal symmetry T and is necessary to deduce
nonzero current in an open quantum system [see Fig. 7(c)
of Ref. 3]. In constraining the occupations of states of
the form sin κx = (e+iκx − e−iκx)/2i, Bâldea and Köppel
have constrained both incoming and outgoing electrons
symmetrically. This does not allow an imbalance of in-
coming and outgoing electrons (a net current) to build
up. Their inappropriate boundary conditions correspond to
Figs. 7(a) and 7(b) of Ref. 3.

Bâldea and Köppel seem to have realized some of this
inconsistency in an Erratum to their article, where they state4

“Here and whenever related to boundary conditions · · ·, the
label κ obviously refers to electrons flowing from electrodes
into the device.”

However, it is impossible to constrain only the electrons
flowing into the device with the real states |αBK

k 〉 chosen by
the authors. Instead, states more like |αDG

κ 〉 = e+iκx for κ > 0
must be constrained. The key point is that the matrix elements
are now

〈�n|QDG
κ |�0〉 = m

〈
�n

∣∣αDG
κ

〉
1

〈
αDG

κ

∣∣
1�0

〉

= m

∫
dx1 . . . dxm�∗

n (x1, . . . ,xm)

×eiκx1

∫
dx1e

−iκx ′
1�0(x ′

1,x2, . . . ,xm), (6)

which are generally complex. In summary, having generalized
our formalism to a much larger set C of possible Hermitian
constraints Qk , Bâldea and Köppel have not realized that
not all the elements of the set are physically reasonable
constraints. It is because they make the unsuitable choice in
step (3) of QBK

k , which count the occupation of real orbitals,
that steps (4) and (5) follow. Physically reasonable constraints
QDG

k can be picked from C, but, when one does so, the matrix
elements in step (4) become complex, and so the rest of their
argument becomes invalid: their deduction in step (5) that I

is zero within linear response is incorrect and their conclusion
in step (6) that our formalism’s energy minimization is
inappropriate does not follow.

While we think that Bâldea and Köppel’s idea to constrain
populations |αk〉〈αk| is an interesting alternative to the Wigner
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function, our analysis makes clear that it is essential to choose
complex states αk(x). Otherwise, time-reversal symmetry is

not broken by the imposition of the constraints, as is necessary
to open the system.3
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