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Transport properties in the Kondo regime of a nanosystem displaying uniaxial magnetic anisotropy (such as
a magnetic molecule, magnetic adatom, or quantum dot coupled to a localized magnetic moment) are analyzed
theoretically. In particular, the influence of spin-polarized transport through a local orbital of the system and
exchange coupling of conduction electrons to the system’s magnetic core on the Kondo effect is discussed. The
numerical renormalization-group method is applied to calculate the spectral functions and linear conductance in
the case of the parallel and antiparallel configurations of the electrodes’ magnetic moments. It is shown that both
the magnetic anisotropy as well as the exchange coupling between electrons tunneling through the conducting
orbital and magnetic core play an important role in the formation of the Kondo resonance, leading generally
to its suppression. Specific transport properties of such a system appear also as a nontrivial behavior of tunnel
magnetoresistance. It is also shown that the Kondo effect can be restored by an external magnetic field in both
the parallel and antiparallel magnetic configurations.

DOI: 10.1103/PhysRevB.84.035445 PACS number(s): 72.25.−b, 75.50.Xx, 85.75.−d

I. INTRODUCTION

The growing trend toward building ever more efficient and
smaller electronic devices inevitably draws the researchers’
attention to nanoscopic hybrid systems. In this respect, single
atoms or molecules seem to be promising prospects, as
their incorporation into electronic nanodevices allows for
developing novel systems capable of performing strictly
imprinted functions,1–6 among which information storage is
of key interest.7–10 Consequently, due to recent advances
in experimental techniques enabling us to address transport
through individual atoms and molecules, both natural as
well as artificial (quantum dots) systems exhibiting magnetic
anisotropy, such as magnetic atoms of spin S > 1/2 (i.e., Fe,
Co, or Mn)9,11–15 or single-molecule magnets (SMMs),16–20

have become the object of intensive studies.
It has been suggested, and in the case of magnetic adatoms

also experimentally proven,9 that the magnetic state of such
systems can by controlled by the use of spin-polarized
currents21–26 or spin bias.27 This practically means that the
system’s magnetic moment can be switched between two
metastable states of minimal energy by only applying an elec-
tric/spin current pulse of a proper amplitude.24 Furthermore,
if attached to two metallic nonmagnetic electrodes a SMM
can act as a spin filter.28–30 If, however, coupled to electrodes
characterized by unequal spin polarizations, the molecule can
reveal transport characteristics typical of a spin diode.31 Most
of these results have been obtained in the limit of weak
coupling between a SMM and reservoirs of spin-polarized
electrons. Nevertheless, in some situations, when mixing of
localized electron states responsible for transport properties
of the molecule and extended electron states in electrodes is
significant, such an assumption does not necessarily have to
be correct.

In the strong-coupling regime the electronic correlations
can lead to an additional resonance in the density of states at the

Fermi level of electrodes, known as the Kondo-Abrikosov-Suhl
resonance.32–34 Since the end of the 1990s, the presence of
the Kondo effect has been successively demonstrated in a
large variety of nanoscopic objects like quantum dots,35–37

magnetic adatoms,38,39 nanotubes,40 and different types of
molecules: Co(II)-based coordination complexes;41 divana-
dium molecules;42 and C60 molecules attached to gold43 or
ferromagnetic nickel electrodes.44 However, in the case of
nanosystems characterized by large spins, the prominent role
of the magnetic anisotropy in the formation of the Kondo effect
has been experimentally established only very recently.14,45 It
turned out that the Kondo effect can be then tuned by changing
both the orientation (e.g., by controlling the adatom’s local
environment14) and magnitude (e.g., by mechanical straining
of the molecule45) of the magnetic anisotropy. Moreover, Parks
et al.45 were able to tune the anisotropy constant continuously
and to modify accordingly the energy spectrum underlying the
Kondo state. As a result, they managed to observe a crossover
from the fully screened to underscreened Kondo effect. It
is worthy of note that more recently electric-field control
of magnetic anisotropy has been experimentally established
for a SMM embedded into a planar three-terminal device.20

Although a few theoretical works focused on transport related
issues in SMMs in the Kondo regime have been already
published,46–53 experimental evidence of the Kondo effect in
transport through SMMs has been found only very recently.20

The earlier works on the Kondo phenomenon in transport
through SMMs have been primarily focused on the role of
transversal magnetic anisotropy, and hence also on the role of
quantum tunneling of the SMM’s spin in the formation of the
Kondo state. It has been shown that the interplay of quantum
tunneling and spin-exchange processes between the molecule
and tunneling electrons may result in the pseudo-spin-1/2
Kondo effect.46,47 Furthermore, it was soon realized that when
even a moderate transverse magnetic field is applied, any
qualitative difference between the mechanisms of the Kondo
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effect for molecules with half- and full-integer spins cease to
exist.48 Mapping of the Anderson-type Hamiltonian describing
a SMM onto the spin-1/2 anisotropic Kondo Hamiltonian49 led
to the conclusion that, depending on whether the molecule’s
total spin is reduced or augmented in the singly charged state,
the coupling in the Kondo Hamiltonian is antiferromagnetic
or ferromagnetic, respectively. In the former case the Kondo
effect is revealed, whereas in the latter one no resonance at the
Fermi level is present due to renormalization of the transverse
coupling to zero. In addition, the Kondo effect is expected
to oscillate as a function of the magnitude of transverse field
due to the Berry-phase periodical modulation of the tunnel
splitting.48 Finally, the nonequilibrium spin dynamics of a
SMM, triggered by a sudden change in the magnetic-field
amplitude has been studied, with the main emphasis on the
time evolution of the Kondo screening.50

Since physical mechanisms governing Kondo correlations
in spin-polarized transport through nanoscopic systems ex-
hibiting the magnetic anisotropy, such as magnetic adatoms or
SMMs, are still at the early stage of research, the objective of
the present paper is to provide further insight into the problem.
In particular, we investigate how magnetic anisotropy affects
the system’s transport characteristics such as conductance
and tunnel magnetoresistance (TMR) in the linear-response
regime. To properly describe the transport properties in the
strong-coupling regime, we employ the Wilson’s numerical
renormalization-group (NRG) approach.32,54,55 This method
is known as very powerful and essentially exact in solving
quantum impurity problems.

The paper is organized as follows. In Sec. II we de-
scribe the model Hamiltonian used in calculations and
provide a brief introduction to the NRG method. Numerical
results and their discussion are given in Sec. III, where we
analyze the spectral functions of the orbital level as well as
the conductance and tunnel magnetoresistance (TMR) in the
linear-response regime. The above quantities are analyzed as
functions of the orbital level position, strength, and type of
exchange coupling, and the anisotropy constant. In addition,
we also discuss the effect of external magnetic field. Finally,
the summary and conclusions are given in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model

We consider a generic theoretical model that allows for
capturing essential features of quantum objects such as mag-
netic adatoms, quantum dots coupled to localized magnetic
moments, and SMMs; see Fig. 1. It is assumed that electronic
transport takes place via a single local orbital level (OL)
of the system (conducting orbital of a SMM, adatom, or
quantum dot), which is coupled to electrodes. Moreover, the
OL is also exchange-coupled to the corresponding magnetic
core. Without loss of generality, we will henceforth refer to
the systems under investigation as magnetic quantum dots
(MQDs).

