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A quantum kinetic theory of direct and phonon-mediated indirect optical transitions is developed within the
framework of the nonequilibrium Green’s function formalism. After validation against the standard Fermi golden
rule approach in the bulk case, it is used in the simulation of photocurrent generation in ultrathin crystalline
silicon p-i-n junction devices.
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I. INTRODUCTION

Quantum effects in semiconductor nanostructures are
widely exploited in optoelectronic devices such as light
emitting diodes or lasers. With the increasing demand of
renewable energy supply, high efficiency photovoltaic devices
were proposed, which also make use of semiconductor
nanostructures.1,2 However, these devices are based not on
the standard III-V direct band gap materials conventionally
used in optoelectronics but on silicon, which is most common
in solar cell applications. It was shown that even though the
suppression of direct optical transitions is somewhat relaxed
in low-dimensional silicon structures, it is the phonon-assisted
indirect processes that dominate the optical response,3 and thus
a suitable theoretical description of the photovoltaic behavior
needs to include these processes responsible for energy and
momentum transfer, in addition to the general requirements
of a quantum photovoltaic device, which were addressed in
Ref. 4. As an extension of this previous work, the present paper
presents a microscopic description of phonon-mediated optical
transitions in indirect semiconductor nanostructures, based on
the nonequilibrium Green’s function (NEGF) formalism and
thus compatible with advanced quantum transport theories.

The paper is organized as follows. After the derivation
of the general expressions for optoelectronic rates within the
nonequilibrium Green’s function theory, these are applied to
the case of a direct gap bulk semiconductor and compared
to the standard Fermi golden-rule (FGR) result. Next, the
description of phonon-mediated indirect transitions within the
NEGF formalism is discussed and the resulting expression
for the generation rate again compared to the FGR, both in
an analytical approximation and a numerical computation for
a simple effective mass model of bulk silicon. Finally, the
theory is extended to thin films in order to model photocurrent
generation in ultrathin indirect gap semiconductor p-i-n
junctions, which form important building blocks of future
nanophotovoltaic devices.

II. NEGF THEORY

In order to be able to describe both optical transitions and
inelastic quantum transport in semiconductor nanostructures
within the same microscopic picture, a theoretical framework
based on the NEGF formalism was developed in Ref. 4.
Before considering the specific case of photogeneration in
indirect semiconductors, the aspects of the theory related

to interband transitions will be outlined below in a general
formulation, which relies on the extensive work on similar
systems investigated with focus on their light-emitting and
lasing properties.5–12

A. Interband generation and recombination rates

The macroscopic equation of motion for a photovoltaic
system is the continuity equation for the charge carrier density

∂tρc(r) + ∇ · jc(r) = Gc(r) − Rc(r), c = e,h, (1)

where ρc and jc are charge carrier and particle current density,
respectively, Gc the generation rate and Rc the recombination
rate of carrier species c.13 The microscopic version of this
equation in terms of NEGF corresponds to14,15 (1 ≡ {r1,t1 ∈
C})

lim
2→1

{
ih̄

(
∂

∂t1
+ ∂

∂t2

)
G(1,2) + [H0(r1) − H0(r2)]G(1,2)

}

= lim
2→1

∫
C
d3[�(1,3)G(3,2) − G(1,3)�(3,2)], (2)

where H0 is the Hamiltonian of the noninteracting electronic
system, G is the electronic nonequilibrium Green’s function
defined on the Keldysh contour C, and � is the self-energy
encoding the interaction of the electronic system with phonons,
photons, and itself, i.e., the scattering processes that may
give rise to intra- or interband transitions. In steady state, (1)
becomes

∇ · jc(r) = Gc(r) − Rc(r), c = e,h. (3)

In the microscopic theory, the divergence of the electron
(particle) current density corresponds to the limit 1 → 2 of
the right-hand side in (2),16

∇ · j(r) = −2
∫

dE

2πh̄

∫
d3r ′[�R(r,r′; E)G<(r′,r; E)

+�<(r,r′; E)GA(r′,r; E) − GR(r,r′; E)

×�<(r′,r; E) − G<(r,r′; E)�A(r′,r; E)]. (4)

If the energy integration is taken over the range of all
bands connected by the interband scattering process, i.e., both
valence and conduction bands, the resulting divergence should
vanish, if the self-energies are chosen properly, ensuring the
conservation of the overall current, which is nothing else
than the corresponding formulation of the detailed balance
requirement. If the integration is restricted to one of the bands
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(e.g., B = valence band or conduction band), the above equation
corresponds to the microscopic version of (3) and provides on
the right-hand side the total local interband scattering rate,

Rrad(r) ≡ R(r) − G(r) (5)

= −2
∫

B(r)

dE

2πh̄

∫
d3r ′[�R(r,r′; E)G<(r′,r; E)

+�<(r,r′; E)GA(r′,r; E) − GR(r,r′; E)

×�<(r′,r; E) − G<(r,r′; E)�A(r′,r; E)]. (6)

Depending on the nature of the interaction described by �,
the scattering process may be highly nonlocal, in which case
the above rate contains contributions from a large volume. The
total interband current is found by integrating the divergence
over the active volume and is equivalent to the total global
transition rate and, via the Gauss theorem, to the difference
of the interband currents at the boundaries of the interacting
region. Making use of the cyclic property of the trace, it can
be expressed in the form

Rrad = 2
∫

d3r

∫
B(r)

dE

2πh̄

∫
d3r ′[�<(r,r′; E)G>(r′,r; E)

−�>(r,r′; E)G<(r′,r; E)], (7)

with units [Rrad] = s−1. Within the general (basis-
independent) NEGF picture, the right-hand side of Eq. (7)
can be interpreted as follows: h̄−1�<(>)(E) represents the rate
at which charge carriers with energy E may leave (occupy) a
state at that energy, whereas G>(<)(E) quantifies the energy
resolved probability that the system can accept (donate) a
particle of energy E, i.e., that there is an unoccupied (occupied)
state at the right energy. The first term thus represents the total
inscattering rate, while the second term provides the total
outscattering rate.

