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Weak antilocalization in HgTe quantum wells and topological surface states:
Massive versus massless Dirac fermions
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HgTe quantum wells and surfaces of three-dimensional topological insulators support Dirac fermions with
a single-valley band dispersion. In the presence of disorder they experience weak antilocalization, which has
been observed in recent transport experiments. In this work we conduct a comparative theoretical study of
the weak antilocalization in HgTe quantum wells and topological surface states. The difference between these
two single-valley systems comes from a finite band gap (effective Dirac mass) in HgTe quantum wells in
contrast to gapless (massless) surface states in topological insulators. The finite effective Dirac mass implies
a broken internal symmetry, leading to suppression of the weak antilocalization in HgTe quantum wells at
times larger than certain τM, inversely proportional to the Dirac mass. This corresponds to the opening of a
relaxation gap τ−1

M in the Cooperon diffusion mode which we obtain from the Bethe-Salpeter equation including
relevant spin degrees of freedom. We demonstrate that the relaxation gap exhibits an interesting nonmonotonic
dependence on both carrier density and band gap, vanishing at a certain combination of these parameters. The
weak-antilocalization conductivity reflects this nonmonotonic behavior which is unique to HgTe quantum wells
and absent for topological surface states. On the other hand, the topological surface states exhibit specific
weak-antilocalization magnetoconductivity in a parallel magnetic field due to their exponential decay in the bulk.
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I. INTRODUCTION

Recently discovered materials—graphene,1,2 two-dimen-
sional (2D)3–6 and three-dimensional (3D)7–12 topological
insulators (TIs)13,14—exhibit a Dirac-like band dispersion
which is responsible for their unusual electronic and optical
properties. In graphene the low-energy electron spectrum
can be approximated by two spin-degenerate Dirac cones at
the corners of the Brillouin zone.15 The 2D TIs have been
realized in HgTe quantum wells (QWs)4,5 which have a single
double-degenerate Dirac valley, as predicted by band-structure
calculations and inferred from transport measurements.16 The
double degeneracy of the HgTe QW bands allows for an
energy gap at the Dirac point, without breaking time-reversal
invariance, which paves the way to study Dirac fermions with
a finite (positive and negative) effective mass and related mass
disorder.17–19 In comparison with HgTe QWs, the ideal 3D
TI exhibits a single nondegenerate gapless Dirac cone on
the surface of the material, whereas its bulk is insulating.20

In this case, the opening of the gap in the surface Dirac
spectrum requires time-reversal symmetry breaking and has
been predicted to cause the surface quantum Hall effect21–24

and rich magnetoelectric phenomena21–27 related to axion
electrodynamics.28

The number of the Dirac valleys is an essential factor
in understanding quantum electron transport in disordered
samples. The transport studies of graphene have reported
weak localization29 and more complex quantum-interference
patterns30 instead of the antilocalization effect expected for
the symplectic universality class (e.g., Refs. 31–47). Such a
situation can occur if the two graphene’s valleys are coupled by
scattering off atomically sharp defects.38,41,43,46,47 In contrast,
in single-valley Dirac systems such scattering processes are
forbidden, and recent experiments on HgTe QWs48,49 and
3D TIs50–52 have found a positive (antilocalization) quantum-
interference conductivity.

In this work we conduct a comparative study of the weak
antilocalization (WAL) in HgTe QWs and on surfaces of 3D
TIs. The goal is to elucidate the difference between these two
systems which comes from the finite effective Dirac mass in
HgTe QWs in contrast to the massless surface states in 3D TIs.
Like in the conventional 2D electron systems (2DESs) with
Bychkov-Rashba or Dresselhaus spin-orbit interactions,32,34

the WAL in HgTe QWs and on surfaces of 3D TIs reflects the
broken rotation symmetry in relevant spin space. However, in
addition to the lack of this continuous symmetry, the effective
Dirac mass in HgTe QWs implies a broken discrete symmetry,
which for a single-cone system would play the role of time
reversal. In this sense, there is a formal analogy between the
effective Dirac mass and an out-of-plane Zeeman field in a
2DES.44,53 Therefore, by analogy with weak ferromagnets44,53

we find that the WAL in HgTe QWs is suppressed at times
larger than certain τM, inversely proportional to the effective
Dirac mass. Such suppression is, however, absent for the
massless surface states in 3D TIs, which can be used to
experimentally differentiate between the two systems.

Before going to the calculation details given in Secs. III
and IV, in the next section we briefly announce some of our
results for HgTe QWs and TIs.

II. OVERVIEW OF THE RESULTS

To calculate the quantum-interference (Cooperon) conduc-
tivity correction, δσxx , we adopt the effective Dirac model of
HgTe QWs4 and obtain the following expression for δσxx :

δσxx(n,M) = −α
2e2

πh
ln

τ−1

τ−1
M + τ−1

ϕ

, (1)

τ−1
M = 2

τ

(
M + Bk2

F

)2
A2k2

F
+ (M + Bk2

F

)2 , k
F

=
√

2πn. (2)
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FIG. 1. (Color online) Relaxation gap τ−1
M [in units of inverse life-time τ−1, see Eq. (2)] versus (a) carrier density n and (b) band gap M;

A = 380 meV·nm and B = 850 meV·nm2 (from Ref. 16).

Here the symmetry-breaking-induced relaxation gap τ−1
M is

proportional to the total mass term, M + Bk2
F
, in the effective

Dirac model of HgTe QWs.4 M is the band gap at the Dirac
point, Bk2

F
is the positive quadratic correction accounting for

the curvature of the filled conduction band (k
F

is the Fermi
momentum determined by the 2D carrier concentration n),
whereas constant A determines the linear (Dirac) part of the
spectrum (τ the elastic lifetime). In Eq. (1) the factor of
2 accounts for the double degeneracy of the Dirac valley in
HgTe QWs, constant α approaches −1/2 for M + Bk2

F
→ 0

(as discussed in detail in Sec. III) and τϕ is the dephasing time.
The unique feature of the HgTe QWs is that the band gap

M can take both positive and negative values depending on
the QW thickness.5,16 Therefore, the relaxation gap τ−1

M (2)
exhibits an interesting nonmonotonic behavior as a function
of both M and carrier density n [see Fig. 1], vanishing when
these parameters satisfy the condition,

M + 2πnB = 0. (3)

It represents a line in parameter space (M,n) on which con-
ductivity (1) reaches the maximum δσxx = (e2/πh) ln(τϕ/τ )
[see also Fig. 2]. Such a nonmonotonic behavior of δσxx(n,M)
can be used to experimentally identify the symmetry breaking
and the resulting relaxation gap τ−1

M . In particular, the predicted
carrier-density dependence should hold for the QWs where the
potential impurity scattering is much stronger than scattering

FIG. 2. (Color online) Quantum-interference conductivity cor-
rection δσxx [in units of e2/πh, see Eq. (1)] versus carrier density
n and band gap M; A = 380 meV·nm, B = 850 meV·nm2 (from
Ref. 16) and τ0/τϕ = 0.01 [see also Eq. (22) for τ and τ0 and Eq. (53)
for α].

