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Weak topological insulator with protected gapless helical states
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A workable model for describing dislocation lines introduced into a three-dimensional topological insulator
is proposed. We show how fragile surface Dirac cones of a weak topological insulator evolve into protected
gapless helical modes confined to the vicinity of a dislocation line. It is demonstrated that surface Dirac cones
of a topological insulator (either strong or weak) acquire a finite-size energy gap when the surface is deformed
into a cylinder penetrating the otherwise surfaceless system. We show that, when a dislocation with a nontrivial
Burgers vector is introduced, the finite-size energy gap plays the role of stabilizing the one-dimensional gapless
states.
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I. INTRODUCTION

The topological insulator has become one of the cutting-
edge paradigms of the condensed-matter community for the
past couple of years.1–3 Especially highlighted is the Z2

topological insulator,4 which has a band gap generated by
spin-orbit coupling and preserves time-reversal symmetry.
Although the idea of a Z2 topological insulator stems from the
two-dimensional (2D) quantum spin-Hall effect,5 its three-
dimensional (3D) counterpart has had a stronger impact on
material science, leading, in particular, to the reclassifying of
thermoconducting layered crystals, such as Bi2Se3 and Bi2Te3

as strong topological insulators.2 In contrast to its 2D analog,
the 3D Z2 topological insulator has both weak and strong
phases.6,7 A strong/weak topological insulator (STI)/(WTI)
bears an odd (even) number of surface Dirac cones when it
is in contact with the vacuum and is characterized by a Z2

invariant ν0 = 1 (ν0 = 0). However, full characterization of a
3D Z2 topological insulator requires a set of, in total, four Z2

numbers: (ν0,ν1ν2ν3).
In contrast to the topological number ν0 that characterizes

a STI and is associated with a protected surface single Dirac
cone, other weak indices are generally believed to be nonrobust
quantities. On a perfect lattice, this assertion is indeed justified.
However, a recent study on the response of a topological
insulator to the introduction of lattice dislocations,8 e.g., screw
and edge dislocations, suggests that such dislocation lines
play the role of a probe for characterizing WTI in which
both strong (ν0) and weak (ν1ν2ν3) indices come into play.
The authors of Ref. 8 have shown that both WTI and STI,
when twisted by dislocations, accommodate a pair of protected
one-dimensional (1D) helical modes. This seems to contradict
the common belief that a WTI is not topologically robust. It is
also counterintuitive that an even number always appears, say,
two pairs of Dirac cones on the 2D surface of a WTI, whereas,
along a dislocation, the number of protected 1D Dirac cones
is, at most, 1. The former is susceptible to disorder, especially
to intervalley scattering by short-range impurities, whereas,
the latter is spin protected from scattering by nonmagnetic
impurities.

The aim of this paper is to resolve the above seemingly
opposing points of view on the behavior of WTI on a 2D
surface and along a 1D dislocation line. We propose a concrete

theoretical model that is intended to interpolate between the
two cases. To implement either screw or edge dislocations,
see Figs. 1 and 2, we first introduce two cuts extended in
parallel with the z axis. For analytic considerations, it is more
convenient to regard such linear cuts (of width Nc) as cylindri-
cal punctures (of circumference s) penetrating the otherwise
surfaceless system. By cuts, we mean links on which electron
hopping is switched off in the tight-binding description. A
pair of screw (edge) dislocations is then introduced around
(between) these two cuts. Electrons in the surface states (only
such electrons are relevant to transport characteristics) can be
seen as a collection of 1D modes that come in pairs (Kramers’
pair), moving up and down the punctures. These electrons also
feel the existence of crystal dislocations. The latter plays a
role similar to that of an (imaginary) magnetic flux piercing
the puncture. The previously mentioned 2D and 1D cases are
naturally included within this model as the limit of s → ∞
and s → 0, respectively. We follow the evolution of electronic
states along such punctures with a nontrivial lattice distortion
as s is varied. It is revealed that the topological stability of
protected 1D gapless helical modes stems from a finite-size
energy gap associated with the spin-Berry phase. The latter has
been the subject of much theoretical attention9–11 in the context
of peculiar Aharonov-Bohm oscillations observed recently
in a system of STIs.12 The protected gapless modes along
dislocation lines also have been studied from the viewpoint of
engineering thermoelectric materials.13