If we are interested in the interband scattering rate, we
can neglect in Eq. (7) the contributions to the self-energy
from intraband scattering, e.g., via interaction with phonons,
low-energy photons (free carrier absorption), or ionized impu-
rities, since they cancel on energy integration over the band.
However, if self-energies and Green’s functions are determined
self-consistently, as they should in order to guarantee current
conservation, the Green’s functions are related to the scattering
self-energies via the Dyson equation for the propagator,

GR(A)(r1,r1′ ; E) = G
R(A)
0 (r1,r1′ ; E)

+
∫

d3r2

∫
d3r3G

R(A)
0 (r1,r2; E)

×�R(A)(r2,r3; E)GR(A)(r3,r1′ ; E), (8)

and the Keldysh equation for the correlation functions,

G≶(r1,r1′ ; E) =
∫

d3r2

∫
d3r3G

R(r1,r2; E)

×�≶(r2,r3; E)GA(r3,r1′ ; E), (9)

and will thus be modified due to the intraband scattering. This
means that in the case of self-consistent solutions, it is in
general not possible to completely separate the effects of the
different scattering processes, nor to isolate coherent from
incoherent transport.

In the remainder of the paper, the general theory of
interband transitions outlined above will be applied to optical
interband transitions in direct and indirect semiconductors. For
computational purposes and to ease comparison with existing
descriptions, the theory will be reformulated using a simple
effective mass band basis for completely homogeneous bulk
systems and for inhomogeneous thin film devices.

B. Bulk semiconductor

For a homogeneous bulk system, the field operators for
carriers in band b can be written in the Bloch state basis,

�̂b(r,t) =
∑

k

ψbk(r)ĉbk(t). (10)

The expression for the total radiative rate of carriers in band
b is simplified by using the Fourier space representation of
Green’s functions and self-energies (O = G,�)

Ob,b′ (r,r′; E) =
∑

k

ψbk(r)Ob,b′ (k; E)ψ∗
b′k(r′), (11)

where Ob,b′ (k; E) is the steady-state Fourier-transform of the
real-time Keldysh components of the corresponding contour-
ordered operator averages, e.g., the Green’s function

Gb,b′ (k; t − t ′) = 1

ih̄
〈T̂C{ĉbk(t)ĉ†b′k(t ′)}〉. (12)

Inserting these expressions in (7), the band-resolved rates are
obtained as

Rrad,b = 2
∫

dE

2πh̄

∑
k

∑
b′

[�<
b,b′ (k; E)G>

b′,b(k; E)

−�>
b,b′ (k; E)G<

b′,b(k; E)]. (13)

In the following, the off-diagonal terms will be neglected
(Ob ≡ Ob,b), which means that only incoherent interband and
subband polarization is considered.

1. Direct interband transitions

Inserting the electron-photon self-energy for a two-band
model of a direct semiconductor (Appendix A) and neglecting
intraband processes (free-carrier absorption and emission), the
expression for the interband absorption rate becomes (in the
following, the energy integration is restricted to the conduction
band)

Rabs = 2
∫

dE

2πh̄

∑
k

∑
λ,q

∣∣Mγ
cv(k,λ,q)

∣∣2
N

γ

λ,q

×G<
v (k; E − h̄ωλq)G>

c (k; E), (14)

with M
γ
cv the optical matrix element (Appendix A) and N

γ

λ,q
the occupation of the photon modes. The latter is obtained
from the modal photon flux via N

γ

λ,q = φ
γ

λ,qV/c̃, where c̃ is
the speed of the light in the active medium. The modal photon
flux in turn is given by the modal intensity of the EM field as
φ

γ

λ,q = I
γ

λ,q/(h̄ωλq). Similarly, stimulated interband emission
reads

Rem,st = 2
∫

dE

2πh̄

∑
k

∑
λ,q

∣∣Mγ
cv(k,λ,q)

∣∣2
N

γ

λ,q

×G>
v (k; E − h̄ωλq)G<

c (k; E), (15)
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while spontaneous interband emission is expressed as

Rem,sp = 2
∫

dE

2πh̄

∑
k

∑
λ,q

∣∣Mγ
cv(k,λ,q)

∣∣2

×G>
v (k; E − h̄ωλq)G<

c (k; E). (16)

The net absorption Rabs,net = Rabs − Rem,st of photons in mode
(λ,q) is thus given by

Rabs,net(λ,q) = 2
∫

dE

2πh̄

∑
k

∣∣Mγ
cv(k,λ,q)

∣∣2
N

γ

λ,q

× [G<
v (k; E − h̄ωλq)G>

c (k; E)

−G>
v (k; E − h̄ωλq)G<

c (k; E)]. (17)

Conventionally, the rates for absorption and emission
are calculated based on FGR, corresponding to the Born
approximation within first-order perturbation theory. It is thus
instructive to compare the above expressions with the FGR
rate for net direct interband absorption,17

RFGR
abs,net(λ,q) = 2

∑
k

2π

h̄
|Mγ (k,λ,q)|2Nγ

λ,q

× δ(εc(k) − εv(k) − h̄ωλq)[fv(k) − fc(k)].

(18)

Here, the absorbing (bulk) material is described by the disper-
sion relations εb(k), b = c,v, and assumed to be in a quasiequi-
librium state with occupation described by the Fermi function
fb(E) = (exp[β(E − μb)] + 1)−1, β = (kBT )−1, where μb,
b = c,v are global quasi-Fermi levels.

In order to reproduce the FGR result from the more general
expression in terms of Green’s functions, the unperturbed (i.e.,
noninteracting) equilibrium form of the latter needs to be used,
which corresponds to the expressions for free fermions in
equilibrium,

G
<(0)
b (k; E) = 2πifb(E)δ(E − εb(k)), (19)

G
>(0)
b (k; E) = 2πi[fb(E) − 1]δ(E − εb(k)). (20)

Introducing these expressions in (17) and carrying-out the
energy integration reproduces the FGR expression (18).

