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Compressibility of interacting electrons in bilayer graphene
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Using the renormalized-ring-diagram approximation, we study the compressibility of the interacting electrons
in bilayer graphene. The chemical potential and the compressibility of the electrons can be significantly altered
by an energy gap (tunable by external gate voltages) between the valence and conduction bands. For zero gap
and a typical finite gap in the experiments, we show both systems are stable.
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Bilayer graphene has attracted considerable attention be-
cause of its promised application in electronic devices.!”'? In
contrast to the Dirac fermions in monolayer graphene, the
energy bands of the free electrons in bilayer graphene are
hyperbolic and gapless between the valence and conduction
bands.’> Most important, an energy gap opening between the
valence and conduction bands can be generated and controlled
by external gate voltages. At low carrier doping, because
the energy-momentum dispersion relation around the Fermi
level is relatively flat, the Coulomb effect is expected to
be significant in the interacting electron system of bilayer
graphene. The Coulomb effect has been studied in a number
of theoretical works using the Hartree-Fock (HF) and random
phase approximations.''~'* One of the thermodynamic quan-
tities directly reflecting the Coulomb effect is the electronic
compressibility. Recently, this quantity has been measured by
experiments.’>~* For timely coordinating with the experimental
measurements, it is necessary to theoretically study the
combined effect of Coulomb interactions and the gap opening
in the compressibility with a more realistic model.

In this work, using the renormalized-ring-diagram ap-
proximation (RRDA),?*?! we study the Coulomb effect in
the compressibility of the interacting electrons in bilayer
graphene. The chemical potential and its derivative with
respect to the carrier density are calculated for systems of
zero gap and a typical gap in the existing experiments. Though
a finite-gapped system is more perturbable by the Coulomb
interaction than the zero-gapped one at low carrier doping and
low temperature, we show both systems studied here are stable.

The atomic structure of bilayer graphene is shown in Fig. 1.
The two sublattices in each layer are denoted by A (open)
and B (solid) atoms, respectively. The interlayer distance is
c =334 A ~ 1.4a, where a ~ 2.4 A is the lattice constant
of monolayer graphene (the distance between two nearest A
atoms). The energy of electron hopping between the nearest-
neighbor (NN) carbon atoms in each layer is ¢ ~ 2.82 eV,??
while the interlayer NN hopping is #; & 0.39 eV.?

The Hamiltonian describing the electrons is given by

PACS number(s): 73.22.Pr

neutralizing background), and v;; is the Coulomb interaction
between electrons at sites i and j. Here A is the energy gap
parameter, which is a consequence of the potential difference
between the top and back gates (attached to the top and back
layers, respectively). The model is restricted to NN hopping
within the same layer and between the adjacent sites on top
and back layers as shown in Fig. 1. The Coulomb interaction
is given by v;; = €?/er;; for r;; # 0 with € ~ 4, the dielectric
constant of the high-frequency limit of the system; r;; here is
the distance between two electrons at sites i and j in the bilayer
system. For onsite Coulomb interaction U = v;;, we take U
in our calculation as U = 2vag, where AB denotes the NN
sites in the same layer. The dimensionless Coulomb coupling
constant is given by e?/eat ~ 0.5. As described by Eq. (1), we
here consider only the charge-charge interactions. The onsite
interaction may lead to the antiferromagnetic correlation. We
here neglect it since it is not important in graphene.

By defining the doped electron concentration é per carbon
atom, we have n = 1 + §. Under the transformation § — —4
and ¢, <> £c!  for electrons at site A (B), H is unchanged.
Therefore, our éystem satisfies the particle-hole symmetry.
Furthermore, K = H — M(N — Np) (with N the operator of
the total number of electrons and N, the total number of
lattice sites and thereby N — Ny as the total number of doped
electrons) is also unchanged under the above transformation
and u — —p. Thus, the chemical potential p is an odd
function of §.