The total Hamiltonian of a MQD coupled to external leads
can be written as

H = HMQD + Hleads + Htun. (1)

(a)

(b) (c) (d)

MQD
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electrode
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S
J
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adatom QD + adatom SMM

FIG. 1. (Color online) (a) Schematic representation of the system
under consideration. The system consists of two ferromagnetic
electrodes to which a magnetic quantum dot (MQD) exhibiting
magnetic anisotropy is attached. As the MQD one can conceive either
(b) a magnetic adatom (i.e., Fe, Co, Mn), (c) semiconductor quantum
dot coupled to a magnetic moment, or (d) a single-molecule magnet
(SMM)—here, only the magnetic core of the Fe4 molecule (Ref. 56)
is schematically depicted.

The first term represents the MQD and has the form21–25

HMQD = −DS2
z +

∑
σ=↑,↓

ε nσ + U n↑n↓

− J s · S + Bz(Sz + sz), (2)

where D stands for the uniaxial anisotropy constant of the
MQD, while Sz denotes the zth component of the MQD’s
internal spin operator S. Since in the present paper we focus
only on systems displaying magnetic bistability, the anisotropy
constant is assumed to be positive (D > 0). Furthermore,
nσ = c†σ cσ is the OL occupation operator, where c†σ (cσ ) creates
(annihilates) a spin-σ electron of energy ε in the OL. The
Coulomb energy of two electrons of opposite spins occupying
the OL is given by U . The penultimate term of Eq. (2)
accounts for exchange coupling between the magnetic core
of a MQD and the spin of an electron in the OL, represented
by s = 1

2

∑
σσ ′ c†σ σ σσ ′cσ ′ , where σ ≡ (σx,σ y,σ z) is the Pauli

spin operator. The J coupling can be either of ferromagnetic
(J > 0) or antiferromagnetic (J < 0) type. Finally, the last
term of Eq. (2) describes the Zeeman interaction of the MQD
with an external magnetic field B = (0,0,Bz) oriented along
the easy axis of a MQD. Note that we put here gμB ≡ 1.

The ferromagnetic metallic electrodes, to which a MQD is
coupled through the OL, are characterized by noninteracting
itinerant electrons with the dispersion relation ε

q

kσ , where q

indicates either the left (q = L) or right (q = R) electrode, k
denotes a wave vector, and σ is a spin index of an electron.
Thus the leads’ Hamiltonian is given by

Hleads =
∑

q=L,R

∑
k

∑
σ=↑,↓

ε
q

kσ a
q†
kσ a

q

kσ , (3)

with a
q†
kσ (aq

kσ ) being the relevant electron creation (annihila-
tion) operator. At this point, it should also be mentioned that
in the present paper we limit the discussion to collinear (par-
allel and antiparallel) configurations of electrodes’ magnetic
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moments. Furthermore, the MQD’s easy axis is assumed to
be collinear with these moments as well. Finally, electron
tunneling processes between the MQD and electrodes are
included in the term Htun,

Htun =
∑

q=L,R

∑
k

∑
σ=↑,↓

T
q

kσ a
q†
kσ cσ + H.c., (4)

where T
q

kσ denotes the tunnel matrix element between the OL
and the qth lead.

In the linear-response regime, it is numerically convenient
to introduce the following canonical transformation:57–59(

ae
kσ

ao
kσ

)
= 1

Vkσ

(
T L

kσ T R
kσ

−T R
kσ T L

kσ

) (
aL

kσ

aR
kσ

)
, (5)

where Vkσ =
√
|T L

kσ |2 + |T R
kσ |2, and the label e (o) denotes

the even (odd) combination of the leads operators. Such
a rotation in the space of the left-right electron operators
results in the separation of the total Hamiltonian, Eq. (1),
into two independent parts. The first one involves the OL
coupled to a single electron reservoir described by the even
linear combination of the leads’ electron operators, ae

kσ ,
while the other one is related with noninteracting electrons
decoupled from MQD and described by the odd operators ao

kσ .
Consequently, the tunneling Hamiltonian can be written as

Htun =
∑

k

∑
σ=↑,↓

Vkσ

[
a

e†
kσ cσ + c†σ ae

kσ

]
, (6)

with Vkσ being effective OL-lead tunneling matrix elements.
In the following we assume that the full spin dependence is
taken into account through the matrix elements Vkσ .60,61 For
simplicity, we assume a flat conduction band in the interval
[−W,W ], so that ρσ (ω) ≡ ρ = 1

2W
, with W representing the

cutoff energy of the system and W ≡ 1 taken as the energy
unit. Finally, the energy dependence of Vkσ is neglected,
Vkσ ≡ Vσ .62 Under these circumstances, the overall effect
of the ferromagnetic reservoir on the MQD is completely
determined by the hybridization function �σ ,

�σ = πρ|Vσ |2. (7)

B. Method of calculations

In order to determine transport properties in the
strong-coupling regime, we use Wilson’s numerical
renormalization-group method.32,54,55 The NRG technique
consists of logarithmic discretization of the conduction
band (with a discretization parameter � > 1) into intervals
[�−(n+1)W,�−nW ] and [−�−nW, − �−(n+1)W ] for
n = 0,1,2,3, . . ., which allows for resolving transport
properties on energy scales logarithmically approaching the
Fermi level. After having discretized the conduction band,
such a model is mapped onto a semi-infinite chain, whose
first site is coupled to the impurity (in our case the MQD).
The Hamiltonian then reads32,55

H = HMQD +
∑

σ=↑,↓

√
�σ

πρ
[c†σ f0σ + f

†
0σ cσ ]

+
∞∑

n=0

∑
σ=↑,↓

tn[f †
nσ fn+1σ + f

†
n+1σ fnσ ]. (8)

The operators fnσ (f †
nσ ) correspond to the nth site of the Wilson

chain, with exponentially decaying hopping matrix elements tn
between neighboring sites of the chain.55 As a consequence, by
adding consecutive sites, one is able to access transport at lower
and lower energy scales. In this way the method generally
provides a nonperturbative description of the crossover from
a free magnetic impurity at high temperatures to a screened
spin at low temperatures.55 The Hamiltonian (8) can be solved
iteratively by adding consecutive sites of the chain. This
procedure allows for resolving static and dynamic properties of
the system at energy scale �−n/2, with n being a given iteration.

