
PHYSICAL REVIEW B 84, 035453 (2011)

Tunable crossovers for the quantum interference correction to conductance and shot-noise
power in chaotic quantum dots with nonideal contacts
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We study a large class of tunable crossovers between the three Dyson universality classes for electron transport
through chaotic quantum dots with nonideal contacts. We present analytical expressions for the leading quantum
interference corrections to both the conductance and the shot-noise power as a function of the transparencies
of the contacts and some tunable crossover parameters, such as a perpendicular magnetic field and spin-orbit
coupling strengths. Our results apply both to metallic grains with isotropic spin-orbit coupling and to GaAs
heterostructures, in which spin-orbit coupling arises from both the asymmetry of the confining potential and
crystal inversion asymmetry. We found that, for nonideal contacts and in the absence of spin-orbit coupling, a
perpendicular magnetic field can induce a surprising change of sign in the leading quantum interference correction
to the shot-noise power. The results for metallic grains are recovered by independent calculations using quantum
circuit theory.
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I. INTRODUCTION

Electron transport in phase-coherent conductors has many
subtle effects resulting from interference patterns of multiply
scattered waves. The two most well-known are weak local-
ization (WL) and mesoscopic fluctuations.1 WL is the leading
quantum interference correction to transport observables, such
as the conductance, and has proved to be an important source
of information on fundamental time scales of the underlying
dynamics in finite-size systems. Metal grains are among the
simplest realizations of phase-coherent quantum dots, and
detailed theoretical descriptions of their transport properties
have been obtained from several models and techniques,
such as the supersymmetric nonlinear sigma model2 and
random-matrix theory.3 By applying an external magnetic
field and varying its intensity, an ensemble of metal grains
interpolates, in the absence of spin-orbit coupling, between
two universality classes: the orthogonal class, which describes
systems with time-reversal symmetry (TRS), and the unitary
class, appropriate for systems with broken TRS. In the
presence of spin-orbit coupling, the application of a magnetic
field on metal grains induces a crossover from the symplectic
class, which describes systems with spin-rotation symmetry
(SRS), to the unitary class. More recently, ballistic quantum
dots patterned in semiconductor heterostructures have been
the subject of intense experimental and theoretical research.
The possibility of gate tuning the system’s parameters such as
spin-orbit coupling and barriers’ transparencies has made these
devices ideal candidates for systematic studies of quantum
interference effects in finite-sized systems in a variety of
crossover regimes.

An important transport observable in finite-sized systems is
the shot-noise power,4 which signals the inherent discreteness
of the charge carriers in the current. It can also be interpreted
quantum mechanically as the second cumulant of the full
counting statistics of charge transfer though the system.5

Recently, the leading quantum interference (or WL) correction
to both the shot-noise power7,8 and the conductance9,10 have
been studied for quantum dots in various crossover regimes.
In Refs. 6, 7, and 10, the authors use a trajectory approach
to calculate the WL correction to the conductance and shot-
noise power in the crossover between the orthogonal and
the unitary symmetry classes. In Ref. 9, the framework of
random-matrix theory (RMT) is employed to study the general
crossover induced by spin-orbit coupling and by an external
magnetic field on both the WL correction and the variance
of the conductance of a chaotic GaAs quantum dot.11 An
interesting depletion-amplification transition, characterized by
a change of sign in the WL correction to the conductance,
which can be tuned by the spin-orbit scattering rate, was
reported. Changes of sign in the WL correction of a transport
observable are always important quantum effects since they
signal a qualitative change of behavior in the interference
patterns, going from constructive to destructive interference
and vice versa. Furthermore, the WL correction is a valu-
able source of information of the underlying mechanism
controlling the coherence of the quantum dynamics in the
system and its dependence on fundamental time scales, such
as the Ehrenfest time, the phase-coherence time, and the
dwell time, emerge naturally from theoretical models of
dephasing.11–13

In Ref. 8, the authors extended the study of the depletion-
amplification transition to the WL correction to the shot-noise
power in chaotic quantum dots with ideal contacts. One of the
main results of Ref. 8 is the statement that the ratio between
the WL correction to the shot-noise power 〈pWL〉 and the
WL correction to the conductance 〈gWL〉 does not depend on
crossover parameters and, therefore, does not change sign.
This result suggests that the mechanism that fixes the sign of
the WL corrections operates equally on both the conductance
and the shot-noise power. One of the motivations of this paper

035453-11098-0121/2011/84(3)/035453(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.035453
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is to extend the above analysis to chaotic quantum dots with
barriers.