To estimate the deviation of the rate from the FGR result
for self-energies beyond the first Born approximation, the FGR
rate is first used to derive the standard expression for the bulk
absorption coefficient of the two-band effective mass model,
which amounts to

α(h̄ωγ ) = Rabs,net(h̄ωγ )/V

S(h̄ωγ )/h̄ωγ

, (21)

where S(h̄ωγ ) is the monochromatic energy flux density of the
EM field (i.e., the absolute value of the Poynting vector) given
by

S(h̄ωγ ) = ργ (h̄ωγ ) h̄ωγ εbc̃

∫
d�

4π

∑
λ

N
γ

λ (h̄ωγ ,�), (22)

where

ργ (h̄ωγ ) = (h̄ωγ )2

2π2(h̄c̃)3
(23)

is the photonic density of states of an optically isotropic
medium with refractive index nb = √

εb and corresponding

speed of light c̃ = c0/n. With the standard approximation
of isotropic and momentum-independent optical matrix ele-
ments, i.e., |Mγ

cv(k,λ,q)|2 ≈ M̄γ
cv(h̄ωγ ), the absorption rate is

rewritten as follows:

Rabs(h̄ωγ )/V = M̄γ
cv(h̄ωγ )Jcv(h̄ωγ )ργ (h̄ωγ )

×
∫

d�

4π

∑
λ

N
γ

λ (h̄ωγ ,�) (24)

= M̄γ
cv(h̄ωγ )Jcv(h̄ωγ )S(h̄ωγ )/(h̄ωγ εbc̃), (25)

which provides the bulk absorption coefficient

α(h̄ωγ ) = M̃γ
cv(h̄ωγ )Jcv(h̄ωγ ), (26)

with M̃γ
cv = M̄γ

cv/(εbc̃). The difference between FGR and
NEGF approaches concerns the term Jcv(h̄ωγ ), which in
the FGR case takes the specific form (using the continuum
approximation

∑
k → V

(2π)3

∫
d3k)

J FGR
cv (h̄ωγ ) = 2π

h̄

2

(2π )3

∫
d3kδ[εc(k) − εv(k) − h̄ωγ ]

× [fv(k) − fc(k)]. (27)

If the occupation depends only marginally on crystalline
momentum, the above expressions are related to the joint
density of states Jcv with suitable occupation,

J FGR
cv (h̄ωγ ) = 2π

h̄
Jcv(h̄ωγ )(fv − fc), (28)

Jcv(h̄ωγ ) = 2

(2π )3

∫
d3kδ[εc(k) − εv(k) − h̄ωγ ]. (29)

In the NEGF case, joint density of states and occupation cannot
be separated but are both contained in the Keldysh Green’s
functions:

J GF
cv (h̄ωγ ) = 2

(2π )3

∫
d3k

∫
dE

2πh̄
[G<

v (k; E − h̄ωγ )G>
c (k; E)

−G>
v (k; E − h̄ωγ )G<

c (k; E)] (30)

= P̂cv,0(0,h̄ωγ ), (31)

which via P̂cv,0 = P>
cv,0 − P<

cv,0 is related to the Keldysh
components of the free-carrier interband polarization function

P≶
cv,0(q,E) = 2

(2π )3

∫
d3k

∫
dẼ

2πh̄
G≶

c (k; Ẽ)

×G≷
v (k − q; Ẽ − E). (32)

This expression is valid in any situation that can be described in
terms of single-particle Green’s functions. The deviations from
the FGR result are marginal in the quasiequilibrium case and in
absence of further interactions beyond electron-light coupling
and of sources of nonequilibrium, which both modify the
Green’s functions, causing them to differ from the expressions
given in Eqs. (19) and (20). It is straightforward to show that
inserting the latter expressions in (30) reproduces (27), and for
the special case of spherical bands, the joint density of states
is given by the well-known analytical expression

J dir
cv (h̄ωγ ) = (2m∗

r )
3
2

π2h̄3

√
Eγ − Eg, (33)

where m∗
r is the reduced effective mass and Eg is the direct

band gap.
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FIG. 1. (Color online) Possible excitation pathways for optical
interband transitions in indirect semiconductors on the example of
bulk silicon.

2. Phonon-assisted interband transitions

Even in the case of a direct semiconductor discussed above,
the presence of phonons can have a considerable effect on
the optical transition rates as new excitation paths become
available, i.e., the phonons strongly increase the number of
initial-final state pairs separated by a given transition energy.
However, comparing to the direct transition, this enhancement
of the joint density of states is overcompensated by the fact that
the transitions become much more unlikely due to the need for
coupling to a suitable phonon and the detour via the virtual
state. As a consequence, phonon-assisted transitions may be
neglected in direct bulk semiconductors where crystalline
momentum is conserved. Obviously, the situation differs
completely in indirect bulk semiconductors, where no direct
transitions are possible. There, at lowest nonvanishing order,
four different excitation processes exist (Fig. 1):

S1+ : 1. phonon absorption, 2. photon absorption,
S1− : 1. phonon emission, 2. photon absorption,
S2+ : 1. photon absorption, 2. phonon absorption,
S2− : 1. photon absorption, 2. phonon emission.