Since the NRG calculations may in general pose a
serious numerical challenge, it becomes essential to take
advantage of as many available symmetries of the system’s
Hamiltonian as possible. To efficiently address the present
problem, we have employed the flexible density-matrix nu-
merical renormalization-group (DM-NRG) code,63 which can
exploit an arbitrary number of both Abelian and non-Abelian
symmetries.64 In the case under discussion, the Ucharge(1) ×
Uspin(1) symmetry of the model has been used, so that the zth
component of the total spin,

S̃t
z = St

z + 1

2

∞∑
n=0

(f †
n↑fn↑ − f

†
n↓fn↓) , (9)

where St
z = Sz + sz, as well as the total charge

Q̃t =
∑

σ

c†σ cσ − 1 +
∞∑

n=0

(∑
σ

f †
nσ fnσ − 1

)
, (10)

served as quantum numbers according to which the states of
the Hamiltonian were classified during computation. Finally,
the discretization parameter � = 1.8 has been taken in
calculations, and we have kept 2000 states after each step
of the iteration.

The central quantity of interest is the OL spin-dependent
spectral function55,65

Aσ (ω) = − 1

π
Im 〈〈cσ |c†σ 〉〉r

ω , (11)

where 〈〈cσ |c†σ 〉〉r
ω denotes the Fourier transform of the retarded

Green’s function 〈〈cσ |c†σ 〉〉r
t = −iθ (t)〈{cσ (t),c†σ (0)}〉 of the

orbital level. Some technical details concerning calculation
of the spectral function can be found in Appendix A.

Having found the spectral function, one can determine the
linear-response conductance g from the Landauer-Wingreen-
Meir formula,66–69 which at T = 0 yields

g = π
∑

σ

2�L
σ �R

σ

�L
σ + �R

σ

· Aσ (ω = 0)

(
in units of

2e2

h

)
, (12)

with �L
↑(↓) = �

2 (1 ± P ) and �R
↑(↓) = �

2 (1 ± P ) for the parallel

magnetic configuration of electrodes, while �L
↑(↓) = �

2 (1 ± P )
and �R

↑(↓) = �
2 (1 ∓ P ) for the antiparallel one. We assumed

that both electrodes are made of the same material and
P denotes their spin polarization. The effective coupling
between the MQD and the reservoir for the parallel magnetic
configuration is �P

↑(↓) = �(1 ± P ), while for the antiparallel
one �AP

↑(↓) = �, with � = (�↑ + �↓)/2. Note that in the case
of left-right symmetric systems, �AP

↑(↓) is independent of σ in
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the antiparallel configuration, and hence the system behaves
effectively as coupled to nonmagnetic leads. As a result, the
linear spin-resolved conductance (in units of 2e2

h
) in the two

magnetic configurations is given by{
gP

↑(↓) = π
2 (1 ± P )�AP

↑(↓)(ω = 0),

gAP
↑(↓) = π

2 (1 − P 2)�AAP
↑(↓)(ω = 0),

(13)

with A
P/AP
σ being the spectral function in the respective

magnetic configuration.

III. NUMERICAL RESULTS AND DISCUSSION

Transport characteristics of the system, such as the linear-
response conductance g and tunnel magnetoresistance (TMR),
have been numerically calculated for a hypothetical MQD
characterized by the spin number S = 2. Since the key feature
of the transport regime under discussion is the presence of
the Kondo resonance, it is convenient to introduce the Kondo
temperature TK as the most relevant energy scale for the
system, to which other energy parameters will be related, if
necessary. In the present work, the Kondo temperature TK

is estimated from the half width at half maximum of the
Kondo resonance in spectral function at T = 0 for J = 0 and
P = 0.32,34 We note here that, for the sake of simplicity, we
assume kB ≡ 1, i.e., temperatures are also given in units of
energy. As a result, for the parameters used in Fig. 2, we get
TK/W ≈ 5 × 10−4 (TK/� ≈ 0.022).

Before presenting and discussing numerical results, it is
worth recalling that the Kondo effect appears as a result of
spin-exchange processes in the OL due to its strong coupling
to electrodes. This coupling is described here by the effective
hybridization parameter �, which introduces the Kondo

temperature TK as the relevant energy scale. However, the
model considered provides also another independent physical
mechanism (channel) through which the Kondo effect can be
modified, i.e., the exchange interaction J between an electron
in the OL and the MQD’s magnetic core. Therefore one can
expect the ratio of the J coupling and the Kondo temperature
TK to be the key parameter controlling whether or not the
Kondo resonance will appear. Indeed, we show below that
the electronic correlations between the OL and electrodes
effectively result in the formation of the Kondo resonance
only if |J | � TK. In order to see how the parameters of the
system, especially the J coupling and the magnetic anisotropy
D, influence the transport properties, we first calculate and
discuss the relevant spectral functions.

A. Spectral functions

In the following we will analyze dependence of the spectral
functions of the OL on some essential parameters of the
system. Figure 2 shows the normalized spin-resolved spectral
functions π�σAσ (ω) as a function of the OL energy ε

in the antiparallel and parallel magnetic configurations for
|J |/TK ≈ 2. In the antiparallel configuration the spectral
functions for both spin components are equal. In the parallel
configuration, on the other hand, the main contribution comes
from the spin-up electrons, which are the majority ones. In
both configurations and for both types of exchange coupling,
the spectral functions show clear resonances associated with
degeneracy of the neighboring charge states—compare the
boundaries between regions corresponding to different Q,
where Q denotes the average number of electrons occupying
the OL. In the singly occupied regime, Q = 1, the Kondo
effect due to hybridization of the OL spin with the conduction
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FIG. 2. (Color online) Normalized spin-resolved orbital level (OL) spectral functions, π�σ Aσ (ω), shown as a function of the OL energy ε

in the antiparallel (a),(b) and parallel (c)–(f) magnetic configurations. Top panel corresponds to the case of ferromagnetic (J > 0) coupling
between electrons in the OL and MQD’s magnetic core, while the bottom one presents results for the antiferromagnetic coupling. The variable Q

denotes the average number of electrons occupying the OL. The parameters are U/W = 0.3, D/U ≈ 1.7 × 10−4 (D/TK = 0.1), �/U ≈ 0.075,
|J |/� ≈ 0.044 (|J |/TK ≈ 2), Bz = 0, and P = 0.5. Note that the spectral functions are presented on a logarithmic scale.
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electrons of the leads should be present. However, there
are two ingredients that may generally suppress the Kondo
resonance: the exchange coupling J and the exchange field
due to the presence of ferromagnetic leads. Since the results in
Fig. 2 are shown for |J |/TK ≈ 2, only the reminiscent of the
Kondo effect can be observed. The suppression of the Kondo
resonance is especially visible for the antiferromagnetic cou-
pling (J < 0). Moreover, while in the case of ferromagnetic
coupling (J > 0) some residual Kondo resonance can still
be visible for the energy corresponding to the particle-hole
symmetry (ε = −U/2), the resonance is practically absent for
the antiferromagnetic coupling, though some side resonances
appear. The origin of these additional features will be discussed
further in the text.