The presence of barriers or nonideal contacts in chaotic
quantum dots can be quite dramatic, as was recently demon-
strated in Refs. 14 and 15. It was shown that the electric
field manifested in the transparencies of the barriers through
gate voltages concomitantly with open scattering channels
in the leads can be used to control depletion-amplification
transitions in the WL correction to the shot-noise power. In
particular, the above-cited ratio 〈pWL〉/〈gWL〉 can change sign
as a function of the barriers’ transparencies. In this paper, we
address the nontrivial problem of combining the barriers’ effect
of Refs. 14 and 15 with the crossover effect of Refs. 8 and 9.
Our analytical results contain the full recipe for gate tuning the
WL corrections to the conductance and the shot-noise power
in quantum dots with nonideal contacts.

In Sec. II, we briefly present the random-scattering-matrix
formalism of full counting statistics (FCS) and, through
a diagrammatic expansion,9 we perform perturbatively the
ensemble average over the scattering-matrix distribution. Our
calculations cover both cases: metallic grains with isotropic
spin-orbit coupling and ballistic quantum dots patterned in
GaAs heterostructures, in which spin-orbit coupling arises
from both the asymmetry of the confining potential and crystal
inversion asymmetry. Explicit formulas are obtained for the
average conductance and the average shot-noise power up
to the WL corrections. We observed, in both cases, metallic
grains and GaAS quantum dots, a rather surprising effect. For
nonideal contacts and in the absence of spin-orbit coupling,
a perpendicular magnetic field can induce a change of sign
in the leading quantum interference correction to the shot-
noise power. In Sec. III, the calculations for metallic grains
with nonideal contacts are checked by using quantum circuit
theory16–18 and full agreement is obtained. Finally, in Sec. IV,
we present a general discussion of our results highlighting
some noteworthy features of the crossover problem in chaotic
quantum dots with barriers.

II. SCATTERING-MATRIX FORMALISM

We follow Ref. 19 and introduce a random-scattering-
matrix description of the cumulant generating function of the
full counting statistics for charge transfer through a double-
barrier chaotic quantum dot coupled to two leads, labeled 1 and
2, with N1 and N2 open scattering channels, respectively. The
FCS generating function is obtained from the scattering-matrix
distribution through the following integral transform:

�( �φ) =
∫

dS �( �φ,S)P (S), (1)

where dS is the Haar measure and P (S) is the scattering-
matrix-distribution function. We use the standard parametriza-
tion of the scattering matrix and its average

S =
(

r t ′
t r ′

)
, S̄ =

(
r1 0
0 r2

)
,

where r,r ′ and t,t ′ are the dot’s reflection and transmission ma-
trices, respectively, and rp = diag(

√
1 − Tp1, . . . ,

√
1 − TpNp

)
is the reflection matrix of barrier p, which is fully characterized

by its transmission coefficients Tpn, with n = 1, . . . ,Np. The
kernel of the integral transform is given by

�( �φ,S) = det

(
1 − sin2(φ0/2)t t†

1 + sinh2(φ1/2)t t†

)
, (2)

where �φ ≡ (φ0,φ1). The dimensionless FCS cumulants are
obtained from the equation

ql+1 = lim
ε→1

(
ε

2

d

dε

)l
ε2I (φ)

sin φ

∣∣∣∣
cos(φ/2)=ε

, l = 0,1, . . .

where I (φ) is a quantity that plays the role of a pseudocurrent
in quantum circuit theory. It is related to �( �φ) through the
equation

I (φ) = −2
∂�( �φ)

∂φ0

∣∣∣∣ �φ=(φ,iφ)

. (3)

For later convenience, we give here explicitly the first two
FCS cumulants, which are the conductance and the shot-noise
power, respectively,

〈g〉 ≡ q1 = 〈Tr[t t†]〉, (4)

〈p〉 ≡ q2 = 〈Tr[t t†(1 − t t†)]〉, (5)

in which the angle brackets denote the ensemble average over
the scattering-matrix distribution.