off random gap fluctuations. This regime can be identified
from the carrier-density dependence of the QW mobility.17

As to the dependence on the gap M , it can be extracted from
sample-to-sample measurements. The band structure of MBE
grown HgTe QWs is controllable to a great extent.5,6,16 For the
experiment we suggest here one should select several QWs
with distinctly different gaps and comparable dephasing times
(inferred from the temperature dependence of the conductivity)
and other band structure parameters (inferred from the Hall
and Shubnikov–de Haas measurements). Alternatively, the
presence of the relaxation gap τ−1

M can be established from
the dependence of δσxx on the dephasing rate 1/τϕ , which
is directly related to the temperature dependence (e.g., the
dephasing rate due to electron-electron interactions is linearly
proportional to the temperature).54 The dependence of δσxx

on 1/τϕ is shown in Figs. 3(a) and 3(b). In these figures the
upper curves correspond to the logarithmically divergent δσxx

with τ−1
M = 0. In contrast, for finite τ−1

M (rest of the curves) the
conductivity correction shows only weak dependence on the
dephasing rate.

As to the 3D TIs, we focus on compounds Bi2Se3 and
Bi2Te3 where the surface states can be described by the
effective two-band Dirac Hamiltonian, accounting for the
hexagonal warping of the bands [see, e.g., Refs. 55 and 56].
The warping term is cubic in momentum k and enters formally
as the Dirac mass term. However, since it preserves the time-
reversal symmetry, we find that for weak warping the quantum-
interference conductivity correction has the same form as for
the conventional 2DES with spin-orbit interaction:31,32,34

δσxx = −α
e2

πh
ln

τϕ

τ
, α = −1

2
. (4)

The specific of the surface state shows up mainly in the de-
pendence of the conductivity �σxx(B) = δσxx(B) − δσxx(0)
on magnetic field B applied parallel to the TI surface

�σxx(B) = − e2

2πh
ln

(
1 + B2

B2
‖

)
, B‖ = h̄

eλ
√


tr
ϕ

. (5)

Such dependence reflects the finite penetration length, λ, of
the surface state into the bulk, that is, the magnetic flux
through the effective width of the surface state [see Eq. (5)
for B‖ , where 
tr and 
ϕ are the transport mean free path
and dephasing length, respectively]. Quantum transport in
the in-plane magnetic fields has been studied theoretically
for disordered metallic films57 and electron quantum wells.58

The present case differs from the previous studies in that the
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FIG. 3. (Color online) Quantum-interference conductivity correction δσxx [in units of e2/πh, see Eq. (1)] versus normalized dephasing rate
τ0/τϕ for different carrier densities and (a) M = −10 meV and for different band gaps and (b) n = 1.9 × 1011 cm−2; A = 380 meV·nm and
B = 850 meV·nm2 (from Ref. 16). See also Eq. (22) for τ and τ0 and Eq. (53) for α.

topological surface states have a different microscopic profile
of the transverse wave functions. We discuss the dependence of
�σxx on the magnetic field orientation in Sec. IV in connection
with recent experiments on Bi2Te3 (Ref. 52).

III. HgTe QUANTUM WELLS

A. Effective Hamiltonian

We use the effective four-band Hamiltonian of HgTe wells4

which can be written in the following form:

HHgTe =
(

H + Hi 0

0 H̃ + Hi

)
, (6)

H = σ (Ak̂ + Mk̂z) + (Dk̂2 − E
F
)σ 0, (7)

H̃ = −σ (Ak̂ + Mk̂z) + (Dk̂2 − E
F
)σ 0, (8)

Hi = V (r)σ 0. (9)

The two diagonal blocks in HHgTe describe pairs of states
related to each other by time reversal symmetry (Kramers
partners). In the upper block the Hamiltonian H has a matrix
2 × 2 structure with Pauli matrices σx,y,z and unit matrix σ 0

acting in space of two lowest-energy subbands of the HgTe

FIG. 4. (Color online) Energy bands of a HgTe quantum well [see
Eq. (7) and text] in meV versus in-plane wave-numbers kx and ky in
nm−1. The Fermi level lies in the conduction band at E = 0. We
choose A = 380 meV·nm, B = 850 meV·nm2, D = 700 meV·nm2

(from Ref. 16), and E
F

= 100 meV.

quantum well:4 an s-like electron one |E1,
1
2 〉 and a p-like

heavy hole one |H1,
3
2 〉. For the lower block the basis states have

the opposite spin projections: |E1, − 1
2 〉 and |H1, − 3

2 〉. The
linear term in H (proportional to constant A and momentum
operator k̂ = −i∇r) originates from the hybridization of the
s- and p-like subbands. Mk̂ is the effective Dirac mass

Mk̂ = M + Bk̂2, (10)

where constant M determines the band gap at the gamma
(k = 0) point of the Brillouin zone (see Fig. 4). The positive
quadratic terms Bk̂2 and Dk̂2 take into account the details
of the band curvature in HgTe quantum wells.4,5 Finally, Hi

in Eq. (6) accounts for interaction with randomly distributed
short-range impurities. The impurity potential V (r) is charac-
terized by the correlation function,

ζ (r − r′) = 〈〈V (r)V (r′)〉〉 = h̄

πNτ0
δ(r − r′), (11)

ζk =
∫

ζ (r)e−ikrdr = h̄

πNτ0
, (12)

parametrized in terms of the characteristic scattering time τ0

and the density of states (DOS) at the Fermi level, N , for one
Dirac cone [brackets 〈〈· · ·〉〉 denote averaging over impurity
positions and ζk is the Fourier transform of the disorder
correlation function].

We emphasize that the mass term Mk̂ (10) is symmetric
with respect to momentum inversion k̂ → −k̂. Hence, Hamil-
tonian H does not possess the symmetry under transformation

k̂,σ → −k̂, − σ . (13)

Within a given block of Eq. (6) (i.e., in subband pseudospin
space) such a transformation plays the role of “time reversal.”
At the same time, the real time-reversal symmetry is ensured
by the matrix form of HHgTe (6). Physically, this means that
the Kramers partners reside on two Dirac cones superimposed
at k = 0 point.16 Note that the zero off-diagonal elements
in HHgTe (6) imply conservation of the spin projections of
|E1〉 and |H1〉 subbands, which is a good approximation for
symmetric HgTe wells.5,16,59,60 In this case, each of the Dirac
cones contributes independently to transport processes, which
is accounted for by the factor of 2 in the expressions for the
conductivity corrections discussed in Sec. III D.
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B. Disorder-averaged single-particle Green’s functions
and elastic lifetime

We begin by calculating the disorder-averaged re-
tarded/advanced Green’s functions G

R/A

for an n-type HgTe
well under weak-scattering condition

k
F
v

F
τ 	 1, (14)

where τ is the elastic scattering time and v
F

and k
F

= √
2πn

are the Fermi velocity and wave-vector, respectively. In
the standard self-consistent Born approximation (see, e.g.,
Refs. 61 and 62) the equation for G

R/A

is shown diagram-
matically in Fig. 5(a). In the k representation it reads

G
R/A

k = G
R/A

0k + G
R/A

0k

∫
dk′

(2π )2
ζk−k′G

R/A

k′ G
R/A

k , (15)

G
R/A

0k = 1

2

σ 0 + σek

ε − ξk
, ek = s

Ak + Mkz√
A2k2 + M2

k

, |ek|2 = 1.