To proceed, we begin with the Green’s function G
defined as

GG, jt—1)= _<TrCia(t)C;U(t/))s (©))

T T T i T : T :
where C;, = (¢414:Cp16+Ca2joChajo) With €405, CrEAting
an electron of spin o at site A (B) of the uth (= 1,2 for
top and back, respectively) layer of the jth unit cell. In the
momentum-frequency space, G is expressed as

Gk,iwe) = liwg — & — T(k,iwy)] ™" 3)
t 1
H:Zejnj_Ztijciacj5+528nivij8nj’ (1) with
J ijo ij
. — M €k 0 0
where €; = A for the top (back) layer, n; is the electron
. . . e . Gz —n 151 0
density at site j, c;, creates an electron at site i with spin & = , 4)
0, énj =n; —n with n the average occupation number of 0 ho =K &
electrons per site (which is also the charge number of the 0 0 €& U
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FIG. 1. Structure of Bernal stacking bilayer graphene. The ener-
gies of intra- and interlayer electron hopping between the A (open)
and B (solid) atoms are given by ¢ and #,, respectively.

where w, = (2¢ + 1) T is the fermionic Matsubara frequency
with £ as an integer number and 7 the temperature, € =
fol1 + exp(—ik,) + exp(—ik,)], u is the chemical potential,
and X (k,iwy) is the self-energy. Under the RRDA, X is given
by the functional derivative of the “free energy” functional &
with respect to G shown diagrammatically in Fig. 2,

T =380/5G. Q)

In Fig. 2, each bubble is composed by two renormalized
Green’s function G’s. The last terms in the expression of
® and ¥ stem from the additional term in writing the
product of two density operators appearing in the interaction
term of Eq. (1) in the normal order of electron operators:
cjac,-gc}acjg = cjac}acj(,cw + Bijcjgcja. Note that Eq. (5) is
a4 x 4 matrix equation. In terms of G, the elements of X are
expressed as

. T . . .
Euv(kvlwf) = _M Z G;w(k —q,lwg — lvm)W;w(CIlem)

q.m

+68,,U/2,

FIG. 2. (Color online) Diagrammatic expressions for “free en-
ergy” functional ® and self-energy X. The solid line represents the
Green’s function and the wavy line is the Coulomb interaction. The
last terms stem from the additional term in writing the product of two
density operators in the normal order of electronic operators. U is the
onsite Coulomb interaction.
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where M = Ny/4 is total number of unit cells in the system,
v, 18 the bosonic Matsubara frequency, and W,,,(g,iv,,) is an
effective interaction. The matrix form of W is given by

W(g,ivm) = [1 — v(@)x(q,iva)]  v(q)
with

. 2T . . )
mwmdwa==E;%;ChwawoGwAk—Qsz—lwn

and v(qg) is the Fourier component (matrix form) of the
Coulomb interaction. In the present lattice model, v(g) cannot
be expressed explicitly. A similar calculation of v(g) for
single-layer graphene is given in Ref. 21. The chemical
potential p is determined by

2T
n=— > TrG(k.iey) explion), (6)
0 ke

where 7 is an infinitesimally small positive constant. The
Green’s function so determined satisfies the microscopic
conservation laws.?*

The behavior of the chemical potential is closely related
to the compressibility « of the doped carrier system. It is

defined as
1 [on )
k=—|(—1 .
n2\op/;

Its inverse (du/on)r can be calculated by the numerical
derivative of ; determined by Eq. (6) with respect to n. Clearly,
when (dp/0n)7 goes to zero, k becomes infinity, implying an
inhomogeneity tendency in the system.