Averages over random-scattering-matrix ensembles are
notably hard to perform. As an example, we mention the exact
evaluations of I (φ), 〈g〉, 〈g2〉, 〈g3〉, and 〈p〉 for the quantum-
dot quantum-wire crossover.20 Here, we use a diagrammatic
technique developed in Ref. 21 to perform a perturbative
semiclassical expansion of the ensemble average. We begin
by introducing a stub parametrization22 to incorporate the
combined effects of barriers, an external magnetic field,
and spin-orbit scattering. The stub can be regarded as a
mathematical tool to introduce tunable external parameters in
the random-scattering-matrix distribution. For particles with
spin, the scattering matrix S can be represented as a unitary
matrix with quaternionic entries,23 which can be written as9

S = T U (1 − Q†RQU )−1T †, (6)

where U is a M × M unitary symmetric matrix taken from
Dyson’s circular orthogonal ensemble and the N × M matrix
T carries the relevant information about the barriers. We
defined N = N1 + N2. The (M − N ) × M matrix Q is a
projection matrix with Qij = δi+N,j . The quaternionic entries
of the matrices U , T , and Q are all proportional to the 2 × 2
unit matrix 12. The external parameters are introduced in the
stub parametrization via a quaternionic (M − N ) × (M − N )
unitary matrix R, defined as

R(τB,τSO) = exp

[
−i

(H(τB,τSO)

M
+ iV 12

)]
, (7)

where H(τB,τSO) is a (M − N ) × (M − N ) quaternionic
matrix carrying the relevant information about the symmetry
breakings and τB (τSO) is the magnetic (spin-orbit) decoher-
ence time. The presence of barriers requires the introduction of
an (M − N )-dimensional matrix V , which can be constructed
from the entries of matrix T . Consistency of the stub method
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requires that the limit M → ∞ be taken at the end of the
calculations.

A. Effective Hamiltonian model

In this section, we present the effective Hamiltonians
H(τB,τSO) for metallic grains (isotropic model) and GaAs
ballistic quantum dots (anisotropic model). Since these mod-
els have already been thoroughly discussed in the recent
literature,9 our presentation will focus only on the most
important aspects. The central feature responsible for the
simplified random-matrix description of the crossover in the
universal regime is the fact that all relevant time scales
are much bigger then the electron transit time τerg, thus
τB,τSO 	 τerg. The significance of the crossover effect is
guaranteed by the requirement that both τB and τSO are of
the order of the inverse mean level spacing in the cavity
or the level broadening due to the presence of barriers. We
may thus introduce the following dimensionless parameters to
characterize the intensity of symmetry breakings in the system:

x2 = 2πh̄

τB

, a2 = 2πh̄

τSO

, (8)

where 
 is the mean level spacing.
The random-matrix models for the effective Hamiltonians

then follow directly from general symmetry considerations.
They are given by

Hiso(τB,τSO) = ix X 12 + i a√
2

3∑
i=1

Ai σi (9)

for metallic grains, and

Haniso(τB,τSO) = ix X 12 + i a

2∑
i=1

Ai σi (10)

for ballistic quantum dots patterned in GaAs heterostructures.
In the above equations, X and Ai (i = 1,2,3) are real
antisymmetric matrices of dimension (M − N ) × (M − N )
and σi are Pauli matrices. The entries of these matrices
are independent Gaussian random numbers with vanishing
average 〈Tr(X)〉 = 〈Tr(Ai)〉 = 0, and with variances given by
〈Tr(XXT )〉 = M2 and 〈Tr(AiA

T
j )〉 = δijM

2.

B. Average conductance

We are now in position to perform the diagrammatic
perturbative expansion of the average conductance 〈g〉 in
inverse powers of N and M . The first term contributing to
〈g〉 is obtained by adding ladder-type diagrams. For this term,
we may neglect the contribution from the matrix H(τB,τSO)
and Eq. (7) simplifies to

R = eV 12 , (11)

with Q†RQ ⊗ Q†R†Q = 1 ⊗ 1 − T † ⊗ T , where the matrix
T †T has eigenvalues, denoted �n, which represent the trans-
parencies of the barriers. We shall neglect, for simplicity,
any channel dependence on the barriers’ transparencies. To
perform the trace over the channel indices, we use the
following identity: Tr(R ⊗ R†) = (M − N1�1 − N2�2)12 ⊗

12. By selecting and adding the ladder-type diagrams, we
obtain

〈g〉 =
∑
ρσ

{[Tr (C1) Tr (C2)]D}ρσ ;σρ = 2
G1G2

G1 + G2
, (12)

where Gi = Ni�i , Ci = WiT ⊗ W
†
i T †, Tr(Ci) = Gi12 ⊗ 12,

and

D = [M12 ⊗ 12 − Tr(R ⊗ R†)]−1, (13)

in agreement with Ref. 21. The tensor multiplications must be
understood by means of the rule9

(σi ⊗ σj )(σk ⊗ σl) = (σiσk ⊗ σlσj ), (14)

and the factor 2 is due to spin degeneracy.
The next term in the expansion is called the weak-

localization correction. It is composed of two contributions.
The first one, denoted δg1, is obtained from the ladder
diagrams by applying the following correction to the weight21

M−n −→ M−n − nM−n−1. We get

δg1 = −
∑
ρσ

{[Tr(C1)Tr(C2)]D2}ρσ ;σρ = −2
G1G2

(G1 + G2)2
.