(16)

Here the Green’s function G
R/A

0k describes a conduction-band
carrier with dispersion ξk = √A2k2 + M2

k + Dk2 − E
F

in
the absence of disorder [index s = ±1 labels the Kramers
partners residing on the different Dirac cones]. The valence
band contribution is neglected under assumption that the
energy separation between the valence and conduction bands
is much bigger than the disorder-induced band smearing,

2
√
A2k2

F
+ M2

kF ·n = 2
(
E

F
− Dk2

F

)	 h̄/τ. (17)

α

β

αα

β β
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FIG. 5. (Color online) Diagrammatic representations for (a)
equation for disorder-averaged Green’s function (thick line) in self-
consistent Born approximation (thin line is the unperturbed Green’s
function of the disorder-free system, dashed line is the disorder
correlator), (b) bare and dressed Hikami boxes for the Cooperon
correction to Drude conductivity, (c) Bethe-Salpeter equation for the
Cooperon, and (d) equation for the renormalized current vertex in the
ladder approximation.

Because of the large band-structure constant A ≈
380 meV · nm [see, e.g., Ref. 16] the requirement (17) can
be satisfied simultaneously with the weak-scattering condi-
tion (14). We also note that the matrix structure of G

R/A

0k (16)
accounts for the carrier chirality and is of primary importance
throughout the paper.

The solution to Eq. (15) can be sought in the form G
R/A

k =
1
2 (σ 0 + σek)g

R/A

k , where g
R/A

k = 1/(ε − ξk − �
R/A

k ) and �
R/A

k
satisfies the equation

�
R/A

k =
∫

ζk−k′

ε − ξk′ − �
R/A

k′

1 + ekek′

2

dk′

(2π )2
. (18)

The approximate solution61,62 of the latter equation near the
Fermi surface, |k| ≈ k

F
, yields the disorder-averaged Green’s

function as

G
R/A

k = 1

2

σ 0 + σekF ·n
ε

R/A
− ξk

, ε
R/A

= ε ± ih̄

2τ
, (19)

where τ is the elastic lifetime given by

1

τ
= ∓2

h̄
Im �

R/A

kF ·n

= N

h̄

∫
dφn′ζkF ·|n−n′|

1 + e⊥n · e⊥n′ + e‖n · e‖n′

2
, (20)

e‖n = sn
√

1 − e2
⊥n, e⊥n = s

MkF ·n z√
A2k2

F
+ M2

kF ·n
. (21)

In Eq. (20) the unit vectors n and n′ specify the directions of
the incident and scattered momentum states, respectively, and
e‖n and e⊥n are the in- and out-of-plane components of the
unit vector ekF ·n = e‖n + e⊥n. For isotropic ζkF ·|n−n′| (12) and
MkF ·n (10) one finds the elastic time

τ = τ0

1 + e2
⊥

, (22)

which is shorter than the disorder-related time scale τ0 [see
Eq. (11)]. This is due to the allowed backscattering into
an opposite momentum state (nn′ ≈ −1) which is absent in
the gapless case.63 The backscattering is the consequence of
the symmetry breaking due to the mass term. The strength
of the symmetry breaking is controlled by the out-of-plane
component e⊥n of the unit vector ekF ·n [see, Eq. (21)].

C. Cooperon

The quantum-interference corrections to the Drude conduc-
tivity can be expressed diagrammatically by the Hikami boxes
shown in Fig. 5(b). Apart from the single-particle Green’s
functions G

R/A

k (19) they involve the disorder-averaged two-
particle Green’s function, Cαβα′β ′ (q), known as the Cooperon.
In this section we will set up and solve the equation for
Cαβα′β ′(q).

For the potential disorder defined by Eq. (11) the diagram
for the Cooperon equation [see, Fig. 5(c)] is read off as follows

Cαβα′β ′(q) = τ 2

τ0
δαα′δββ ′+ h̄

πNτ0

∫
dk

(2π )2

∑
γ ′δ′

G
R

αγ ′ (k,ε + h̄ω)

×G
A

βδ′ (q − k,ε)Cγ ′δ′α′β ′(q), (23)
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where the Greek indices label the states in pseudospin (σ )
space. The prefactor τ 2/τ0 in the first term is due to the chosen
normalization of Cαβα′β ′(q). To solve Eq. (23) it is convenient
to first expand the Cooperon in the orthonormal eigenfunctions
of the pseudospin of a two-electron system

Cαβα′β ′ =
∑
ij

Cij �i
αβ�

j∗
α′β ′ ,

∑
αβ

�
j

αβ�i∗
αβ = δji . (24)

The indices i,j = 0,x,y,z label the pseudospin-singlet (0) and
pseudospin-triplet (x,y,z) states. The conductivity corrections
will be eventually expressed in terms of the coefficients Cij for
which we derive the following algebraic equations (see also
Appendix A):

Cij (q) = τ 2

τ0
δij + τ

4τ0

∑
s

Tr
〈(
σ 0 − σe−kF ·n

)
σ i

× (σ 0 + σekF ·n
)
σ s
〉
Csj (q), (25)

where the square brackets stand for integral over the directions
of the momentum k = k

F
n on the Fermi surface

〈· · ·〉 =
∫ 2π

0

dφn

2π

· · ·
1 − iτω + iτv

F
n · q

. (26)

Evaluating the traces of the products of the Pauli matrices in
Eq. (25) we find

C0j = τ 2

τ0
δ0j + τ

2τ0
〈1 − e+ · e−〉C0j

+ τ

2τ0

∑
b=x,y,z

〈(e+ − e− + ie+ × e−) · b〉Cbj , (27)

Caj = τ 2

τ0
δaj + τ

2τ0
〈(e+ − e− − ie+ × e−) · a〉C0j

+ τ

2τ0

∑
b=x,y,z

〈(1 + e+ · e−)(a · b) − i(e+ + e−) · a × b

− (e+ · a)(e− · b) − (e− · a)(e+ · b)〉Cbj . (28)

We separated the singlet C0j and triplet C(a,b)j Cooperons
with respect to the first index so that a,b run over x,y,z

only. Respectively, vectors a and b run over the unit vector
basis of the Cartesian system. We also introduced a convenient
shorthand notation

e± = e±kF ·n. (29)