Let us now analyze how the shape of spectral functions
in the Kondo regime evolves when the exchange interaction
between electrons in the OL and the MQD’s core is turned on
gradually; see Figs. 3(a)–3(f). Note that whenever we consider
behavior of the system in the particle-hole symmetric point,
i.e., for ε = −U/2, only the range of positive energies is
presented. As one might expect, the behavior of the system
for small values of |J |, i.e., |J | � TK, resembles that of a
single-level quantum dot, and a well defined and pronounced
Kondo peak in the antiparallel configuration of the electrodes’
magnetic moments is observed for ω � TK; see Figs. 3(a)
and 3(b). In the parallel configuration, on the other hand,
spin-dependent coupling to the electrodes acts as an effective
exchange field70 leading to spin splitting of the OL. This in
turn results in suppression of the Kondo effect, except for
the particle-hole symmetric point, ε = −U/2, as shown in
Figs. 3(c)–3(f), where the effective exchange field vanishes.
In the antiparallel configuration, the resultant coupling is the
same for the spin up and spin down when the system is left-
right symmetric. Consequently, there is no exchange field and
we observe a well-pronounced peak in the spectral function
at the Fermi level also outside the particle-hole symmetric
point.70–74

The height of the Kondo peak becomes reduced with the
increase of |J |, and for |J | � TK the peak almost completely
vanishes. We note that the disappearance of the resonance is
faster in the case of the antiferromagnetic coupling (J < 0);
see Figs. 3(b), 3(d), and 3(f). Furthermore, as the J coupling
grows, some additional features in the spectral functions
emerge. Apart from the Hubbard peak originating from the
Coulomb repulsion of two electrons in the OL, there are two
additional resonances for J > 0, marked as dashed lines A
and B in Fig. 3(a), and one resonance for J < 0, line C
in Fig. 3(b). Interestingly, the position of one of the two
resonances for J > 0 remains roughly independent of energy
(line A), whereas the other resonance moves toward larger
energies as J increases (line B); see Fig. 3(a).

Some insight into the physical origin of the resonances A,
B, and C can be gained by considering the lowest energy
states of a free-standing MQD with one extra electron in
the OL; see Figs. 3(g) and 3(h).75 First, we note that the
consequence of exchange interaction between an electron in
the OL and magnetic core is a decomposition of the molecular
magnetic states into two spin multiplets, corresponding to
S + 1/2 and S − 1/2. In addition, the sign of the coupling
parameter J determines which of the two multiplets has lower
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FIG. 3. (Color online) Normalized spin-resolved orbital level
(OL) spectral functions shown for different values of the exchange
parameter J in the case of (a),(c),(e) ferromagnetic (J > 0) and
(b),(d),(f) antiferromagnetic (J < 0) coupling, and for ε = −U/2.
The spectral function displays two additional resonances for J > 0,
marked by dashed lines A and B, and a single resonance for J < 0,
marked by dashed line C. The bottom panel (g),(h) illustrates the
dependence of several lowest energy states of a singly occupied MQD
on the parameter J (thick lines), and the corresponding probabilities
of finding the electron in a certain spin state for |± 3

2 〉± (thin
lines): α2 ≡ (A+)2 = (B−)2, while β2 ≡ (B+)2 = (A−)2 [for details
see Eq. (14) and the paragraph below it]. Remaining parameters as in
Fig. 2.

energy. Since we focus exclusively on the case of T = 0, it
is justified to take into account only the relevant low-energy
states in both spin-multiplets. These are presented in Figs.
3(g) and 3(h), where the zero-field (Bz = 0) energy of states
|± 5

2 〉, and |± 3
2 〉± is presented as a function of the coupling

parameter J . The superscript ± at the states |± 3
2 〉± is used to

distinguish between states of higher (+) and lower (−) energy.
We note that the state |± 5

2 〉 belongs to the spin multiplet
corresponding to S + 1/2, while for J > 0 the state |± 3

2 〉−
belongs to the multiplet S + 1/2 and the state |± 3

2 〉+ to the
multiplet S − 1/2 (note that we assumed S = 2). For J < 0,
the situation is opposite, i.e., |± 3

2 〉− belongs to the multiplet
S − 1/2 whereas the state |± 3

2 〉+ belongs to the multiplet
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S + 1/2. In the absence of external magnetic field the MQD’s
states of interest take the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣St
z = ± 5

2

〉 = |↑ (↓)〉OL ⊗ |± 2〉core,∣∣St
z = − 3

2

〉± = A±
−3/2|↓〉OL ⊗ |− 1〉core

+B±
−3/2|↑〉OL ⊗ |− 2〉core,∣∣St

z = + 3
2

〉± = A±
+3/2|↑〉OL ⊗ |+ 1〉core

+B±
+3/2|↓〉OL ⊗ |+ 2〉core,

(14)

with |·〉OL(core) denoting the spin state of OL (magnetic core).
The coefficients A±

m = A± exp[iφ±
m] and B±

m = B± exp[iγ ±
m ]

can be regarded as effective Clebsch-Gordan coefficients,
which are nontrivial functions of the system’s parameters J and
D.75 Here, φ±

m and γ ±
m are relevant phase factors. As above, the

superscript ± is used to distinguish between states of higher
(+) and lower (−) energy. It is worth emphasizing that, to
some extent, the situation under consideration is similar to the
case of a quantum dot subjected to an external magnetic field,
which leads to splitting of the Kondo resonance.35,70 However,
in the case of a simple quantum dot in a magnetic field there
are two energy levels, whereas the energy structure of a MQD
is much more complex, even in zero field. Moreover, except
for the states |± 5

2 〉, all MQD’s states for Q = 1 correspond
to an electron in the OL being in the superposition of spin-up
and spin-down states.

Let us now discuss cotunneling processes leading to the
resonances for ferromagnetic (FM) exchange coupling (J >

0); see the top panel of Fig. 3. We emphasize that now we
consider the regime of large J (i.e., J > TK and J < �),
where the zero-energy resonance is absent and only side
resonances (lines A and B) appear. Assume that initially the
molecule occupies the state |− 5

2 〉. Due to spin-flip cotunneling
processes, the MQD can be excited to one of the two states:
|− 3

2 〉− (resonance A) and |− 3
2 〉+ (resonance B); see Fig. 3(g).

Taking into account the energy spectrum75 one can estimate
the corresponding energy gaps for |J | � D as (exact formulas
in Appendix B)⎧⎨⎩�FM

1 ≈ 2SD

[
1 − 2(|J | − D)

(2S + 1)(|J | − 2D)

]
,

�FM
2 ≈ 2S+1

2 |J |.
(15)

Thus the resonance corresponding to the line A in Fig. 3(a)
is related to transitions characterized by the energy gap �FM

1 ,
while the resonance indicated by line B is associated with the
gap �FM

2 . Moreover, one can note that �FM
2 depends linearly

on J , whereas �FM
1 only slightly changes with J .