(15)

The second contribution to the weak-localization term comes
from the summation of a class of diagrams that have both
ladder and crossed parts.21 We remark that only the crossed
portions of these Cooperon-type diagrams are affected by a
magnetic field and/or spin-orbit scattering. The expression
obtained from this contribution reads as

δg2 =
∑
ρσ

{−(M−312 ⊗ 12)Tr[FL(T fT T T )]Tr[FR]

+ Tr[FL(T fUUT )FR]}ρσ ;ρσ , (16)

where T = 12 ⊗ σ2,

FL = C1 + Tr [C1]D(R† ⊗ R),

FR = C2 + (R ⊗ R†)Tr [C2]D,

and

fUU = [M12 ⊗ 12 − Tr(R ⊗ R∗)]−1,

fT T = (M12 ⊗ 12)Tr(R ⊗ R∗)fUU .

The superscript ∗ denotes the quaternion complex conjugation.
By using Eqs. (7), the conjugation rules of quaternions and
taking the limit M −→ ∞, we obtain

f −1
UU =

(
GC + 3

2
a2

)
12 ⊗ 12 − a2

2

3∑
i=1

σi ⊗ σi (17)

for the isotropic model and

f −1
UU = (GC + 2 a2)12 ⊗ 12 − a2

2∑
i=1

σi ⊗ σi (18)

for the anisotropic model with GC = G1 + G2 + 2x2. By
summing Eqs. (12), (15), and (16), we find the following
expression for the average conductance for the isotropic and
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anisotropic models, respectively:

〈giso〉 = 2
G1G2

G1 + G2

[
1 − (G1�2 + G2�1)

(G1 + G2)

(
1

GC + 2a2
− a2

GC(GC + 2a2)

)]
, (19)

〈ganiso〉 = 2
G1G2

G1 + G2

[
1 − (G1�2 + G2�1)

2(G1 + G2)

(
1

GC + 2a2
+ 1

GC + 4a2
− 2a2

GC(GC + 2a2)

)]
. (20)

These equations are the central results of this section. They contain the combined contributions of magnetic field,
spin-orbit scattering, and barriers of arbitrary transparencies to the average conductance of a quantum dot with nonideal contacts.
The leading terms in both equations are classical contributions, while the subleading terms are dominant quantum interference
corrections. As an important check, we set �1 = �2 = 1 in Eq. (20) and it yields the result obtained in Ref. 9. In Fig. 1, we
plot the weak-localization terms of both Eqs. (19) and (20) as a function of the magnetic field parameter x for several fixed
values of the spin-orbit parameter a. Comparing the isotropic model (full lines) with the anisotropic one (symbols), we see an
overall qualitative agreement and only a small quantitative difference between the results at intermediate values of the spin-orbit
parameter a. Finally, Eq. (19) shows that the presence of the tunnel barriers generates, in both the isotropic and anisotropic
models, a linear suppression to the weak-localization correction in the opaque limit, defined in Ref. 24 through the limit
�i → 0 with Gi fixed, for all values of the magnetic field and the spin-orbit scattering parameters. This behavior, according
to the semiclassical trajectory-based approach of Ref. 24, occurs due to a competition between tunneling and interference,
two fundamental aspects of quantum mechanics. It is interesting to point out that, in the semiclassical trajectory-based
approach, quantum corrections to any observable arise from loops that are added in the corresponding “classical” leading
diagram.25,26

C. Average shot-noise power

We now turn to the diagrammatic perturbative expansion of the average shot-noise power 〈p〉. The essential idea is to
employ the decomposition 〈p〉 = 〈g〉 − 〈h〉, where h ≡ Tr(t t†)2 and then apply to 〈h〉 the same scheme described in Sec. II B.
Interestingly, one can use in the crossover problem of a quantum dot with nonideal contacts the same diagrams that appear in the
pure orthogonal class. A detailed account of the whole set of diagrams can be found in Ref. 15. The calculation is straightforward,
albeit somewhat cumbersome. Here, we show only the final result, which reads as