As discussed in Sec. III A, the specifics of the effective
Hamiltonian for HgTe quantum wells consists in the symmetry
of the mass term (10). Being an even function of k, it breaks the
symmetry of Hamiltonian H in Eq. (7) under transformation
k,σ → −k,−σ . The symmetry breaking is encoded in the unit
vectors e± (29) which have antiparallel in-plane and parallel
out-of-plane components,

e± = ±e‖ + e⊥, (30)

where e‖ and e⊥ are defined by Eq. (21). In view of the identities

e+ + e− = 2e⊥, e+ − e− = 2e‖ ,
(31)

e+ · e− = 1 − 2e2
‖ , e+ × e− = 2e‖ × e⊥,

Eqs. (27) and (28) reduce to

C0j = τ 2

τ0
δ0j + τ

τ0
〈e2

‖ 〉C0j + τ

τ0

∑
b=x,y,z

〈(e‖ + ie‖ ×e⊥) ·b〉Cbj ,

(32)

Caj = τ 2

τ0
δaj + τ

τ0
〈(e‖ − ie‖ × e⊥) · a〉C0j

+ τ

τ0

∑
b=x,y,z

〈e2
⊥(a · b) − ie⊥ · (a × b)

+ (e‖ · a)(e‖ · b) − (e⊥ · a)(e⊥ · b)〉Cbj , (33)

or, explicitly,[
τ0

τ
− 〈e2

‖ 〉
]
C0j

−〈ex + ieye⊥〉Cxj − 〈ey − iexe⊥〉Cyj = τδ0j , (34)

−〈ex − ieye⊥〉C0j

+
[
τ0

τ
− 〈e2

⊥ + e2
x

〉]
Cxj − 〈exey − ie⊥〉Cyj = τδxj , (35)

−〈ey + iexe⊥〉C0j

−〈eyex + ie⊥〉Cxj +
[
τ0

τ
− 〈e2

⊥ + e2
y

〉]
Cyj = τδyj , (36)

Czj = τ 2

τ0
δzj . (37)

For the quantum-interference conductivity corrections we will
only need the q and ω dependent diagonal Cooperons C00, Cxx ,
and Cyy . Each of them is obtained from coupled Eqs. (34)–(36)
where index j should be set to 0,x or y, respectively. The
coefficients in these equations are evaluated by expanding65

the denominator in Eq. (26) in the small Cooperon momentum
q and frequency ω,

τv
F
n · q � 1, τω � 1. (38)

In doing so, we keep the lowest order terms that yield the
nonzero angle average 〈· · ·〉 and compete with the small
symmetry-breaking parameter e⊥ [see Eq. (21)]. Under these
approximations we obtain the following expressions for the
diagonal Cooperons:

C00(q,ω) = 1

Dq2 + τ−1
M − iω

, τ−1
M = 2e2

⊥
τ

, (39)

D = Dτ (2 + 5e2
⊥ + e4

⊥)/e2
‖ , Dτ = v2

F
τ/2, (40)

Cxx(q,ω) = 2τ

e2
‖

2 − e4
‖ cos2 φq

2 + 5e2
⊥ + e4

⊥
+ 2τ

(
τ−1
M − iω

)
e4

‖

×
(1 + 3e2

⊥)2 − e6
‖ sin2 φq

2 + 5e2
⊥ + e4

⊥
C00(q,ω), (41)

Cyy(q,ω) = 2τ

e2
‖

2 − e4
‖ sin2 φq

2 + 5e2
⊥ + e4

⊥
+ 2τ

(
τ−1
M − iω

)
e4

‖

×
(1 + 3e2

⊥)2 − e6
‖ cos2 φq

2 + 5e2
⊥ + e4

⊥
C00(q,ω), (42)
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where angle φq in Eqs. (41) and (42) indicates the Cooperon
momentum direction q = |q| · (cos φq, sin φq,0).

Let us analyze Eqs. (39)–(42). The symmetry breaking has
a three-fold effect on the Cooperons. First, it results in a
relaxation gap τ−1

M in the singlet Cooperon C00 (39), which
implies suppression of the quantum interference for times
larger than τM (even in the absence of the phase breaking,
i.e., for ω → 0). Second, the symmetry-breaking affects the
diffusion constant D in Eq. (40). The diffusion constant
renormalization comes from the off-diagonal Cooperons.41

In the absence of the symmetry breaking (i.e., for e2
⊥ = 0)

one finds41,63 D = 2Dτ = v2
F
τtr/2 with τtr = 2τ . Finally, the

expressions for the triplet Cooperons Cxx (41) and Cyy (42)

contain additional terms ∝ τ/τM = 2e2
⊥, remaining finite in

the limit ω → 0. Despite the smallness of the parameter
e2
⊥, these terms give a noticeable contribution to the net

conductivity correction. We will return to this point when
discussing Eq. (53) in the next section.

D. Hikami boxes and net conductivity correction

We now turn to the evaluation of the Hikami boxes
for the conductivity corrections, shown in Fig. 5(b). With
the Cooperon defined by Eq. (23) the first and second
diagrams in Fig. 5(b) correspond to the following analytical
expressions:

δσ (1)
xx = e2h̄

πNτ 2

∫
dε

2πω
[f (ε) − f (ε + h̄ω)]

∫
dq

(2π )2
Cββ ′γ γ ′(q,ω)

∫
dk

(2π )2

(
G

A

k,ε Vx
k G

R

k,ε+h̄ω

)
γ ′β

(
G

R

q−k,ε+h̄ω Vx
q−k G

A

q−k,ε

)
γβ ′ ,

(43)

δσ (2)
xx = e2h̄2

π2N2τ0τ 2

∫
dε

2πω
[f (ε) − f (ε + h̄ω)]

∫
dq

(2π )2
Cββ ′γ γ ′(q,ω)

∫
dk

(2π )2

×
∫

dk′

(2π )2

(
G

A

k,ε Vx
k G

R

k,ε+h̄ωG
R

q−k′,ε+h̄ω

)
γ ′β

(
G

R

q−k,ε+h̄ω G
R

k′,ε+h̄ω Vx
k′ G

A

k′,ε
)
γβ ′ , (44)

where Vx
k is the matrix current vertex renormalized by disorder (11) in the usual ladder approximation [see, e.g., Ref. 62 and

diagram in Fig. 5(d)] and f (ε) is the Fermi distribution function. We will skip the details regarding the third diagram in Fig. 5(a)
since it finally gives the same result as Eq. (44).