The picture presented above for J > 0 alters only slightly
when the exchange coupling changes to the antiferromagnetic
(AFM) one (J < 0); see Figs. 3(b), 3(d), and 3(f). The
position of the spin multiplets S + 1/2 and S − 1/2 is now
interchanged when compared to that for J > 0; Fig. 3(h).
When the MQD is initially in the state |− 3

2 〉−, then the
spin-flip cotunneling processes can excite the MQD to one
of the states: |− 5

2 〉 and |− 3
2 〉+. Moreover, for |J | � D,

the energy gaps associated with these transitions are roughly
equal,

�AFM
1 ≈ �AFM

2 ≈ 2S + 1

2
|J |. (16)
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FIG. 4. (Color online) Similar as in Fig. 3, but now the de-
pendence of the normalized spin-resolved spectral function on the
uniaxial anisotropy constant D is presented for |J |/TK ≈ 2. A
monochromatic color scheme is used here to highlight how the
position of the resonances changes with varying D.

As a consequence, only the resonance denoted by line C is then
visible in Fig. 3(b). The physical origin of the resonances in the
parallel magnetic configuration, Figs. 3(c)–3(e) and 3(d)–3(f),
can be accounted for in a qualitatively similar way. Finally,
weak vertical lines visible in Fig. 3 for ω = U correspond to
the resonance between singly occupied and empty OL.

As shown above, the exchange coupling of electrons in
the OL and magnetic core modifies the energy spectrum of a
MQD, and hence affects the Kondo effect. However, it has been
demonstrated experimentally14,20,45 that the energy spectrum
can also be modified by changing the anisotropy constant D.
Variation of the OL spectral functions with D is shown in
Fig. 4 for a specific value of |J |/TK ≈ 2. Since |J | > TK,
the zero-energy Kondo resonance is practically absent, and
only side resonances are visible. These resonances, marked in
Figs. 4(a) and 4(b) by the letters A, B, and C, correspond to
the relevant resonances in Figs. 3(a) and 3(b).

Especially interesting seems to be the case of J > 0, where
two resonances (A and B) emerge at D ≈ TK. By a closer
inspection of Fig. 4(g) one finds that this takes place when the
condition D � J/2 is satisfied. However, it should be noted
that according to our definition of the Kondo temperature,
the relation D = J/2 ≈ TK is only coincidental, and thus
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valid just for the current set of parameters. Moreover, in
the limit D � |J | the energy gaps introduced above can be
estimated as⎧⎪⎪⎨⎪⎪⎩

�FM
1 ≈ SJ − (2S + 1)2J 2

16(2S − 1)D
,

�FM
2 ≈ (2S − 1)D + (2S + 1)2J 2

16(2S − 1)D
,

(17)

so that �FM
1 is nearly constant with respect to D, whereas

�FM
2 depends almost linearly on D. At first glance, the latter

result appears to contradict the shape of the resonance B seen
in Fig. 4(a), so that consideration of the energy spectrum
becomes apparently insufficient. In order to account for this
disparity, we must also take into account the explicit form of
the MQD’s states contributing to the resonances; see Eq. (14).
For D > |J |/2, we have (B−)2 > (A−)2 and (A+)2 > (B+)2,
and as the magnetic anisotropy D increases, at some point
we get (B−)2 = (A+)2 ≈ 1 and (A−)2 = (B+)2 ≈ 0, Fig. 4(g),
which basically means that |− 3

2 〉− ≈ |↑〉OL ⊗ |− 2〉core and
|− 3

2 〉+ ≈ |↓〉OL ⊗ |− 1〉core. In other words, when D � |J |,
the cotunneling processes associated with transitions between
states |− 5

2 〉 and |− 3
2 〉− are allowed, while those between

states |− 5
2 〉 and |− 3

2 〉+ are forbidden. Consequently, the
resonance marked with a vertical dashed line in Fig. 4(a)
actually represents two independent resonances: B for D � |J |
and A for D � |J |.

To complete the discussion of spectral functions, we
note that the presence and behavior of resonance C for
the antiferromagnetic J coupling (J < 0), Fig. 4(b), can be
explained in a way similar to that for J > 0, with the relevant
energy gaps for D � |J | estimated as⎧⎪⎪⎨⎪⎪⎩

�AFM
1 ≈ S|J | + (2S + 1)2J 2

16(2S − 1)D
,

�AFM
2 ≈ (2S − 1)D + (2S + 1)2J 2

8(2S − 1)D
.

(18)

However, only virtual spin-flip transitions between the states
|− 3

2 〉− and |− 5
2 〉, and represented by the energy gap �AFM

1
[see Eq. (18)], are then possible. On the other hand, in the
opposite limit, D � |J |, both types of spin-flip cotunneling
processes characteristic for the antiferromagnetic J coupling
(as discussed earlier) can in principle operate. Both these
transitions are associated with the same energy gap given by
Eq. (16), which, unlike in the case of J > 0, results in the
formation of one resonance only; Fig. 4(b).

B. Conductance in the linear-response regime

From the spectral function discussed above one can
determine the spin-resolved as well as total linear conduc-
tance, shown in Figs. 5(a)–5(g). For |J | � TK, the results
well known for the Kondo effect in a single-level quantum
dot are recovered.60,61,74 In particular, for the antiparallel
magnetic configuration an enhanced conductance occurs in the
blockade regime (single electron in the OL, Q = 1), whereas
in the parallel configuration only a sharp peak in the particle-
hole symmetry point, ε = −U/2, appears. More precisely, in
the antiparallel configuration the linear conductance (mea-
sured in the units of 2e2/h) is given by gAP = 1 − P 2, while

in the parallel configuration the conductance reaches unity for
ε = −U/2, gP = 1, with gP/AP = ∑

σ g
P/AP
σ representing the

total linear conductance.74,76 Suppression of the Kondo effect
for other values of ε in the latter case is a consequence of spin
splitting of the OL due to an effective exchange field created
by ferromagnetic electrodes, as has already been mentioned in
the previous section.

When the strength of the J coupling increases, the
Kondo effect becomes gradually suppressed and the linear
conductance in the blockade (Q = 1) region decreases.76,77 In
order to explain this dependence, we note that in the situation
under discussion electrons are transmitted through OL that
is exchange-coupled to the magnetic core; see Eqs. (14).
As a result, cotunneling processes responsible for the Kondo
state are more complex than in the case of J = 0. First, the
amplitude of the cotunneling processes becomes reduced as
now the electron occupying the OL is in a superposition of the
spin-up and spin-down states. Second, the J coupling creates
an energy gap between the relevant states, which effectively
suppresses the Kondo effect.