〈piso〉 = 2G1G2
[
G1G2(G1 + G2) + G3

1(1 − �2) + G3
2(1 − �1)

] /
[G1 + G2]4 + 2G1G2(G1�2 + G2�1)[A6,0x

6 + A4,2x
4a2

+A2,4x
2a4 + A4,0x

4 + A0,4a
4 + A2,2x

2a2 + A2,0x
2 + A0,2a

2 + A0,0]/
[
G2

C(G1 + G2)5(GC + 2a2)2
]

(21)

for the isotropic model, with Ai,j shown in Eq. (A1), and

〈paniso〉 = 2G1G2
[
G1G2(G1 + G2) + G3

1(1 − �2) + G3
2(1 − �1)

] /
[G1 + G2]4 + 2G1G2(�2G1 + �1G2)[B10,0x

10

+B8,2x
8a2 + B2,8x

2a8 + B8,0x
8 + B0,8a

8 + B6,4x
6a4 + B4,6x

4a6 + B6,2x
6a2 + B2,6x

2a6 + B6,0x
6 + B0,6a

6

+B4,4x
4a4 + B4,2x

4a2 + B2,4x
2a4 + B4,0x

4 + B0,4a
4 + B2,2x

2a2 + B2,0x
2 + B0,2a

2 + B0,0]/

[(GC + 4a2)2(GC + 2a2)2(GC)2(G1 + G2)5] (22)

for the anisotropic model, with Bi,j shown in Eq. (A2). These equations are the central results of this section. They contain
the combined contributions of magnetic field, spin-orbit scattering, and barriers of arbitrary transparencies to the average
shot-noise power of a quantum dot with nonideal contacts. If we set �1 = �2 = 1 in Eq. (22), we recover the result obtained
in Ref. 27. As a further test, we set x = a = 0 and recover the result obtained in Refs. 14 and 15. Note that, in the opaque
limit defined in Sec. II B, the WL correction to shot-noise power tends linearly to zero, as expected. In Fig. 2, we show the
general behavior of the WL correction in both the isotropic (full lines) and the anisotropic (symbols) models as a function
of the magnetic field parameter x for several fixed values of the spin-orbit parameter a. We see again an overall qualitative
agreement between the models with only a small quantitative difference showing up at intermediate values of the spin-orbit
parameter a.

The results of Eq. (21) can be best understood through diagrams in the planes (x,a) and (�1,�2) for fixed N2/N1 ≈ 0.67, as
shown in Fig. 3. The most important feature is the existence of regions in parameter space denoted (−) and (+) in Figs. 3(c)
and 3(d), where 〈pWL〉 < 0 and 〈pWL〉 > 0, respectively. Consequently, a system subject to a weak perpendicular magnetic field
exhibits depletion-amplification transitions in the quantum correction to the average shot-noise power. Note that the region that
was positive (+) in Fig. 3(c) becomes negative (−) in Fig. 3(d) and vice versa. Figure 3(e) shows the orthogonal-symplectic
crossover for x = 0.

035453-4



TUNABLE CROSSOVERS FOR THE QUANTUM . . . PHYSICAL REVIEW B 84, 035453 (2011)

FIG. 1. Weak-localization correction to the average conductance
as a function of the magnetic field parameter x for fixed values of
the spin-orbit parameter a. The full lines correspond to the isotropic
model, while the symbols correspond to the anisotropic model. In
both cases, we used �1 = 0.8, �2 = 0.9, and N2/N1 ≈ 0.67.

III. CIRCUIT THEORY

Considering the complexity of the analytical expressions
for the average shot-noise power shown in the preceding
section, we found it wise to check it via an independent method.
A technique that stands out for its simplicity is quantum circuit
theory (QCT).16–18 In its present form, QCT can deal only with
the isotropic model. Our calculations are based on a recent
extension of QCT (Ref. 28) to account for weak-localization
corrections to quantum transport observables. The starting
point of QCT is the basic conservation law of pseudocurrents
I (φ) = I1(φ − χ ) = I2(χ ), where I1 and I2 represent the
pseudocurrents at leads 1 and 2, respectively, φ is a fictitious

FIG. 2. Weak-localization correction to the average shot-noise
power as a function of the magnetic field parameter x for fixed values
of the spin-orbit parameter a. The full lines correspond to the isotropic
model, while the symbols correspond to the anisotropic model. In
both cases, we used �1 = 0.8, �2 = 0.9, and N2/N1 ≈ 0.67. Note
the change of sign in the WL correction as a function of x.