Evaluation of the k integrals in Eqs. (43) and (44) yields (see also Appendix B)

δσ (1)
xx = e2Dτ

2hv2
F

[(
σ 0 + σekF ·n

)
Vx

kF ·n
(
σ 0 + σekF ·n

)]
γ ′β

[(
σ 0 + σe−kF ·n

)
Vx

−kF ·n
(
σ 0 + σe−kF ·n

)]
γβ ′

∫
dq

(2π )2
Cββ ′γ γ ′(q), (45)

δσ (2)
xx = e2Dττ

8hv2
F
τ0

× [(σ 0 + σekF ·n
)
Vx

kF ·n
(
σ 0 + σekF ·n

)]
γ ′β1

(
σ 0 + σe−kF ·n

)
γ γ1

× (σ 0 + σe−kF ·n′
)
β1β

[(
σ 0 + σekF ·n′

)
Vx

kF ·n′
(
σ 0 + σekF ·n′

)]
γ1β ′

∫
dq

(2π )2
Cββ ′γ γ ′(q), (46)

where the bar denotes averaging over the momentum directions n on the Fermi surface: (· · ·) = ∫ 2π

0 · · · dφn/2π . We note that
the correction δσ (2)

xx is entirely due to the carrier chirality. If we omit the chirality matrix σekF ·n in Eq. (46), the independent
averaging of the current vertices Vx

kF ·n gives δσ (2)
xx = 0.

The renormalized vertex Vx
kF

acquires the standard prefactor τtr/τ , where τtr is the transport scattering time

1

τtr

= N

h̄

∫
dφn′ (1 − n · n′)ζkF |n−n′|

1 + e⊥n · e⊥n′ + e‖n · e‖n′

2
(47)

= 1 + 3e2
⊥

2τ0
, (48)

and satisfies the identity (
σ 0 + σekF ·n

)
Vx

kF ·n
(
σ 0 + σekF ·n

) = 2
τtr

τ
v

F
nx

(
σ 0 + σekF ·n

)
, (49)

which helps to perform the averaging in Eqs. (45) and (46). The conductivity corrections δσ (1)
xx and δσ (2)

xx can then be expressed
in terms of the singlet and triplet Cooperons as follows

δσ (1)
xx = 2e2Dτ

πh̄

(
τtr

τ

)2 ∫
dq

(2π )2

[
2n2

x

(
1 − e2

⊥
)
C00(q) − 2n2

x

(
1 − e2

y

)
Cxx(q) − 2n2

x(1 − e2
x)Cyy(q)

]
, (50)

δσ (2)
xx = −2e2Dτ

πh̄

τ 2
tr

τ τ0
e2

‖

(
n2

x

)2 ∫ dq
(2π )2

[(1 + e2
⊥)C00(q) − Cxx(q) − e2

⊥Cyy(q)], (51)
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where n2
x = 1/2. We have also summed up the contributions of both Dirac cones of the HgTe QW spectrum, which

yields the factor of 2 in front of the integrals. Noticing further that on average over the directions of q the triplet Cooperons (41)
and (42) coincide, we express the net conductivity correction in the form

δσxx = δσ (1)
xx + 2δσ (2)

xx = 2e2Dτ

πh̄

(
τtr

τ

)2 ∫
qdq

2π

[(
1 − e2

⊥ −
e2

‖

2

)
C00(q) −

(
1 + e2

⊥ −
e2

‖

2

)
Cxx(q)

]
, (52)

where (· · ·) = ∫ 2π

0 · · · dφq/2π with φq defined in text after Eq. (42). Note that the terms ∝ 1 ∓ e2
⊥ come from Eq. (50) for δσ (1)

xx ,
whereas the terms ∝ e2

‖ /2 come from Eq. (51) for δσ (2)
xx , multiplied by 2.

In Eq. (52) the singlet Cooperon C00(q) results in a positive conductivity correction (antilocalization) coming from the
pairs of states with antiparallel projections of σ , which prevents the constructive interference.32,34 This can also be viewed
as the manifestation of π Berry phase.38 In contrast, the conductivity correction due to the triplet Cooperons is negative
(localization) because the interference of the states with the parallel projections of σ is constructive. When integrating the singlet
and triplet contributions in Eq. (52) we insert Eq. (39) and the terms with the diffusion pole structure [∝ C00(q)] in Eqs. (41)
and (42).64 With the upper integration cutoff (Dτ )−1/2 and replacement −iω → τ−1

ϕ in Eq. (52), we obtain Eq. (1) for the

logarithmic correction to the Drude conductivity, where the relaxation gap τ−1
M is defined in Eq. (39) and the prefactor α is given

by

α = −
e2

‖

2 + 5e2
⊥ + e4

⊥
×
(

1 + e2
⊥

1 + 3e2
⊥

)2
{

e2
‖ − τ

(
1

τM
+ 1

τϕ

)
1 + 3e2

⊥
e4

‖

2(1 + 3e2
⊥)2 − e6

‖

2 + 5e2
⊥ + e4

⊥

}
. (53)

This expression is factorized into the three parts that have
different origins: the first comes from the renormalization of
the diffusion constant D in Eq. (40), the second is due to the
vertex renomalization [see, Eqs. (52), (22), and (48)], and the
third includes the contributions of the three Hikami boxes in
Fig. 5(b) with the interplay of the singlet and triplet Cooperons
[see Eq. (52)]. It should be noted that in the presence of
the k,σ → −k, − σ symmetry there is partial cancellation
of these three factors,41 yielding α = −1/2 for the symplectic
disorder class31 [see also Eqs. (75) and (76) for topological
insulators in Sec. IV].

Equation (53), as well as the equation for the conductivity
correction (1), is valid under conditions

τ/τM = 2e2
⊥ � 1, τ/τϕ � 1, (54)

when the carrier diffusion is limited by the time scale,
min{τϕ,τM}, longer than the elastic life-time τ . In particular,
for e2

⊥ = 0 and τ/τϕ → 0 the parameter α → −1/2, and we
recover the result δσxx = 2 × e2

2πh
ln τϕ

τ
for the symplectic class

[the factor of 2 accounts for the two Dirac cones, see Eq. (6)].
For a finite e2

⊥ the broken k,σ → −k, − σ symmetry leads
to the deviation of α from −1/2 [see Fig. 6]. The deviation
is quite significant because the expansion in powers of e2

⊥
involves large numerical coefficients

α ≈ −1

2

{
1 − 17e2

⊥
2

− τ

2

(
1

τM
+ 1

τϕ

)(
1 + 35e2

⊥
2

)}
.

(55)

This behavior can be seen as the crossover between the
symplectic and unitary classes.