To exemplify the inclusion of the phonon scattering in the
NEGF description of optical interband transitions, we will in

GΓv Σeγ
Γv

VB (Γv) states

Σeγ
Γc

GΓc Σep,Γ−X
Γc

”virtual” CB (Γc) states

Σep,Γ−X
Xc

GXc CB (Xc) states

FIG. 2. Self-consistent computation of Green’s functions and
scattering self-energies in silicon enabling the description of phonon-
assisted indirect optical transitions

LA 
emission

TO
emission

LA 
absorption

TO
absorption

FIG. 3. (Color online) Photon absorption coefficient for indirect
optical transitions in intrinsic bulk silicon: FGR (full line) and NEGF
(symbols) rates are in close agreement, since the correction fo the
conduction band DOS due to the phonon-mediated �-X scattering
is weak. The arrows indicate the effect of the electronic interaction
with specific phonon modes on the absorption characteristics, with
the length of the arrows corresponding to the energy of the associated
phonon mode.

the following focus on processes S2±. The FGR transition
rate for these processes are obtained from second-order
perturbation theory as

RFGR
abs,±(λ,q) = 2π

h̄
N

γ

λ,q

∑
kc,kv

∑
�,Q

[
M

ph
�,Q(kv,kc)

]2[
M

γ

λ,q(kv)
]2

|εc(kv) − εv(kv) − h̄ωλq|2

×
[
N

ph
�,Q + 1

2
∓ 1

2

]
fv(kv)[1 − fc(kc)]

× δ(εc(kc) − εv(kv) − h̄ωλq ∓ h̄��,Q). (34)

Here, M
ph
�,Q encodes the matrix element for coupling of

electrons to the phonon mode (�,Q) with energy h̄��,Q and
occupation given by the Bose-Einstein distribution N

ph
�,Q =

(eβh̄��,Q − 1)−1,β = (kBT )−1 at lattice temperature T . In anal-
ogy to the direct case, with the previously used approximations
for the optical matrix elements and the additional assumptions

|εc(kv) − εv(kv) − h̄ωλq| ≈ |Eg0 − h̄ωλq|, (35)

M
ph
�,Q(kv,kc) ≈ Mph

� δ(kv − kc + Q), (36)

we can write the (phonon-assisted) absorption coefficient

αind(h̄ωγ ) = M̃γ
cv(h̄ωγ )2

|Eg0 − h̄ωγ |2
∑
�

Mph
�

×
∑
s=±

[
N

ph
� + 1

2
− s

1

2

]
J ind

cv,s(h̄ωγ ), (37)
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but where now the joint density of states for indirect transitions
is used in (28),

J ind
cv,±(h̄ωγ ) = 2

(2π )6

∫
d3k1

∫
d3k2δ[εc(k1) − εv(k2)

− h̄ωγ ∓ h̄��,k1−k2 ], (38)

which for spherical bands and a single phonon frequency �

may be simplified to

J ind
cv,±(h̄ωγ ) = (m∗

cm
∗
v)

3
2

(2πh̄)3
(h̄ωγ − Eg ∓ h̄�)2, (39)

where Eg denotes the (indirect) band gap.
In the following, the phonon-assisted absorption rate shall

be derived within the NEGF formalism, starting from the
expression for the absorption rate, but where now the Green’s
functions contain the contributions due to the electron-phonon
scattering. Since the Green’s functions and interaction self-
energies are evaluated in a self-consistency iteration process,
all possible single phonon processes are included to all
orders, i.e., the Green’s functions contain contributions from
a number of scattering processes that corresponds to the
number of self-consistency iteration steps. It is thus via this
self-consistent computation that phonon-assisted optical tran-
sitions are enabled, even though the self-energies themselves
are only on the level of a first order self-consistent Born
approximation, i.e., do not include the combination of both
electron-phonon and electron-photon scattering at the same
time. In Fig. 2, this procedure is shown for the technolog-
ically relevant example of indirect interband absorption of
photons in silicon, where zone-boundary phonons provide
the wave-vector difference in a �-X intervalley scattering
process.

We start again from the general expression for the inscat-
tering rate, which in this case reads

Rin = 2
∫

dE

2πh̄

∑
k

�<
Xc

(k; E)G>
Xc

(k; E). (40)

Assuming a photon-first indirect process (S2±), the corre-
sponding expression for �-X scattering is inserted for the

self-energy [see Eq. (A28) in Appendix A], leading to the
equivalent of Eq. (14) (σ = LA,TO: phonon mode),

Rin = 2
∫

dE

2πh̄

∑
k

∑
Q,σ

[
Mph

σ (�σ )
]2[

Nph
σ G<

�c
(Q; E − h̄�σ )

+ (Nph
σ + 1)G<

�c
(Q; E + h̄�σ )

]
G>

Xc
(k; E). (41)

In the next step, the Keldysh equation for electron-photon
interaction is used to replace the lesser �c-GF,

G<
�c

(k; E) = GR
�c

(k; E)�<γ

�c
(k; E)GA

�c
(k; E), (42)

providing the modal absorption rate

Rabs(λ,q) = 2
∫

dE

2πh̄

∑
k

∑
Q,σ

[
Mph

σ (�σ )
]2

[Mγ (k,λ,q)]2

×N
γ

λ,q

[
Nph

σ GR
�c

(Q; E − h̄�σ )

×G<
�v

(Q; E − h̄�σ − h̄ωλq)

×GA
�c

(Q; E − h̄�σ ) + (
Nph

σ + 1
)

×GR
�c

(Q; E + h̄�σ )

×G<
�v

(Q; E + h̄�σ − h̄ωλq)GA
�c

(Q; E + h̄�σ )
]

×G>
Xc

(k; E). (43)

Again, this is to be compared to the FGR result, which,
for the same electron-photon and electron-phonon interaction
Hamiltonian terms, follows from second-order perturbation
theory to

RFGR
abs (λ,q) = 2π

h̄

∑
kc,kv

∑
σ

[
M

ph
σ (�σ )

]2
[Mγ (kv,λ,q)]2N

γ

λ,q

|ε�c
(kv) − ε�v

(kv) − h̄ωλq|2

× {
Nph

σ δ[εXc
(kc) − ε�v

(kv) − h̄ωλq − h̄�σ ]

+ (
Nph

σ + 1
)
δ[εXc

(kc) − ε�v
(kv) − h̄ωλq

+ h̄�σ ]
}
f�v

(kv)[1 − fXc
(kc)]. (44)

Now, inserting the noninteracting equilibrium expressions
for the lesser, greater, and retarded GF in (43) provides the
expression

Rabs(λ,q) = 2
∫

dE

2πh̄

∑
k

∑
Q,σ

[
Mph

σ (�σ )
]2

[Mγ (k,λ,q)]2N
γ

λ,q

{
N

ph
σ if�v

(E − h̄�σ − h̄ωλq)2πδ
(
E − h̄�σ − h̄ωλq − ε�v

(Q)
)

|E − h̄�σ − h̄ωλq − ε�c
(Q) + iη0+|2

+
(
N

ph
σ + 1

)
if�v

(E + h̄�σ − h̄ωλq)2πδ[E + h̄�σ − h̄ωλq − ε�v
(Q)]

|E + h̄�σ − h̄ωλq − ε�c
(Q) + iη0+|2

}
i[fXc

(E) − 1]2πδ(E − εXc
(k)), (45)

which, on performing the energy integration and with Q = kv ,
k = kc, reproduces again the FGR result given in (44).