FIG. 3. Diagrams showing the depletion-amplification transition
for N2/N1 ≈ 0.67. (a) Diagrams (x, a) separating positive (+)
(amplification) and negative (−) (depletion) regions for �1 = 1 with
�2 = 0,3 (continuous lines) and �2 = 0,7 (dashed lines); (b) positive
(+) and negative (−) regions in the plane (�1,�2) for x = 2 with
a = 6 (continuous lines) and a = 10 (dashed lines); (c) diagram in
the plane (�, x), obtained by setting �1 = �2 = � and by taking
the limit a → 0; (d) diagram similar to (c), obtained by taking the
limit a → ∞; (e) diagram in the plane (�, a), obtained by setting
�1 = �2 = � and by taking the limit x → 0.

pseudopotential at one of the reservoirs, and χ is the value
of the pseudopotential at the quantum dot. The effect of
the barriers is introduced via the following “current-voltage”
relations:

Ip(φ) =
Np∑
n=1

2�pn tan(φ/2)

1 + (1 − �pn) tan2(φ/2)
, p = 1,2. (23)

The basic idea for the calculation of WL corrections within
QCT is the interpretation of the pseudocurrent conservation
law as a saddle-point approximation to a certain functional
integral. Fluctuations around this dominant saddle-point term
are interpreted as quantum interference corrections. We may
thus introduce an expansion in inverse powers of the classi-
cal conductance as follows: I (β)(φ) = Isp(φ) + IWL(φ) + · · ·
with Isp and IWL denoting the saddle-point solution and the
WL correction, respectively. For quantum dots with arbitrary
contacts and in the presence of both magnetic field and
spin-orbit scattering, Campagnano and Nazarov28 were able
to obtain an equation for IWL(φ), which in our notation
reads as
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IWL(φ) = 1

2

d

dφ

[
ln

(
M+(φ) + 4x2

M−(φ) + 4x2

)

+ 3 ln

(
M+(φ) + 4x2 + 4a2

M−(φ) + 4x2 + 4a2

)]
, (24)

where x and a are defined as in Sec. II A. The auxiliary
functions M±(φ) are given by

M+(φ) = 2
I ′
sp(φ)

1/4 − [χ ′(φ)]2

M−(φ) = 2Isp(φ)

[
cot

(
χ (φ) + φ

2

)
− cot

(
χ (φ) − φ

2

)]
,

with I ′
sp(φ) ≡ dIsp(φ)/dφ. The intermediate phase function

χ (φ) is obtained by solving the saddle-point equation Isp(φ) =
I1(φ/2 + χ ) = I2(φ/2 − χ ). For equivalent channels �pn =
�p, the above conservation law yields a polynomial equation
of fourth degree. A subtle technical detail of this procedure
is the selection of the physical root of this equation, which,
after being inserted into Eq. (24), yields the explicit form of
the current-voltage relation I (φ). The average conductance
and the average shot-noise power are then obtained from the
relations

〈giso〉 = cos2(φ/2)

sin(φ)
I (φ)

∣∣∣∣
φ=0

,

〈piso〉 = − cot(φ/2)
d

dφ

(
cos2(φ/2)

sin(φ)
I (φ)

)∣∣∣∣
φ=0

. (25)

We carried out this calculation and obtained results that are in
full agreement with those presented in previous sections.

IV. DISCUSSION AND CONCLUSIONS

In Figs. 1 and 2, we showed the WL correction to
the average conductance and the average shot-noise power
[Eqs. (19) and (21), respectively] as a function of magnetic
field parameter x and spin-orbit parameter a. Note that, in
〈gWL〉, the depletion-amplification effect, i.e., a change of sign,
occurs by varying a with fixed x, which corresponds to the
standard crossover between universality classes. On the other
hand, we observe an unexpected depletion-amplification effect
in 〈pWL〉 as a function of x when a = 0 (orthogonal-unitary
crossover) and a → ∞ (symplectic-unitary crossover). This
means that, in order to amplify or deplete the dominant
semiclassical contribution to the shot-noise power, we do not
need in general to change the rate of spin-orbit scattering.
The intensity of the general crossover depends jointly on
the number of open scattering channels in the leads, on the
barriers’ transparencies, on the magnetic field parameter x,
and on the spin-orbit parameter a.