IV. SURFACE STATES IN TOPOLOGICAL INSULATORS

A. Effective Hamiltonian

Unlike HgTe wells the spectrum of surface states in
topological insulators (TIs), such as Bi2Se3 or Bi2Te3, consists
of a single Dirac cone. Consequently, the effective Hamiltonian
for the surface state in TIs55,56 has the form of the single-block
Hamiltonian of Eq. (6)

HT I = H + Hi. (56)

where H and Hi are given by Eqs. (7) and (9), respectively.
There are two further distinctions between Hamiltonians for
Bi2Se(Te)3 and HgTe wells. First, here the basis functions
correspond to 1

2 and − 1
2 spin projections [i.e., Pauli (σx,y,z)

and unit (σ 0) matrices act on real spin indices]. Second, theMk̂
term in Hamiltonian H in Eq. (7) is cubic (odd) in momentum
k̂ (Ref. 55 and 56)

Mk̂ = W

2
(k̂3

+ + k̂3
−), k̂± = k̂x ± ik̂y, (57)

causing no gap at k = 0. This term does not break the k̂,σ →
−k̂,−σ invariance, which is now the real time-reversal
symmetry. Instead, it causes hexagonal warping of the surface-
state spectrum55,56 (see also Figs. 7 and 8)

E(k,φn) =
√
A2k2 + W 2k6

2
(1 + cos 6φn) + Dk2. (58)

We will treat the warping as a weak perturbation onto the
isotropic spectrum, assuming the smallness of the parameter

W 2k4

2A2
� 1. (59)
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3 6 9 n 1011cm 2

0.5 15 meV

7.5 meV

0 meV

5 meV

20 10 10
meV

0.5
n 3.5 1011cm 2

n 3 1011cm 2

n 2.5 1011cm 2

n 2 1011cm 2

α

α (a)

(b)

FIG. 6. (Color online) Parameter α (53) versus (a) carrier density n and (b) band gap M; A = 380 meV·nm, B = 850 meV·nm2 (from
Ref. 16) and τ0/τϕ = 0.01.

Then the main effect of the warping consists in the increase
of E(k,φn) on average over all angles φn (see dashed circle in
Fig. 8). This amounts to replacing M2

k by its angle average,

M2
k =⇒ M2

k = W 2k6

2
, (60)

in Eq. (58). In fact, the same replacement can be done in
all even functions of Mk (e.g., Fermi momentum, Fermi
velocity, DOS, and so on.). Then, the specific of the surface
states is captured by the odd carrier chirality, σe−k = −σek,
in Eq. (16). Therefore, the results of the integration over the
single-particle momenta k (given in Appendexes A and B)
apply also in the present case. This allows us to use Eqs. (20)
and (47) for the scattering times, Cooperon equations (27)
and (28) as well as the Hikami boxes (45) and (46) to obtain the
weak antilocalization conductivity corrections for the surface
state in TIs.

FIG. 7. (Color online) Energy bands of a topological surface state
in meV [see Eqs. (56), (57), and text] versus in-plane wave-numbers
kx and ky in nm−1. The Fermi level lies in the conduction band at
E = 0. We choose A = 300 meV · nm, W = 50 meV · nm3 (see, e.g.,
Ref. 56), D = 0 meV · nm2, and E

F
= 600 meV.

B. Disorder-averaged Green’s functions and scattering times

As in the case of HgTe QWs, we assume that the Fermi
level lies in the conduction band of the topological surface
state (Fig. 7) and the condition of weak scattering, Eq. (14), is
fulfilled. With perturbative treatment of the warping described
above, the retarded/advanced Green’s functions and the elastic
lifetime for the surface state in a TI are given by Eqs. (19)–(21).
The time-reversal symmetry of the surface state is encoded in
the odd momentum dependence of the out-of-plane vector
e⊥n. There is no backscattering in this case,63 and the elastic
lifetime (20) for isotropic ζkF ·n−n′ is

τ = τ0. (61)

In the similar way, Eq. (47) gives the transport scattering time
as

τtr = τ0

1 − e2
‖ /2

≈ 2τ0

1 + M2
kF ·n
/
A2k2

F

. (62)

Its dependence on e‖ (and, hence, on the variance M2
kF ·n)

originates from the anisotropy of the Dirac-fermion scattering
probability in momentum space.

W=0

W=0

1 1

1

1

FIG. 8. (Color online) Polar plots of surface-state spectrum
E(k,φn) (in units of energy Ak) as a function of momentum direction
specified by angle φn ∈ (0,2π ) [see also Eq. (58)]. For W �= 0 the
spectrum shows hexagonal warping (we chose W 2k4/2A2 = 0.4 and
Dk/A = 1). On average over all angles the warping results in larger
E(k,φn) (dashed circle) compared to the W = 0 case (solid circle).
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C. Cooperon

To write the Cooperon Eqs. (27) and (28) for the surface
state in a TI we note that the time-reversal symmetry implies
the identities

e− = −e+, e+ − e− = 2e,
(63)

e+ · e− = −1, e+ × e− = 0.

Equations (27) and (28) therefore reduce to

C0j = τ0δ0j + 〈1〉C0j +
∑

b=x,y,z

〈e · b〉Cbj , (64)

Caj = τ0δaj + 〈e · a〉C0j +
∑

b=x,y,z

〈(e · a)(e · b)〉Cbj , (65)

or, explicitly,

[1 − 〈1〉] C0j − 〈ex〉Cxj − 〈ey〉Cyj = τ0δ0j , (66)

−〈ex〉C0j + [1 − 〈e2
x

〉]
Cxj = τ0δxj , (67)

−〈ey〉C0j + [1 − 〈e2
y

〉]
Cyj = τ0δyj , (68)

[1 − 〈e2
⊥〉]Czj = τ0δzj . (69)

In the above equations we use the short-hand notation e ≡ e+
for the unit vector ekF ·n whose in- and out-of-plane components
are given by Eq. (21). Solving Eqs. (66)–(69) for the diagonal
Cooperon coefficients, we have

C00(q,ω) = 1

Dq2 − iω
, D = v2

F
τtr

2
, (70)

Cxx = Cyy = τtr

(
1 −

e2
‖

4

)
−

e2
‖

4
iτtrωC00(q,ω), (71)

Czz = τ0

1 − 〈e2
⊥〉 . (72)

Note that the singlet Cooperon C00 (70) remains gapless also
in the presence of the warping because it does not break
the time-reversal symmetry. The warping only modifies the
diffusion constant D through the transport scattering time (62).
The triplet Cooperons Cxx and Cyy are already averaged, for
presentation purposes, over the directions of q. In the absence
of the symmetry breaking [cf. Eqs. (41) and (42)] and for
τtr/τϕ � 1, the triplet Cooperons Cxx and Cyy as well as
Czz can be neglected compared to C00 in the conductivity
corrections.

D. Hikami boxes and net conductivity correction

Repeating the calculations described in Sec. III D, we
express the conductivity corrections δσ (1)

xx (45) and δσ (2)
xx (46)

in terms of the diagonal Cooperons

δσ (1)
xx = e2Dτ

πh̄

(
τtr

τ

)2 ∫
dq

(2π )2

[
2
〈
n2

x

〉
C00 − 2

〈
n2

xe
2
x

〉
Cxx

− 2
〈
n2

xe
2
y

〉
Cyy − 2

〈
n2

xe
2
⊥
〉
Czz
]
, (73)

δσ (2)
xx = −e2Dτ

πh̄

(
τtr

τ

)2(e‖

2

)2 ∫
dq

(2π )2
[C00 − Cxx], (74)

surface state surface state
λ

(a) (b)
z

BB

FIG. 9. (Color online) Schematic view of a 3D topological
insulator with a surface state subject to (a) perpendicular and (b)
parallel magnetic field B. In the latter case the B-field dependence of
the surface weak-antilocalization conductivity is due to the magnetic
flux through the effective thickness of the surface state, determined
by the decay length, λ, into the bulk.