Looking more carefully at the conductance curves in Fig. 5,
one finds some difference between the cases with J > 0 and
J < 0. While for J < 0 the Kondo peak vanishes rapidly after
|J | exceeds TK, some remanent Kondo peak is still visible
for J > 0. This disparity stems from different properties of
quantum states taking part in the formation of the Kondo state
for J > 0 and J < 0. First, when |J | > TK, the ground-state
energy of a singly occupied MQD is lower for J < 0 than for
J > 0 [compare Figs. 3(g) and 3(h)]. Second, the ground state
for J < 0 is a superposition of spin-up and spin-down states,
which is not the case when J > 0. As a result, the cotunneling
processes driving the Kondo effect are more effective for J > 0
than for J < 0, which leads to lower conductance for J < 0
as compared to J > 0.

From the previous subsection we know that the uniaxial
magnetic anisotropy modifies electron states of a MQD,
affecting thus the Kondo effect. This is shown explicitly in
Figs. 6 and 7. As one can note in Fig. 6, conductance in
the parallel magnetic configuration is rather insensitive to the
anisotropy constant D—regardless of the type of exchange
coupling J , see the filled points in Figs. 7(c) and 7(d), and
certain weak dependence on the anisotropy constant D appears
then in the particle-hole symmetry point ε = −U/2 (Kondo
peak); see Figs. 7(a) and 7(b). This dependence, however,
becomes weaker when the magnitude of exchange coupling
increases. On the other hand, the role of anisotropy is more
important in the case of antiparallel magnetic configuration
(also for ε �= −U/2), especially for |J | � TK; see the hollow
points in Figs. 7(c) and 7(d).

Variation of the conductance with the anisotropy constant D
depends on the sign of exchange parameter J . The conductance
curves for J > 0 and J < 0 differ significantly only for
D � |J |/2, while when D exceeds |J |/2, the difference
becomes insignificant. Moreover, it should be noted that in
the parallel configuration the conductance for J > 0 decreases
with growing D, whereas for J < 0, one observes the opposite
tendency; see Fig. 7. Such an overlap of the conductance curves
for ferromagnetic and antiferromagnetic J coupling in the limit
of large anisotropy constant D can be explained in a similar
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FIG. 5. (Color online) Total linear conductance g = ∑
σ gσ in the antiparallel (a),(b) and parallel (c),(d) magnetic configurations, and the

spin-resolved linear conductance gσ in the parallel configuration (e)–(h), presented as a function of the OL energy ε for indicated values of the
parameter J in the case of the ferromagnetic (J > 0, top panel) and antiferromagnetic (J < 0, bottom panel) exchange interaction between
electrons in the OL and magnetic core. All other parameters are as in Fig. 2.

way as above. One has to take into account that in the present
situation the difference in energy gaps between ground states
for J > 0 and J < 0 diminishes, and so do the energies of
these states as D increases.

C. Tunnel magnetoresistance (TMR)

A quantity that describes the difference between transport
properties in the parallel (P) and antiparallel (AP) magnetic
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anisotropy D on the total linear conductance g = ∑

σ gσ for
|J |/TK ≈ 2 and the exchange J coupling of either (a),(c) ferro-
magnetic (J > 0) or (b),(d) antiferromagnetic (J < 0) type. Other
parameters are the same as in Fig. 2.

configurations is the tunnel magnetoresistance (TMR), defined
here as78

TMR = gP − gAP

gAP
. (19)
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magnetic configuration shown as a function of the uniaxial anisotropy
constant D for indicated values of the J coupling and two represen-
tative OL energies: (a),(b) ε = −U/2 and (c),(d) ε = −U/4. Left
panel corresponds to the ferromagnetic J coupling (J > 0), right
panel to the antiferromagnetic one (J < 0). Other parameters as in
Fig. 2.
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to facilitate comparison between TMR scales of adjacent plots for
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Using the conductance data analyzed in the previous sub-
section, we consider now how TMR depends on the key
parameters of the model, i.e., on the J coupling, Figs. 8(a)
and 8(b), and the magnetic anisotropy D, Figs. 8(c) and 8(d).

Let us first discuss the behavior of TMR as a function
of the exchange coupling constant J , Figs. 8(a) and 8(b).
Since for |J | � TK the conductance in the Kondo regime
is generally larger in the antiparallel magnetic configuration
than in the parallel one, regardless of the type of the J

coupling, the corresponding TMR is negative in almost the
entire Coulomb blockade region. The only exception occurs
around the particle-hole symmetry point ε = −U/2.76 This
behavior follows from the suppression of the Kondo effect in
the parallel configuration due to the exchange field, except for
the particle-hole symmetric point. However, as |J | becomes
larger than TK, the Kondo peak becomes suppressed also in the
antiparallel configuration and positive TMR may be observed
in the blockade regime as well. Moreover, suppression of
the conductance gAP for the antiparallel alignment is more
evident in the case of antiferromagnetic (J < 0) coupling,
Fig. 8(b), and the corresponding TMR is therefore significantly
larger than for the ferromagnetic coupling (J > 0). Another
observation for J < 0 is that when |J | � TK, two distinctive
local maxima develop in the Coulomb blockade regime. Their
positions depend on J and are symmetrical with respect to
ε = −U/2. In addition, for J < 0, the TMR considerably
surpasses the relevant Julliere’s value, 2P 2/(1 − P 2),78 which
for the present parameters yields 2/3. Nonetheless, in the
regions corresponding to empty or doubly occupied OL, one

always observes gP > gAP with TMR approaching Julliere’s
value.74

Consider now variation of TMR with the magnetic
anisotropy D; see Figs. 8(c) and 8(d). First of all, when the OL
is either empty or occupied by two electrons, TMR remains
insensitive to any changes in the anisotropy constant D. The
same cannot be said about the region of ε corresponding to
single occupation of the OL, where a large variation of TMR
appears especially for J < 0; see Fig. 8(d). From Fig. 8(d) it
follows that the smaller the magnetic anisotropy, the larger the
TMR. The positions of the two local maxima in TMR, however,
are now rather independent of D. Furthermore, for D � |J |/2,
TMR stays positive. On the contrary, for the ferromagnetic
J coupling (J > 0), Fig. 8(c), the TMR is negative in the
considered range of ε and is only weakly modified upon
changing D.

D. The restoring effect of magnetic field

In light of the foregoing discussion, we know that the
Kondo effect is suppressed by exchange field generated by
ferromagnetic electrodes as well as by the exchange coupling
of the OL to magnetic core. Very recently, it was shown both
experimentally and theoretically that one can compensate for
the exchange-induced splitting of the orbital level by fine-
tuning an external magnetic field, restoring thus the universal
features of the Kondo effect.79 Now we will thus consider
the possibility of restoring the Kondo effect by applying a
compensating external magnetic field Bc, oriented along the
MQD’s easy axis; see Fig. 9. The interesting observation
worth mentioning is that the restoration can take place not
only for the parallel magnetic configuration, Figs. 9(c) and
9(d), but also for the antiparallel one, Figs. 9(a) and 9(b).
Furthermore, we would like to emphasize that the considered
effect occurs only for the antiferromagnetic (J < 0) coupling
between an electron in the OL and the MQD’s magnetic
core. From Figs. 9(c) and 9(d) it follows that for the parallel
magnetic configuration the full unitary Kondo resonance (with
the maximum value of conductance g = 1) is restored, whereas
in the antiparallel configuration the peak of height 1 − P 2 is
retrieved owing to the magnetic field.