A detailed analysis of the crossover in the particular case
of ideal contacts was presented by Béri and Cserti8 and, more
recently, by Saito and Nagao.29 They found the very simple
relation

〈pWL〉
〈gWL〉 = −

(
N1 − N2

N1 + N2

)2

, (26)

which we reproduce by setting �1 = �2 = 1 in Eqs. (19)
and (21). The remarkable aspect of Eq. (26) is that it is
universal in the sense that it is independent of the crossover
parameters x and a. We observe, however, that in the presence
of tunnel barriers, the ratio 〈pWL〉/〈gWL〉 always depends
on the crossover parameters and the universality is broken.
Another noteworthy feature about 〈pWL〉/〈gWL〉 is that it is
not suppressed in the opaque limit. For instance, if we take the
opaque limit and set x = 0 = a, we obtain

〈pWL〉
〈gWL〉 = −3G1G2 (G1 − G2)

(
G2

2 − G2
1

)
(G1 + G2)2 . (27)

From a conceptual point of view, the results presented in
this paper provide a powerful test for comparing different
theoretical approaches to quantum transport, such as quantum
circuit theory, the supersymmetric nonlinear σ model, the
random-scattering-matrix approach, and the trajectory-based
semiclassical theory. Furthermore, our results exhibit an
interesting and nontrivial competition between tunneling and
interference, which can be controlled experimentally by
varying an external magnetic field and gate-voltage-induced
spin-orbit scattering. We also would like to remark that many
of the transitions predicted in this paper could become useful
tools to detect, in a controlled way, the weak-localization
correction to conductance and shot-noise power in ballistic
chaotic quantum dots. Experiments with tunable barriers, such
as those presented in Refs. 30–32, are already able to detect
small variations in the electric current and in this way extract
both the full counting statistics and cumulants up to the fifth
order. Gate-controlled spin-orbit scattering has also been used
as tools to monitor quantum interference effects, such as in
Refs. 33 and 34. As a final remark, we point out that, although
the effect predicted in this paper is harder to detect than the
shot-noise power itself, since in general 〈pWL〉/〈p〉 ∼ 1/N ,
and numerical simulations indicate the onset of the semiclas-
sical regime around N ∼ 50, one can see from Eqs. (26) and
(27) that the effect can be considerably enhanced by tuning
the contact conductances Gi = Ni�i of the barriers.
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APPENDIX

We give below explicit expressions for the A and B coefficients shown in Eqs. (21) and (22)

A6,0 = 8
[−G1G2(G1 + G2) − 3

(
G3

1 + G3
2

) + 4
(
G3

2�1 + G3
1�2

)]
,

A4,2 = 4
[−G1G2(G1 + G2) − 3

(
G3

1 + G3
2

) + 4
(
G3

2�1 + G3
1�2

)]
,

A2,4 = −4
[−G1G2(G1 + G2) − 3

(
G3

1 + G3
2

) + 4
(
G3

2�1 + G3
1�2

)]
,

A4,0 = 4 (G1 + G2)
[
12

(
G3

1�2 + G3
2�1

) − 9
(
G3

1 + G3
2

) + G1G2(G1 + G2) − 4G1G2(G1�2 + G2�1)
]
,
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A0,4 = −2(G1 − G2)(G1 + G2)
[
4
(
G2

1�2 − �1G
2
2

) + 3
(
G2

2 − G2
1

)]
,

A2,2 = 4(G1 + G2)2
[
4
(
G2

1�2 + G2
2�1

) − 3
(
G2

1 + G2
2

) − 2G1G2
]
,

A2,0 = 2(G1 + G2)2 [
12

(
G3

1�2 + G3
2�1

) − 9
(
G3

1 + G3
2

) + 5G1G2(G1 + G2) − 8G1G2(G1�2 + G2�1)
]
,

A0,2 = (G1 + G2)2
[−3

(
G3

1 + G3
2

) + 4
(
G3

2�1 + G3
1�2

) − 9G1G2(G1 + G2) + 8G1G2(G1�2 + G2�1)
]
,

A0,0 = (G1 − G2)(G1 + G2)
[
4
(
G2

1�2 − �1G
2
2

) + 3
(
G2

2 − G2
1

)]
, (A1)