Figure 3 shows the chemical potential i as a function of
§ for the systems of A =0 (left) and A/t = 0.02 (right)
at various temperatures. The results of the RRDA are com-
pared with that by the self-consistent Hartree-Fock (SCHF)
approximation (which is obtained from & by neglecting all
other ring terms except the first one) for the zero-gapped
system. The chemical potential x for the zero-gap case goes to
zero as 8§ — 0 because of the particle-hole symmetry. The
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FIG. 3. (Color online) Chemical potential © as a function of
electron doping concentration § at various temperatures calculated
by the SCHF approximation and the RRDA for zero-gapped systems
(left) and by the RRDA for systems of A/t = 0.02 (right).
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FIG. 4. (Color online) Plot of (du/dn)r as a function of doping
concentration § at various temperatures obtained by the SCHF
approximation for A = 0. The inset shows the result at 7'/t = 1072
for a wide range of doping.

overall behaviors of u given by the RRDA for a system
of A =0 at various temperatures are smooth and seem not
much different from each other. Physically, at low doping,
the electrons in the valence band can be thermally excited to
high levels in the conduction band without significant change
in the chemical potential because the density of states is
symmetric about the touch point of the valence and conduction
bands. The same feature is seen in the SCHF approximation.
However, in contrast to the smooth behavior given by the
RRDA, the curve corresponding to lower temperature given
by the SCHF approximation is twisty in a region close to
zero doping. This behavior will result in a singularity in the
compressibility. On the other hand, for the gapped system,
the chemical potentials are indistinguishable only at very
low temperatures. At low temperature, p is finite at § = 0.
For a free electron system, u approaches A as § — 07 and
T — 0. The limit here is less than A because of interelectronic
Coulomb interactions. Since the limits § — 0F are different,
there is a discontinuity in u at § = 0 from the hole side to the
electron side. With increasing temperature, p is suppressed
due to thermal excitations between the valence and conduction
bands. The thermal effect is significant at lower carrier doping
since this is where the Fermi energy is lower. When the Fermi
energy is close to the bottom of conduction band, the electrons
in the valence band can be easily thermally excited to the
states above the Fermi level, resulting in the lowering of the
chemical potential. At high temperature, i at § = 0™ is bound
from below, . > 0, because of the particle-hole symmetry.
For illustrating the RRDA result, we first show in Fig. 4 the
result of the SCHF approximation for (d,¢/9n)r as a function
of § for A = 0 at various temperatures. At low temperature,
there is a peak at § = 0. This is because the chemical potential
at finite doping is suppressed by the Coulomb interactions but
it is not changed at § = 0 due to the particle-hole symmetry.
At low but finite doping close to 6 = 0, there is a sharp
decrease in (dpu/0n)r as T — 0. This stems from the twisty
behavior in p. At T/t = 107%, (d;/dn)r becomes negative
for the electron or hole concentration within a small region. At
T =0, the result (du/0n)r < 0 at low doping was predicted
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by Kusminskiy et al. using the perturbation HF approach on
a continuum model.”> The compressibility is singular at the
doping where (d1/0n)r = 0. This is a strong Coulomb effect
at low doping where the Fermi level of the electrons is low.
This is similar to the prediction of the Wigner crystallization
in a two-dimensional electron gas at low density. The inset
shows the result at 7/t = 102 for a wide range of doping.
All curves approach the same behavior at large doping as the
oneat T/t =102,

The differences between Ref. 25 and the SCHF calculation
here are the following:

(1) Reference 25 uses the perturbation HF in which the
Green’s function is not renormalized as is done in the SCHF
approximation.

(2) The lattice model here is different from the continuum
model adopted in Ref. 25. In the continuum model, the intra-
and interlayer interactions are given by v(g) = 2we?/q and
2me? exp(—cq)/q, respectively, with a cutoff ¢.. Because of
this cutoff, the interactions in real space are not the Coulomb
form e?/ r;; that is used here. The compressibility « should
sensitively depend on the interactions.

(3) By the lattice model, the particle-hole symmetry is
satisfied. On the other hand, there is no such symmetry in
the continuum model.