From the experimental point of view, it would be useful to
know, at least roughly, how the magnitude of the compensating
field Bc depends on the system’s parameters. For this purpose,
it is essential to know the physical mechanism responsible
for the restoration of the Kondo effect. Thus in order to gain
some deeper understanding of the problem, once again we
employ the model of a free-standing MQD. It appears that
the restoration of the Kondo effect becomes possible always
when the magnetic field Bz brings the ground state of the spin
multiplet St = S − 1/2 into resonance with the ground state
of the multiplet St = S + 1/2. Depending on the direction of
the field, the resonance takes place either between the states
|− 3

2 〉− ↔ |− 5
2 〉 or |+ 3

2 〉− ↔ |+ 5
2 〉. Moreover, the possibil-

ity of such degeneracy is straightforwardly granted by the fact
that these states are characterized by different numbers St

z (dif-
ferent zth component of the MQD’s total spin). Accordingly,
the Zeeman contributions to these states are different. Because
the J coupling is of the antiferromagnetic type, the state with
greater |St

z| has then larger energy in the absence of magnetic
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FIG. 9. (Color online) Restoration of the Kondo peak in the
total spectral function a(ω) = π

∑
σ �σ Aσ (ω) (a),(c), and total

conductance g = ∑
σ gσ (b),(d) by an external magnetic field Bz,

shown for indicated values of the antiferromagnetic J coupling
(J < 0) and for ε = −U/2. Left panel corresponds to the antiparallel
(AP) magnetic configuration, right panel to the parallel (P) one. The
other parameters as in Fig. 2.

field (Bz = 0). Thus if Bz > 0, the energy of the state |− 5
2 〉

decreases faster with increasing the field than the energy of
|− 3

2 〉−, so the degeneracy of these states occurs at a certain
value of magnetic field, B = Bc, which can be then determined
from the condition �AFM

1 (Bc) = 0; see Fig. 10(a).
Taking into account the resonance condition introduced

in the previous paragraph, we find the general expression
describing dependence of the compensating field Bc on the
J coupling and magnetic anisotropy D in the form

Bc = 2S + 1

4
|J | − 2S − 1

2
D

+
√

(2S + 1)2

16
J 2 + (2S − 1)2

4
D(D + |J |) . (20)

The comparison between the analytical solution and nu-
merically derived values of the compensating field Bc for
different magnetic configurations of the system is presented in
Fig. 10(b). It is clearly visible that the numerical values of Bc

generally follow the trend of the approximate analytical curve,
Eq. (20), and substantial discrepancies arise only for small
values of |J |, as one might expect. The slightly smaller value
of the compensating field in the situation of a MQD attached
to magnetic electrodes can be attributed to renormalization
of MQD’s energy levels due to the strong OL-electrodes
coupling, which results in diminishing energy gaps between
the states participating in the formation of the Kondo effect. It
should be here emphasized that this difference can be seen only
due to specific normalization of the compensating field Bc with
respect to |J |. Otherwise, when presented in the logarithmic
scale, the curves corresponding to numerical and analytical
solutions follow the same trend; see the inset in Fig. 10(b).
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FIG. 10. (Color online) (a) Energies of ground states |− 5
2 〉 and

|− 3
2 〉− shown as functions of an external magnetic field Bz for

indicated values of the exchange coupling parameter J and for
D/U ≈ 1.7 × 10−4 (D/TK = 0.1) and ε = −U/2. Dashed line cor-
responds to the analytical solution given by Eq. (20). (b) Dependence
of the compensating field Bc on the value of the J coupling. Points
represent numerical results obtained for the antiparallel (AP) and
parallel (P) magnetic configuration, while the bold line delineates
the analytical solution (a.s.), Eq. (20). IP indicates the inflexion point
of the curve Bc(|J |). Inset: the compensating field Bc normalized to
TK, shown on the logarithmic scale. Other parameters as in Fig. 2.

Finally, since the form of Eq. (20) is exactly the same as for
�AFM

1 , Eq. (B2), the asymptotic values of Bc are immediately
obtained as Bc ≈ (2S + 1)|J |/2 for |J | � D, and Bc ≈ S|J |
for |J | � D. Additionally, it might be helpful to know how
the change of magnetic anisotropy D influences the analytical
solution Bc(|J |); see the bold line in Fig. 10(b). For this
purpose, we calculate the inflexion point position (IPP) of
the compensating magnetic-field curve Bc(|J |),

IPP = 2(2S − 1)

(2S + 1)2
[1 − (2S)2/3][1 + (2S)1/3]D. (21)

It turns out that IPP depends linearly on D, with the
proportionality constant being a complex function of the
MQD’s core spin number S. Consequently, modification of
the magnetic anisotropy constant D does not affect the general
shape of the compensating field curve Bc(|J |), but it only leads
to shifting of the curve’s inflexion point.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated transport properties in
the Kondo regime of a class of systems exhibiting uniaxial
magnetic anisotropy. The model assumed includes one orbital
level through which electrons can tunnel and which is addi-
tionally exchange-coupled to a magnetic moment. The model
can describe a single-level quantum dot in which electrons are
exchange-coupled to an embedded magnetic impurity. It can
also be used to describe transport through magnetic atoms and
molecules.

Using the numerical renormalization-group method we
have calculated spectral density of the OL level and linear
conductance of the system. The key new feature of transport
characteristics is the suppression of the Kondo effect by
exchange coupling to the magnetic core. Independently of the
sign of the coupling parameter J , suppression takes place for
both ferromagnetic as well as antiferromagnetic coupling. In
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the limit of small J , |J | � TK, we find the Kondo resonance
characteristic of single-level dots. This resonance is suppressed
with increasing J but then some side resonances appear in the
spectral density. It is worthy to note that the suppression of
the Kondo peak in the case considered appears gradually with
increasing J , contrary to the case of a dot exchange-coupled
to electron reservoir of continuous density of states, where the
suppression is associated with a quantum phase transition.80

We have also shown that the suppressed Kondo resonance
in the spectral function and in transport characteristics can
be restored by application of an external magnetic field.
This restoration is, however, complete only in the case of
antiferromagnetic exchange coupling (J < 0) for both the
parallel and antiparallel magnetic configurations.
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APPENDIX A: CALCULATION OF THE
SPECTRAL FUNCTION