B0,0 = (G1 − G2)(G1 + G2)5 [
4
(
G2

1�2 − �1G
2
2

) − 3
(
G2

1 − G2
2

)]
,

B2,8 = 192G3
2 − 256�2G

3
1 − 256�1G

3
2 + 64G2

2G1 + 64G2G
2
1 + 192G3

1,

B0,8 = −32(G1 − G2)(G1 + G2)
[
4
(
G2

1�2 − �1G
2
2

) − 3
(
G2

1 − G2
2

)]
,

B4,6 = 96G3
2 + 96G3

1 − 128�2G
3
1 + 32G2G

2
1 − 128�1G

3
2 + 32G2

2G1,

B2,6 = −32(G1 + G2)
(
4�2G

3
1 − 3G3

1 + 11G2G
2
1 − 12G2

1�2G2 − 12G1�1G
2
2 + 11G2

2G1 − 3G3
2 + 4�1G

3
2

)
,

B0,6 = −8(G1 + G2)2
(
4�2G

3
1 − 3G3

1 + 23G2G
2
1 − 24G2

1�2G2 + 23G2
2G1 − 24G1�1G

2
2 − 3G3

2 + 4�1G
3
2

)
,

B6,4 = −384G3
2 − 384G3

1 + 512�1G
3
2 − 128G2

2G1 − 128G2G
2
1 + 512�2G

3
1,

B4,4 = 64(G1 + G2)
(−9G3

1 + 12�2G
3
1 + 2G2

1�2G2 − 5G2G
2
1 + 2G1�1G

2
2 − 5G2

2G1 − 9G3
2 + 12�1G

3
2

)
,

B2,4 = 32(G1 + G2)2
(−9G3

1 + 12�2G
3
1 − 7G2G

2
1 + 4G2

1�2G2 + 4G1�1G
2
2 − 7G2

2G1 − 9G3
2 + 12�1G

3
2

)
,

B0,4 = 16(G1 + G2)3(−3G3
1 + 4�2G

3
1 − 3G2G

2
1 + 2G2

1�2G2 − 3G2
2G1 + 2G1�1G

2
2 − 3G3

2 + 4�1G
3
2

)
,

B8,2 = −384G3
2 − 384G3

1 + 512�1G
3
2 − 128G2

2G1 − 128G2G
2
1 + 512�2G

3
1,

B6,2 = 128(G1 + G2)
(−6G3

1 + 8�2G
3
1 − G2

1�2G2 − G2G
2
1 − G1�1G

2
2 − G2

2G1 + 8�1G
3
2 − 6G3

2

)
,

B4,2 = 192(G1 + G2)2(−3G3
1 + 4�2G

3
1 − G2

1�2G2 − G1�1G
2
2 − 3G3

2 + 4�1G
3
2

)
,

B2,2 = 32(G1 + G2)3
(−6G3

1 + 8�2G
3
1 − 3G2

1�2G2 + G2G
2
1 + G2

2G1 − 3G1�1G
2
2 + 8�1G

3
2 − 6G3

2

)
,

B0,2 = 8(G1 + G2)4
(−3G3

1 + 4�2G
3
1 + G2G

2
1 − 2G2

1�2G2 − 2G1�1G
2
2 + G2

2G1 − 3G3
2 + 4�1G

3
2

)
,

B10,0 = −32G2G
2
1 + 128�2G

3
1 − 96G3

1 − 96G3
2 + 128�1G

3
2 − 32G2

2G1,

B8,0 = 16(G1 + G2)
(−15G3

1 + 20�2G
3
1 − 4G2

1�2G2 − G2G
2
1 − 4G1�1G

2
2 − G2

2G1 + 20�1G
3
2 − 15G3

2

)
,

B6,0 = 16(G1 + G2)2
(−15G3

1 + 20�2G
3
1 − 8G2

1�2G2 + 3G2G
2
1 + 3G2

2G1 − 8G1�1G
2
2 + 20�1G

3
2 − 15G3

2

)
,

B4,0 = 8(G1 + G2)3
(−15G3

1 + 20�2G
3
1 + 7G2G

2
1 − 12G2

1�2G2 − 12G1�1G
2
2 + 7G2

2G1 + 20�1G
3
2 − 15G3

2

)
,

B2,0 = 2(G1 + G2)4(−15G3
1 + 20�2G

3
1 + 11G2G

2
1 − 16G2

1�2G2 − 16G1�1G
2
2 + 11G2

2G1 + 20�1G
3
2 − 15G3

2

)
. (A2)
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RAMOS, BARBOSA, AND MACÊDO PHYSICAL REVIEW B 84, 035453 (2011)

18For a review, see Yu. V. Nazarov and Ya. M. Blanter, Quantum
Transport: Introduction to Nanoscience (Cambridge University
Press, Cambridge, 2009).

19G. C. Duarte-Filho, A. F. Macedo Junior, and A. M. S. Macêdo,
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