Keeping only the singlet Cooperon C00, we obtain the
following expression for the net correction:

δσxx = δσ (1)
xx + 2δσ (2)

xx

= e2Dτ

πh̄

(
τtr

τ

)2
(

1 −
e2

‖

2

)∫
dq

(2π )2
C00(q) (75)

= e2D

πh̄

∫
dq

(2π )2
C00(q). (76)

After the partial cancellation in Eq. (75) Dτ (τtr/τ )2(1 −
e2

‖ /2) = D (τtr/τ ) (τ/τtr ) = D, the prefactor in the final
Eq. (76) depends only on the transport scattering time through
the diffusion constant D [see Eq. (70) and Ref. 41]. Inserting
Eq. (70) into Eq. (76), integrating over q with the upper
cutoff (Dτ )−1/2, and replacing −iω → τ−1

ϕ , we obtain Eq. (4),
already discussed in Sec. I.

Below we will focus on the dependence of δσxx on the
strength and orientation of an external magnetic field B, which
can be used in experiments to identify the surface states in
three-dimensional topological insulators.

E. Magnetoconductivity in perpendicular field

For B applied perpendicularly to the surface [see Fig. 9(a)]
we write Eq. (70) for the singlet Cooperon in the two-
dimensional position representation,65[

D

(
i∇ + 2e

h̄
A(r)

)2

− iω

]
C00(r,r′) = δ(r − r′), (77)

including the vector potential A(r) = (−By,0,0) of the mag-
netic field [r = (x,y,0)]. The solution is given by the Hilbert-
Schmidt expansion in the Landau wave-function basis, which
yields the well-known expression65 for the magnetoconduc-
tivity �σxx(B) = δσxx(B) − δσxx(0)

�σxx(B) = e2

2πh

[
ln

B⊥
B

− ψ

(
1

2
+ B⊥

B

)]
, (78)

B⊥ = h̄

2e 
tr
ϕ

, (79)

where the magnetic field B⊥ corresponds to the Aharonov-
Bohm flux of order of h/e through a typical area encircled by
the interfering trajectories,65 
tr = v

F
τtr and 
ϕ = v

F
τϕ , and

ψ(x) is the digamma function.
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F. Magnetoconductivity in parallel field

In the case of the parallel magnetic field B [see Fig. 9(b)]
the vector potential, A(z) = (B × ẑ)z, depends explicitly on
the coordinate z perpendicular to the surface (ẑ is the unit
vector). Therefore, the penetration of the surface state into the
bulk needs to be taken into account. To do so we first transform
the diffusion operator in equation [Dq2 − iω]C00(q) = 1 into
the three-dimensional position representation and then make
the Peierls substitution i∇r → i∇r + 2e

h̄
A(z) as follows

a−1
∫

drdze−iqrχ∗(z)

×
{
D

[
i∇r + 2e

h̄
A(z)

]2

− iω

}
eiqrχ (z)C00(q) = 1, (80)

where the in-plane (r) integration goes over the surface area a,
and the out-of-plane (z) integral involves the normalized wave
function of the surface state, χ (z), which decays exponentially
for z → −∞ on the length λ inversely proportional to the bulk
band gap20:

χ (z) = ez/λ

√
λ/2

= e−|z|/λ
√

λ/2
. (81)

In the latter form (i.e., written with |z|) this equation can
formally be used in the entire space −∞ < z < ∞. This
helps to simplify further calculations because the system is
symmetrically extended to the other half-space, 0 < z < ∞,
and the z integral in Eq. (80) can be calculated as

∫
dz · · · =

(1/2)
∫∞
−∞ dz . . . . Having done this integration, we return to q

representation of the Cooperon

C00(q,ω) = 1

Dq2 + τ−1
B − iω

, (82)

τ−1
B = 2De2B2λ2/h̄2 = Dλ2/2
4

B, (83)

where τB is the time scale for the suppression of the quantum
interference by the magnetic flux through the thickness of
the surface state, λ. The latter is assumed much smaller than
the magnetic length 
B = √

h̄/2|eB|. Note that Eq. (83) has
a six-times larger numerical coefficent than the result for the
quasi-2D quantum wells,57 which reflects the difference in the
electron confinement.

20 10 10 20
B B

1

xx

B surface

B surface

FIG. 10. (Color online) Quantum-interference magnetoconduc-
tivity �σxx(B) [in units of e2/2πh, see Eqs. (78) and (84)] for in- and
out-of-plane field orientations. The magnetic field scales, on which
�σxx(B) decreases, are fixed such that B‖/B⊥ = 2

√

tr
ϕ/λ = 20.

Using Eqs. (76) and (82) we calculate the magnetoconduc-
tivity �σxx(B) = δσxx(B) − δσxx(0)

�σxx(B) = − e2

2πh
ln

(
1 + τϕ

τB

)
= − e2

2πh
ln

(
1 + B2

B2
‖

)
, (84)

B‖ = 2

√

tr
ϕ

λ
B⊥. (85)

Clearly, for a sufficiently small penetration length λ �
2
√


tr
ϕ the in- and out-of-plane geometries have distinctly
different magnetic-field scales, B‖ 	 B⊥, on which �σxx(B)
decreases with B [see Fig. 10]. The in-plane magneto-
conductivity �σxx(B) (84) can be verified against recent
magnetotransport measurements on Bi2Te3 (Ref. 52).
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APPENDIX A: DERIVATION OF COOPERON
EQUATIONS (25)

The equation for the coefficients Cij =∑
αβα′β ′ �

i∗
αβ�

j

α′β ′ Cαβα′β ′ follows from Eq. (23):

Cij (q) = τ 2

τ0
δij + h̄

πNτ0

∑
s

∫
dk

(2π )2

⎡⎣∑
αβγ ′δ′

�i∗
αβG

R

αγ ′ (k,ε + h̄ω)G
A

βδ′(q − k,ε)�s
γ ′δ′

⎤⎦Csj (q). (A1)

It can be rewritten in a simpler form with the help of the identity∑
αβγ ′δ′

�i∗
αβG

R

αγ ′ (k,ε + h̄ω)G
A

βδ′ (q − k,ε)�s
γ ′δ′ =

∑
δ′βαγ ′

[
G

AT

(q − k,ε)
]
δ′β[�i†]βαG

R

αγ ′ (k,ε + h̄ω)�s
γ ′δ′

= Tr
[
G

AT

(q − k,ε)�i†G
R

(k,ε + h̄ω)�s
]
, (A2)

where Tr and T denote the trace and transposition operations, respectively, in σ space. We therefore have

Cij (q) = τ 2

τ0
δij + h̄

πNτ0

∑
s

Tr

[∫
dk

(2π )2
G

AT

(q − k,ε)�i†G
R

(k,ε + h̄ω)�s

]
Csj (q). (A3)
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For the orthonormal basis functions given by