During the course of NRG iterative calculation, the spectral
function Aσ (ω) is obtained as a set of the Dirac δ functions
δ(ω − ωn) at frequencies ωn, which next have to be broad-
ened in order to acquire a continuous spectrum. Because
of logarithmic discretization of the conduction band, it is
convenient to collect the δ peaks in logarithmic bins and
broaden them using a logarithmic Gaussian distribution, with
the broadening parameter typically given by log(�).65,81,82 It
turns out, however, that due to logarithmic discretization of
the band and truncation during the NRG run, the broadened
spectral function may exhibit some artifacts, such as an
oscillatory behavior for energies smaller than the Kondo
temperature. One of the tricks to overcome these problems
is the so-called self-energy trick.82,83

The essential idea of the self-energy trick relies on finding
the spectral function by constructing the full self-energy
�σ (ω) of the system.83 The self-energy can be expressed
as a ratio of two spectral functions. Although each spectral
function displays similar problems related with discretization,
by calculating their ratio one obtains a smooth function
where most of the artifacts are suppressed. Having found
the self-energy, one can then calculate the retarded Green’s
function 〈〈cσ |c†σ 〉〉r

ω of the OL, Eq. (11), using the equation of
motion method,69

〈〈cσ |c†σ 〉〉r
ω = 1

ω − εσ − �r
σ (ω)

, (A1)

where εσ = ε + 1
2Bz(δσ↑ − δσ↓). The total self-energy con-

sists of three terms,

�r
σ (ω) = �U r

σ (ω) + �J r
σ (ω) + �r

σ (ω), (A2)

which represent contributions stemming from the Coulomb
interaction �U r

σ (ω), the exchange interaction between an

electron spin in the OL and the core spin of the MQD, �J r
σ (ω),

and the tunneling coupling of the OL to electrodes, �r
σ (ω).

The explicit forms of the above self-energy contributions are
given by

�U r
σ (ω) = U

〈〈nσ cσ |c†σ 〉〉r
ω

〈〈cσ |c†σ 〉〉r
ω

, (A3)

�J r
σ (ω) = −J

2

[
δσ↑

〈〈cσ S−|c†σ 〉〉r
ω

〈〈cσ |c†σ 〉〉r
ω

+ δσ↓
〈〈cσ S+|c†σ 〉〉r

ω

〈〈cσ |c†σ 〉〉r
ω

+ (δσ↑ − δσ↓)
〈〈cσSz|c†σ 〉〉r

ω

〈〈cσ |c†σ 〉〉r
ω

]
, (A4)

�r
σ (ω) = �σ

π

[
ln

∣∣∣W + ω

W − ω

∣∣∣ − iπ

]
. (A5)

Finally, the improved spectral function of the orbital level is
given by

Aσ (ω) = − 1

π
· Im�r

σ (ω)[
ω − εσ − Re�r

σ (ω)
]2+[

Im�r
σ (ω)

]2 . (A6)

APPENDIX B: ENERGY GAPS

In the case of the ferromagnetic (FM) J coupling (J > 0),
exact analytical expressions for the energy gaps �FM

1 and �FM
2

can be derived as the energy difference between appropriate
MQD’s states: |± 5

2 〉 and |± 3
2 〉− for �FM

1 , and |± 5
2 〉 and

|± 3
2 〉+ for �FM

2 ,75 so that

�FM
1(2) = 2S + 1

4
|J | + 2S − 1

2
D

∓
√

(2S + 1)2

16
J 2 + (2S − 1)2

4
D(D − |J |). (B1)

The energy gaps for antiferromagnetic (AFM) J coupling
(J < 0) can be found in a similar way. The energy differ-
ence between the MQD’s states |± 3

2 〉− and |± 5
2 〉 is then

given by

�AFM
1 = 2S + 1

4
|J | − 2S − 1

2
D

+
√

(2S + 1)2

16
J 2 + (2S − 1)2

4
D(D + |J |), (B2)

whereas the formula for the gap between the states |± 3
2 〉− and

|± 3
2 〉+ takes the form

�AFM
2 = 2

√
(2S + 1)2

16
J 2 + (2S − 1)2

4
D(D + |J |). (B3)
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MISIORNY, WEYMANN, AND BARNAŚ PHYSICAL REVIEW B 84, 035445 (2011)

*misiorny@amu.edu.pl
1C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London)
408, 541 (2000).

2S. Tans, A. Verschueren, and C. Dekker, Nature (London) 393, 49
(1998).

3H. Park, J. Park, A. Lim, E. Andeson, A. Alivisatos, and P. McEuen,
Nature (London) 407, 57 (2000).

4J. Heath and M. Ratner, Phys. Today 56(5), 43 (2003).
5P. Piva, G. DiLabio, J. Pitters, J. Zikovsky, M. Rezeq, S. Dogel,
W. Hofer, and R. Wolkow, Nature (London) 435, 658 (2005).

6L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).
7J. Green, J. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin,
E. DeIonno, Y. Luo, B. Sheriff, K. Xu, Y. Shin, H.-R. Tseng,
J. Stoddart, and J. Heath, Nature (London) 445, 414 (2007).

8M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero,
C. Sciancalepore, A. Talarico, M. Arrio, A. Cornia, D. Gatteschi,
and R. Sessoli, Nat. Mater. 8, 194 (2009).

9S. Loth, K. von Bergmann, M. Ternes, A. Otte, C. Lutz, and
A. Heinrich, Nat. Phys. 6, 340 (2010).

10M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit,
M.-A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, and R. Sessoli,
Nature (London) 468, 417 (2010).

11P. Gambardella, S. Rusponi, M. Veronese, S. Dhesi, C. Grazioli,
A. Dallmeyer, I. Cabria, R. Zeller, P. Dederichs, K. Kern,
C. Carbone, and H. Brune, Science 300, 1130 (2003).

12C. Hirjibehedin, C. Lin, A. Otte, M. Ternes, C. Lutz, B. Jones, and
A. Heinrich, Science 317, 1199 (2007).

13F. Meier, L. Zhou, J. Wiebe, and R. Wiesendanger, Science 320,
82 (2008).

14A. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune, C. Lutz,
C. Hirjibehedin, and A. Heinrich, Nat. Phys. 4, 847 (2008).

15H. Brune and P. Gambardella, Surf. Sci. 603, 1812 (2009).
16D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets

(Oxford University Press, New York, 2006).
17H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant,

C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello,
and A. Cornia, Phys. Rev. Lett. 96, 206801 (2006).

18M.-H. Jo, J. E. Grose, K. Baheti, M. M. Deshmukh, J. J. Sokol,
E. M. Rumberger, D. N. Hendrickson, J. R. Long, H. Park, and
D. C. Ralph, Nano Lett. 6, 2014 (2006).

19S. Voss, O. Zander, M. Fonin, U. Rüdiger, M. Burgert, and U. Groth,
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Phys. Rev. B 73, 193312 (2006).
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