For the numerical implementation, a simple three-band
effective mass model for the electronic structure of silicon
is used. The X electrons are described by a multivalley picture
with identical values for transverse and longitudinal effective
mass, and the �v holes as well as the virtual �c states used
in the indirect transitions are modelled by single effective
mass bands. The holes are modelled by a single effective
mass corresponding to heavy holes. The band structure and

interaction parameters used in the numerical examples are
listed in Table I. Figure 3 displays the close agreement between
NEGF and FGR for equilibrium bulk absorption close to the
indirect band edge and the characteristic fingerprints of the
involved TO and LA phonon modes.

C. Thin film devices

In the case of ultra-thin-film and especially heteromultilayer
devices, translational invariance does no longer apply in
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TABLE I. Material parameters used in simulations.

m∗
�c m∗

X m∗
�v Eg,�v−�c Eg,�v−X P 2

cv/m0

0.3 m0 0.3 m0 0.54 m0 3.1 eV 1.17 eV 4 eV

σ Mode h̄�σ DivKσ

(�-X)1 LA 18.4 meV 2.45×108 eV/cm
(�-X)2 TO 57.6 meV 0.8 ×108 eV/cm

growth direction. For such a system, the appropriate repre-
sentation of the field operators has the form

�̂b(r,t) =
∑
k‖,i

ψibk‖ (r)ĉibk‖ (t), (46)

with the basis functions

ψink‖ (r) = ϕik‖(r)unk0 (r), (47)

where ϕik‖ is the envelope basis function for discrete spatial
(layer) index i (longitudinal) and transverse momentum k‖,
unk0 is the Bloch function of bulk band n, centered on k0.
In the case of a system with large transverse extension, the
envelope basis function can be written as

ϕik‖ (r) = eik‖r‖
√
A

χi(z), (48)

where r‖ = (x,y), A is the cross-sectional area, and χi is
the longitudinal envelope basis function. For the latter, finite
element shape functions are a popular choice.11,18 Here, we
will use a simple finite difference basis equivalent to a separate
single band tight-binding approach for each band,19–21

χi(z) = [θ (z − zi) − θ (z − zi+1)]/
√

�, (49)

where � is the spatial discretization step. In the above basis,
the Green’s functions and self-energies have the potentially
nonlocal representation (O = G,�)

Ob,b′ (r,r′; E) =
∑

k‖

∑
i,j

ψibk‖ (r)Oib,jb′ (k‖; E)ψ∗
jb′k‖(r

′),

(50)

where the contour-ordered steady-state Green’s functions are
now defined as

Gib,jb′ (k‖; t − t ′) = 1

ih̄
〈T̂C{ĉibk‖ (t)ĉ

†
jb′k‖(t

′)}〉. (51)

The NEGF formalism employed here for the thin film
device follows the approach taken in Ref. 22, but with the
simple band structure model introduced in Sec. II B. The device
under consideration consists basically of a slab of undoped
absorber material sandwiched between thin doped layers,
which make ohmic contacts to extended flat-band bulk contact
regions with fixed chemical potential. The Green’s functions
for the charge carriers are determined by solving the linear

system corresponding to Eq. (8) and (9) in the local basis (47),

GR(ν) = [{
GR

0 (ν)
}−1 − �RI (ν) − �RB(ν)

]−1
, (52)

GR
0 (ν) = [(E + iη)11 − H(0)(k‖)]−1, (53)

GA(ν) = [GR(ν)]†, (54)

G≶(ν) = GR(ν)[�≶I (ν) + �≶B(ν)]GA(ν), (55)

where ν = (k‖; E). The noninteracting Hamiltonian
H(0) contains, in addition to the electronic structure of
noninteracting carriers, the Hartree potential of Coulomb
interaction, corresponding to the mean-field treatment of the
carrier-carrier interaction, which is obtained from the solution
of Poisson’s equation for the given profile of ionized dopants
and the carrier density obtained from the carrier Green’s
functions, e.g., in the case of the conduction electrons

ni =
∑

b=�c,X

fb

∑
k‖

∫
dE

πA�
(−i)G<

ii,b(k‖; E), (56)

where fb denotes the valley degeneracy of the conduction
bands, which is f�c

= 1 and fX = 6. A similar expression
is found for the hole density. In the solution of Poisson’s
equation, open boundary conditions are imposed, correspond-
ing to the requirement of global charge neutrality. Due to
the interdependence of the NEGF and Poisson equations
via charge density and Hartree potential, they need to be
solved in an additional self-consistency iteration process. The
terms �·B denote the components of the contact self-energy,
which in this case is obtained by electronic mode-matching
to the bulk Bloch states of the flat-band contact region.23

The boundary-self energy enables the explicit description
of carrier injection and extraction of carriers at contacts and
corresponds to the imposition of open boundary conditions
for the carrier wave functions. The components �·I are due to
the interactions of electrons with photons and phonons. The
expressions for these interaction self-energies are determined
following the same approach as in the bulk case, i.e., as the
Fock term within many-body perturbation theory on the level
of a self-consistent Born approximation, and are discussed
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FIG. 4. (Color online) Convergence of the interband photogen-
eration rate (integrated over growth dimension) and of the resulting
total interband current density in the NEGF self-consistency iteration
process (Fig. 2). The device under consideration is a 73-nm-thick
silicon p-i-n diode with contact regions formed by 13.5-nm doped
layers of low doping level (1016 cm−3).
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FIG. 5. (Color online) Photon absorption coefficient for indirect
optical transitions, computed with the thin film NEGF model (dots)
for the 73-nm-thick quasi-intrinsic silicon p-i-n diode, in comparison
with the absorption coefficient obtained from the Fermi golden rule
rate for bulk silicon (full line).

in the Appendix. Since the Green’s function elements
off-diagonal in the band index are neglected, band coupling
appears only via the self-energies of the scattering processes.