�j = σ jσ y

√
2

, j = 0,x,y,z, (A4)

Eq. (A3) assumes the following form:

Cij (q) = τ 2

τ0
δij + h̄

2πNτ0

∑
s

Tr

[∫
dk

(2π )2
G̃

A (q − k,ε)σ iG
R

(k,ε + h̄ω)σ s

]
Csj (q). (A5)

Here the tilde denotes the operation

G̃
A = σy[G

A

]T σ y, (A6)

which flips the pseudospin σ̃ = σyσ T σ y = −σ . Thus, for q → 0 Eq. (A5) describes interference between the state with k,σ

and its “time-reversed” partner with −k,−σ .
Next, we evaluate the k integral in Eq. (A5) using the sharpness of the Green’s functions at the Fermi level under condition (14)

and the smallness of the Cooperon momentum q and frequency ω [see Eq. (38)]. In the denominator of G̃
A

q−k it is sufficient to
keep only the linear term in q, that is, ξq−k ≈ ξk − h̄vq + · · · (which should be compared with energy h̄/τ )

G̃
A

q−k ≈ 1

2

σ 0 − σe−k

ε
A

− ξk + h̄vq
. (A7)

At the same time, in the numerator we approximate eq−k ≈ e−k, neglecting small terms Aq/

√
A2k2

F
+ M2

kF
∼ Aq/E

F
� 1.

With Eqs. (19), (A7), and under condition (14) the k integral can be evaluated as follows∫
dk

(2π )2
G

A (q − k,ε)σ iG
R

(k,ε + h̄ω)σ s = 1

22

∫
dφn

2π

∫
N (ξk,n)dξk

(σ 0 − σe−k)σ i(σ 0 + σek)σ s

(ε
A

− ξk + h̄vq)(ε
R

− ξk)
(A8)

≈ N

4

∫
dφn

2π
(σ 0 − σe−kF ·n)σ i(σ 0 + σekF ·n)σ s

∫
dξk

1

(ξk − ε
A

− h̄v
F
n · q)(ξk − ε

R
)

(A9)

= N

4

∫
dφn

2π
(σ 0 − σe−kF ·n)σ i(σ 0 + σekF ·n)σ s 2πi

ih̄/τ + h̄ω − h̄v
F
n · q

(A10)

= 2πNτ

h̄
× 1

4

∫
dφn

2π

(σ 0 − σe−k
F

·n)σ i(σ 0 + σek
F

·n)σ s

1 − iτω + iτv
F
n · q

, (A11)

where the DOS N (ξk,n) is replaced by its Fermi surface value N and, then, the ξk integral is calculated in the complex plane.
Inserting Eq. (A11) into Eq. (A5) yields Eq. (25).

APPENDIX B: EVALUATION OF k INTEGRALS IN HIKAMI BOXES IN EQS. (43) AND (44)

To calculate the k integral in Eq. (43) we first expand the Green’s functions GR

q−k,ε+h̄ω and GA

q−k,ε in small Cooperon
momentum q as we did in Eq. (A7) of Appendix A

G
R

q−k,ε+h̄ω ≈ 1

2

σ 0 + σe−k

ε
R

− ξk + h̄ω + h̄vq
, (B1)

G
A

q−k,ε ≈ 1

2

σ 0 + σe−k

ε
A

− ξk + h̄vq
. (B2)

Then, the integral is converted to
∫

dφn
2π

∫
Ndξk . . . and the ξk integration is again done in the complex plane following the same

steps as in Eqs. (A8)–(A11). The final result is∫
dk

(2π )2

(
G

A

k,ε Vx
k G

R

k,ε+h̄ω

)
γ ′β

(
G

R

q−k,ε+h̄ω Vx
q−k G

A

q−k,ε

)
γβ ′

≈ 4πNτ 3

h̄3

1

24

[(
σ 0 + σekF ·n

)
Vx

kF ·n
(
σ 0 + σekF ·n

)]
γ ′β

[(
σ 0 + σe−kF ·n

)
Vx

−kF ·n
(
σ 0 + σe−kF ·n

)]
γβ ′ , (B3)

where (· · ·) = ∫ 2π

0 · · · dφn/2π is the averaging over the momentum direction n. As the expression above is independent of ε, the
energy integral in Eq. (43) is h̄/2π , which along with Eq. (B3) yields Eq. (45).
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To evaluate the integrals over k and k′ in Eq. (44) we set q,ω → 0 in the single-particle Green’s functions and regroup them
as follows: ∫

dk
(2π )2

∫
dk′

(2π )2

(
G

A

k,ε Vx
k G

R

k,ε+h̄ωG
R

q−k′,ε+h̄ω

)
γ ′β

(
G

R

q−k,ε+h̄ω G
R

k′,ε+h̄ω Vx
k′ G

A

k′,ε
)
γβ ′ (B4)

≈
∫

dk
(2π )2

[
G

A

(k)Vx(k)G
R

(k)
]
γ ′β1

G
R

γγ1
(−k)

∫
dk′

(2π )2
G

R

β1β
(−k′)[G

R

(k′)Vx(k′)G
A

(k′)]γ1β ′ .

Each of the integrals can now be done in the similar way as in Eqs. (A8)–(A11) of Appendix A∫
dk

(2π )2
[G

A

(k)Vx(k)G
R

(k)]γ ′β1G
R

γγ1
(−k) ≈ −2πiNτ 2

h̄2

1

23

[(
σ 0 + σekF ·n

)
Vx

kF ·n
(
σ 0 + σekF ·n

)]
γ ′β1

(
σ 0 + σe−kF ·n

)
γ γ1

,

(B5)∫
dk′

(2π )2
G

R

β1β
(−k′)[G

R

(k′)Vx(k′)G
A

(k′)]γ1β ′ ≈ −2πiNτ 2

h̄2

1

23

(
σ 0 + σe−kF ·n′

)
β1β

[(
σ 0 + σekF ·n′

)
Vx

kF ·n′
(
σ 0 + σekF ·n′

)]
γ1β ′ .

(B6)

Inserting these into Eq. (44) we obtain Eq. (46).
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39J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda Geller, D.

Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev.
Lett. 90, 076807 (2003).

40O. Zaitsev, D. Frustaglia, and K. Richter, Phys. Rev. Lett. 94,
026809 (2005).

41E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and
B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

42I. L. Aleiner and K. B. Efetov, Phys. Rev. Lett. 97, 236801 (2006).
43K. Kechedzhi, E. McCann, V. I. Fal’ko, H. Suzuura, T. Ando, and

B. L. Altshuler, Eur. Phys. J. Special Topics 148, 39 (2007).
44D. Neumaier, K. Wagner, S. Geiler, U. Wurstbauer, J. Sadowski,

W. Wegscheider, and D. Weiss, Phys. Rev. Lett. 99, 116803 (2007).
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