(4) The present SCHF calculation is for finite temperature,
which is different from the Ref. 25 calculation that is
performed for T = 0.

In general, both HF and SCHF approximations for the
systems of long-range Coulomb interactions overemphasize
the strong-coupling effects. More terms arising from the
interactions should be included in the free energy functional. In
the RRDA, all the ring terms that are the most long-wavelength
divergent terms are summed over in ®. As aresult, the effective
interactions between electrons are weakened from the bare
Coulomb one. Shown in Fig. 5 is (du/0n)7 obtained by the
RRDA as a function of § for the zero-gap system at various
temperatures. The results given in Fig. 5 are quite different
from that in Fig. 4. At temperatures downto 7/t =5 x 1074,
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FIG. 5. (Color online) Plot of (du/dn)r as a function of doping
concentration § at various temperatures obtained by the RRDA for
A = 0. The inset shows the result at 7/t = 1072 for a wide range of
doping.
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FIG. 6. (Color online) Plot of (du/dn)r as a function of doping
concentration § at various temperatures obtained by the RRDA for a
A = 0.02 gapped system.

(du/on)r monotonically decreases with the electron or hole
doping concentration. At T/t < 2 x 107, the Coulomb sup-
pression shows up near the central peak similarly as in Fig. 4.
But the deviation from the monotonically decreasing behavior
is much smaller than that given by the SCHF approximation.
From the low-temperature behaviors of (du/dn)7, we deduce
that it is positive at 7 = 0 and the system is stable.

The results for a gapped system of typical A/t = 0.02
as in experiments are depicted in Fig. 6. By comparing to
the zero-gap case, the behavior of (du/dn)r is delicate. At
temperatures higher than the gap, because there are significant
excitations between the valence and conduction bands, zero-
and finite-gapped systems are not so different. However, at low
temperature, (du/dn)r is suppressed much in a wide doping
range around § = 0. This is because of the special conduction
band structure of the gapped system. For A = 0, the band
bottom is parabolic. At finite A, however, the location of the
minimum of the conduction band (for electron doping) is a
ring surrounding the Dirac point. In a region encircling the
ring, the energy band is nearly flat. Therefore, at low doping,
the energy of electrons is approximately dispersionless. For
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such a dispersionless band, the free electron system is more
perturbable under the Coulomb interactions. Even though the
quantity (du/dn)r is considerably suppressed, by carefully
looking at its behavior at low T, it is found to be positive in
the limit 7 — 0.

The (du/dn)r < 0 instability was not observed in recent
experiments on compressibility.> In the experiment of Ref. 2,
the quantity (d/dn)r is observed as monotonically decreas-
ing on both sides of the electron and hole doping with a central
peak around the neutral point. In Ref. 4, the observation at zero
magnetic field shows that the central peak in (d/9n)r is very
sharp and the quantity then varies nearly flat within a wide
range of electron and hole doping. While in the experiment of
Ref. 3, the structure of the central peak-dip-hump in (dp/9n)r
as a function of doping is observed (at zero magnetic field).
Though the experiments do not quantitatively agree with each
other, the common fact is (du/dn)r > 0. As for the dip
or the flat region near the central peak in (dp/dn)r, from
the opinion of the present calculation, they may stem from
the Coulomb suppression effect, as studied here. However, the
calculation given here is not in quantitative agreement with
the experimental results. So far there is no theory that can
quantitatively explain the experiments. To solve the problem,
in addition to the long-range Coulomb interaction, other kinds
of effects may need to be taken into account.

In summary, we have investigated the compressibility of
the interacting electrons in bilayer graphene using the RRDA.
For the zero-gap system, and comparing to the result from the
SCHEF approximation, the compressibility given by the RRDA
is positive. The homogeneous system with zero gap is therefore
stable. The system with a finite gap is more perturbable by the
Coulomb interaction than the one with zero gap. For the typical
gapped system as investigated in experiments, however, we
find that the system is stable as well.
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