For thin films, the conservation law corresponding to Eq. (4)
for the divergence of the electron current between model layers
i − 1 and i becomes [ν = (k‖; E)]

Ji − Ji−1

�
= − 2

h̄�

∑
k‖

∫
dE

2π
[�R(ν)G<(ν) − GR(ν)�<(ν)

+�<(ν)GA(ν) − G<(ν)�A(ν)]i,i (57)

≡ Rrad(zi), (58)

where Rrad(z) is again the local radiative rate. Making use
of the cyclic property of the trace, the total radiative rate

follows as

Rrad = 2

h̄

∫
B

dE

2π
Tr

{ ∑
k‖

[�<
eγ (k‖; E)G>(k‖; E)

−�>
eγ (k‖; E)G<(k‖; E)]

}
(59)

≡ �
∑

i

Rrad(zi) =
∑

i

(
JB

i − JB
i−1

)
(60)

≡ JB
N − JB

1 ≡
{
JN, B = CB,

J1, B = V B.
(61)

In the case of the indirect gap material considered here, the
electronic current density as given by the Green’s function and
the nearest-neighbor interlayer hopping matrix t is

ji =
∑

b=�c,X

fb

∑
k‖

∫
dE

πh̄A [tii+1G
<
i+1i,b(k‖; E)

− ti+1iG
<
ii+1,b(k‖; E)], (62)

the total radiative rate is

Reγ = 2

h̄

∫
�c

dE

2π
Tr

{ ∑
k‖

[�<
eγ,�c

(k‖; E)G>
�c

(k‖; E)

−�>
eγ,�c

(k‖; E)G<
�c

(k‖; E)]
}
, (63)

and the intervalley phonon scattering rate reads

Rep,�−X = 2

h̄

∫
�c

dE

2π
Tr

{∑
k‖

[�<
ep(�−X),�c

(k‖; E)

× G>
�c

(k‖; E) − �>
ep(�−X),�c

(k‖; E)G<
�c

(k‖; E)]
}
.

(64)

The convergence of scattering rate and interband current as a
function of self-consistency iteration steps is shown in Fig. 4
for a p-i-n diode of 73 nm total thickness, with a central
undoped region of 46 nm width sandwiched between thin
doped layers of 13.5 nm thickness each and low doping levels

FIG. 6. (Color online) (a) Band profile of the 73-nm-thick silicon p-i-n junction device from the self-consistent solution of the NEGF-
Poisson equations for indicated doping levels ranging from Nd = 1016 cm−3 to Nd = 1018 cm−3. The corresponding fields in the undoped
region vary from F = 2 kV/cm to F = 169 kV/cm. The equilibrium Fermi level lies at 1.1 eV. (b) Near band gap optical absorption rate in
the intrinsic region of a silicon p-i-n junction for various values of the built-in field corresponding to different doping levels.
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FIG. 7. (Color online) Energy resolved local generation rate in
the virtual �c state and resulting local photocurrent spectrum in the
X-valley band at very low internal field F = 2 kV/cm. The gray lines
indicate the band edges (X valley for electrons).

of 1016 cm−3. The convergence is fast due to the low carrier
density in the absorbing quasi-intrinsic

Figure 5 shows the indirect optical absorption for the quasi-
intrinsic slab of the indirect gap semiconductor discussed
above. In this case of near flat-band conditions, the bulk
absorption is retrieved close to the band edge. For the more
interesting case of an ultra-thin bipolar junction with high
doping, the global absorption coefficient starts to deviate from
the bulk value due to the strong internal field. This so-called
Franz-Keldysh effect is displayed in Fig. 6.

Figure 7 shows the energy resolved local generation rate in
the virtual �c states and resulting local photocurrent spectrum
in the X-valley band at a photon energy Ephot = 1.17 eV
and very low internal field F = 2 kV/cm. The generation

FIG. 8. (Color online) Same as in Fig. 7 but for a strong internal
field of F = 169 kV/cm. The large deviation close to the n-contact is
due to the electron-phonon intraband scattering current that vanishes
on energy integration over the band (white = negative, black =
large positive; see Fig. 9). Due to the large field and the absence
of additional, intraband scattering processes, the photocurrent is
quasiballistic.

FIG. 9. (Color online) Current spectrum of X-valley electrons
close to the n-contact. Due to the high electron density in this region,
the spectral scattering current due to electron-phonon coupling is
large but vanishes on integration over energy, i.e., there is no net
transport in the z direction due to electron-phonon scattering.

is relatively uniform throughout the device, as well as the
increase of electron and hole current components toward the
respective contacts. Figure 8 illustrates the corresponding situ-
ation for the diode with strong internal field F = 169 kV/cm.
In this case, the photogeneration and current contributions
are distributed over a large energy range, the latter due to
the absence of efficient (intraband) relaxation mechanisms
that would confine current flow closer to the bandedge,
resulting in a quasiballistic photocurrent. In the vicinity
of the n-contact, the high electron concentration results in
large effective electron-phonon intraband scattering current
contributions (Fig. 9), which are mediated by the �c-X
interband scattering mechanism and, due to the opposite
signs of in- and outscattering components, cancel on energy
integration over the conduction bands. The net current can thus
be attributed exclusively to interband transitions, and the local
sum of electron and hole contributions is perfectly conserved,
as evidenced by Fig. 10. Since the photogeneration rate is
intimately related to the �-X intervalley electron-phonon
scattering rate via the self-consistent computation of Green’s
functions and self-energies, and the photocurrent results from
photogenerated excess charge that is transferred via the

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 10  20  30  40  50  60  70

cu
rr

en
t d

en
si

ty
 j 

[m
A

 c
m

-2
]

position z [nm]

el
hl

el+hl

FIG. 10. (Color online) Integrated net current density for elec-
trons (el) and holes (hl) in the high-field device. The total current,
i.e., the sum of electron and hole current, is perfectly conserved over
the whole device.
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FIG. 11. (Color online) Phonon-mediated electron transfer rate between virtual (�c) and extended (X) conduction band states (a) in the
dark and (b) under illumination with Ephot = 1.17 eV, for the low-doping diode, where the intrinsic region extends over the whole device.
While in- and outscattering are balanced in the dark, there is a strong net charge transfer from �c to X under illumination, and the inscattering
rate reflects the spectral pattern of the photogeneration.

scattering process with phonons to the extended X-valley
states, the rates of this phonon-mediated charge transfer are
expected to show the signature of the photogeneration process.
Indeed, if the rate of electron scattering out of (into) the virtual
�c states into (out of) the X states is considered, there is a
large net scattering from �c to X under illumination, while
in- and outscattering rates are balanced in the dark. This is
shown in Fig. 11 for the case of the low-doping diode where
the intrinsic region extends over the entire device. In the case
of strong doping, the electron-phonon scattering rate in the
dark is much stronger close to the contacts such that the effect
becomes visible only in the central, intrinsic region of the
junction. There, the phonon-related charge transfer rate again
reflects the local photogeneration rate, as displayed in Fig. 12.

III. CONCLUSIONS

We have presented a novel theoretical approach to the
description of phonon-mediated photogeneration in indirect
semiconductors. While compatible with the standard Fermi-
golden rule approach in the quasiequilibrium bulk limit, its

range of validity extends to quantum transport in open systems
involving arbitrary heterostructure states far from equilibrium
and the effects of nonlocality in the scattering processes,
which are important aspects of advanced photovoltaic and light
emitting devices, where often spatial and spectral resolution is
required to gain access to a deeper understanding of the device
characteristics. Thanks to this versatility, the theoretical frame-
work lends itself to the modeling of indirect semiconductor
based nanostructures with potential applications in a multitude
of optoelectronic devices, such as silicon-based quantum well
solar cells.
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APPENDIX: INTERACTION SELF-ENERGIES

The self-energies as defined by the Dyson equations (8) and
(9) encode the renormalization of the charge carrier Green’s

FIG. 12. (Color online) Phonon-mediated electron transfer rate between virtual and extended conduction band states (a) in the dark and
(b) under illumination with Ephot = 1.17 eV in the center of the short intrinsic region of the high-doping diode. Closer to the contacts, the
scattering rate contributed by the photogeneration is masked by the large intraband relaxation rate.
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functions due to the interactions with photons and phonons,
i.e., generation, recombination, and relaxation processes. The
self-energies due to interactions can be evaluated from the per-
turbation expansion of the nonequilibrium statistical average
defining the interacting NEGF, using either Wick’s theorem
or Feynman diagrams. In the first case, the (contour-ordered)
self-energy � is derived from a perturbation expansion of the
exponential in the definition of the contour-ordered Green’s
function as the nonequilibrium expectation value of single-
carrier operators,

Gα,α′ (k; t,t ′) ≡ − i

h̄
〈T̂C{e− i

h̄

∫
C

dsH ′(s)ĉα,k(t)ĉ†α′,k(t ′)}〉, (A1)

α = n (band index) and k = (kx,ky,kz) (bulk) or α = i,n and
k = (kx,ky) ≡ k‖ (thin film). In the following, the Hamiltonian
terms H ′ for the perturbative interaction of electrons with
photons and phonons shall be discussed and used in the
derivation of the corresponding self-energy expressions for
bulk and thin-film systems.

1. Interaction Hamiltonian

a. Electron-photon interaction. For the electron-photon
interaction, the perturbation Hamiltonian is given via the linear
coupling to the vector potential operator of the electromagnetic
field Â,

Ĥeγ = − e

m0
Â · p̂ (A2)

with p̂ the momentum operator and

Â(r,t) =
∑
λ,q

[A0(λ,q)âλ,q(t) + A∗
0(λ, − q)â†

λ,−q(t)] eiqr,

(A3)

A0(λ,q) = h̄√
2ε0Vh̄ωλq

ελq, (A4)

where ελq is the polarization of the photon with wave vector
q and energy h̄ωλq added to or removed from photon mode
(λ,q) by the bosonic creation and annihilation operators

â
†
λ,q(t) = â

†
λ,qe

iωλqt , âλ,q(t) = âλ,qe
−iωλqt , (A5)

and V is the absorbing volume.
For numerical evaluation, the Hamiltonian is reformulated

in a suitable representation using the field operators given in
(10) (bulk) and (46) (thin film), respectively,

Heγ (t) = ∫
d3r�̂†(r,t)Ĥeγ �̂(r,t). (A6)

In the bulk case, the above expression results in24

Heγ (t) =
∑
q,λ

∑
n,m

∑
k,k′

Meγ
n,m(k,k′,q,λ)

× ĉ
†
nk(t)ĉmk′(t)[âλ,qe

−iωλqt + â
†
λ,−qe

iωλqt ], (A7)

where the matrix element for interband transitions (n �= m) is
obtained from a k · p-type approximation,11

Meγ
n,m(k,k′,q,λ) ≡ − e

m0
A0(λ,q)

×
∫

d3rψ∗
nk(r)(eiqrελq · p̂)ψmk′(r)

(A8)

≈ − e

m0
A0(λ,q)δ(k′ + q − k)(ελq · pnm),

(A9)

with the Bloch function momentum matrix element

pnm =
∫

�

d3r̃

�
unk0 (r̃)p̂umk′

0
(r̃), (A10)

where � denotes the unit-cell volume. This gives the final bulk
expression

Heγ (t) =
∑
q,λ

∑
n,m

∑
k

Meγ
n,m(k,q,λ)

×ĉ
†
nk(t)ĉmk(t)[âλ,qe

−iωλqt + â
†
λ,−qe

iωλqt ]. (A11)

For devices with broken translational invariance in the
transport dimension, the representation of the electron-photon
Hamiltonian (A2) in the real-space effective mass basis (47)
acquires the similar from

Heγ (t) =
∑
q,λ

∑
in,jm

∑
k‖

Meγ

in,jm(k‖,q,λ)

× ĉ
†
ink‖(t)ĉjmk‖(t)[âλ,qe

−iωλqt + â
†
λ,−qe

iωλqt ],

(A12)

where

Meγ

in,jm(k‖,q,λ) ≈ − e

m0
A0(λ,q)Mij (qz)(ελq · pnm), (A13)

with

Mij (qz) =
∫

dzχ∗
i (z)eiqzzχj (z) = eiqzzi δij . (A14)

Electron-phonon interaction. The vibrational degrees of
freedom of the system are described in terms of the coupling of
the force field of the electron-ion potential Vei to the quantized
field Û of the ionic displacement,25

Ĥep(r,t) =
∑
L,κ

Û (L + κ,t) · ∇Vei[r − (L + κ)], (A15)

with the displacement field given by the Fourier expansion

Ûα(Lκ,t) =
∑
�,Q

Uακ (�,Q)eiQ·(L+κ)[b̂�,Q(t) + b̂
†
�,−Q(t)],

(α = x,y,z), (A16)

where the ion equilibrium position is L + κ , with L the lattice
position and κ the relative position of a specific basis atom
at this lattice site, and b̂�,Q,b̂

†
�,Q are the bosonic creation

and annihilation operators for a (bulk) phonon mode with
polarization � and wave vector Q in the first Brillouin zone.
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The potential felt by electrons in heterostructure states due to
coupling to bulk phonons can thus be written as

Ĥep(r,t) = 1√
V

∑
�Q

U�,QeiQ·r{b̂�,Q(t) + b̂
†
�,−Q(t)}, (A17)

where r is the electron coordinate, and U�,Q are related to the
Fourier coefficients of the electron-ion potential.26

The effective-mass Hamiltonian for electron-phonon inter-
action is obtained from (A17) in analogy to the electron-photon
interaction, with the bulk result

Hep(t) =
∑
Q,�

∑
n,k

Mep(Q,�)ĉ†nk(t)ĉnk−Q(t)

× [b̂�,Qe−i��,Qt + b̂
†
�,−Qei��,Qt ], (A18)

with

Mep(Q,�) = U�,Q√
V

, (A19)

and the thin-film expression

Hep(t) =
∑
Q,�

∑
n

∑
k‖,i

Mep
i (Q,�)ĉ†ink‖ (t)ĉink‖−Q‖(t)

× [b̂�,Qe−i��,Qt + b̂
†
�,−Qei��,Qt ], (A20)

where

Mep
i (Q,�) = U�,Q√

V
eiQzzi . (A21)

For the �-X intervalley scattering considered in the present
discussion, the coupling reads

|U�,Q|2 = h̄(DivK)2
σ

2ρ�σ

, (A22)

where σ labels the phonon mode, Div is the associated
deformation potential, and K denotes the momentum transfer
required for the scattering between two valleys.

a. Self-energy

At this stage, any renormalizing effect of the electronic sys-
tem on the photons and phonons is neglected, i.e., the coupling
to the bosons corresponds to the connection to corresponding
equilibrium reservoirs. While this treatment is generally a
good approximation in the case of phonons, it is valid for
the coupling to the photonic systems only in the case of low
absorption, i.e., weak coupling or very short absorber length.

The equilibrium propagators for noninteracting photons and
phonons in isotropic media have the common form (α = γ,ph)

D
α,≶
λ (q; E) = −2πi

[
Nα

λ,qδ(E ∓ h̄ωλq)

+ (Nα
λ,q + 1)δ(E ± h̄ωλq)

]
, (A23)

D
α,R/A

λ (q; E) = 1

E − h̄ωλq ± iη
− 1

E + h̄ωλq ± iη
.

(A24)

In the above expressions, Nα
λ,q denotes the occupation of

the respective equilibrium boson modes, with the phonon
occupation given by the Bose-Einstein distribution at lattice
temperature T ,

N
ph

�,Q = (eβh̄��,Q − 1)−1, β = (kBT )−1, (A25)

and the photon occupation N
γ

λ,q introduced in Sec. II B 1.
Inserting these propagators the Fock-term of the a general
electron-boson self-energy in the first self-consistent Born
approximation provides the steady-state components (α =
γ,ph)

�≶
eα(k; E) =

∑
λ,q

Meα(k,q,λ)
[
Nα

λ,qG≶(k; E ∓ h̄ωλ,q)

+ (
Nα

λ,q + 1
)
G≶(k; E ± h̄ωλ,q)

]
×Meα(k, − q,λ) (A26)

and

�R,A
eα (k; E) = i

∫
dE′

2π

�>
eα(k; E′) − �<

eα(k; E′)
E′ − E ± iη

(A27)

with the same definitions of indices and momentum as in
(A1). Using a constant mode-specific coupling strength, the
intervalley bulk (thin-film) electron-phonon scattering self-
energy is further simplified to the diagonal form used in the
simulations,

�
≶
(ij,)b(E) =

∑
σ

∑
b′ �=b

h̄(DivK)2
σ

2ρ�σ �
fb′ (δi,j )

×
∫

dk
(2π )d

[
Nph

σ G
≶
(ij,)b′ (k; E ± h̄�σ )

+ (
Nph

σ + 1
)
G

≶
(ij,)b′ (k; E ∓ h̄�σ )

]
, (A28)

where b,b′ ∈ {�c,X} and d = 2 (thin film) or 3 (bulk).
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