II. MODEL

In the bulk (outside the punctures and away from the
dislocation), we consider a lattice version of the following
simplified model for a 3D Z2 topological insulator,9,14

H = Akμγμ + (� − Bkμkμ)γ0, (1)

where repeated indices should be summed over μ = 1,2,3. γ

matrices are chosen, e.g., as

γμ = τzσμ, γ0 = τx (2)

for μ = 1,2,3. Then, following the same type of procedure
as described in Refs. 14 and 15, we place the model on a 3D
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FIG. 1. (Color online) A pair of screw dislocations (upper) with Burgers vector b = (0,0, ± b) inserted between the two cuts (lower). The
dislocation line is along the z axis and parallel to the Burgers vector. The system is translationally invariant in the z direction.

square lattice of size Nx × Ny × Nz and impose, unless stated
otherwise, a periodic boundary condition in each direction.

Away from the two cuts and dislocations, our tight-binding
Hamiltonian reads

H =
∑

x,y,kz

{m(kz)|x,y,kz〉〈x,y,kz|

+ (tx |x + 1,y,kz〉〈x,y,kz|
+ ty |x,y + 1,kz〉〈x,y,kz| + H.c.)}, (3)

where

m(kz) = A sin kzτzσz + (� − 6B + 2B cos kz)τx,

tx = i
A

2
τzσx + Bτx, (4)

ty = i
A

2
τzσy + Bτx.

A. Cuts

In order to implement a punctured geometry and to
introduce dislocations on the square lattice, we first deform the
punctures into the form of a cut (see the lower panel of Fig. 1)
of length Nc (its circumference is s = 2Nc). We introduce two
cuts, then a pair of screw (Fig. 1) or edge (Fig. 2) dislocations
between them. As shown in these figures, here, the two cuts

z
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layers

0

or

Burgers vector

Dislocation lines

FIG. 2. (Color online) Edge dislocations, a concrete implemen-
tation between the two cuts. Here, the Burgers vector �b is parallel to
the x axis; �b = (b,0,0).

are placed along the z axis, and between the two crystal layers:
y = 0 and y = 1 (as well as between y = Ny/2 − 1 and
y = Ny/2). Between these crystal layers, hopping is turned
off for x = 1, . . . ,Nc. Introduction of these two cuts breaks
the discrete translational invariance (crystal periodicity) in the
(x,y) plane, whereas, it preserves the translational invariance
in the z direction, i.e., kz is still a good quantum number. In
the following, we will extensively investigate energy spectra:
E = E(kz) of the system in the presence of screw or edge
dislocations.

B. Screw vs edge dislocations

1. Case of screw dislocations

A pair of screw dislocations can be introduced between the
two cuts by dislocating the hopping matrix elements in the
region between the two cuts (Fig. 1), i.e., for y = 1, . . . ,Ny/2,
say, between the two crystal layers x = 0 and x = 1 as

tx |x + 1,y,z〉〈x,y,z| → tx |x + 1,y,z − b〉〈x,y,z|. (5)

b measures the strength of the dislocation, i.e., the magnitude
of the Burgers vector. This is equivalent to twisting the same
hopping matrix elements by a factor eikzb in the kz-diagonalized
basis.16 Note that the cuts and twist structure are translationally
invariant in the z direction, and kz is still a good quantum
number.

2. Case of edge dislocations

In the case of (a pair of) edge dislocations with Burgers
vector b = (±b,0,0), we suppress b nearest-neighbor hopping
amplitudes in the x direction between x = x0 and x = x0 +
1 + b and between the two cuts (1 � y � Ny/2) and instead
introduce a skipping process,

tx |x0 + 1 + b,y,z〉〈x0,y,z|, (6)

for the tight-binding Hamiltonian (3).

C. Strong vs weak indices

The 3D topological insulator model we employ has three
distinct topological phases as shown in Table I. Indices δ0, δ1,
δ2, and δ3 in the table are parity eigenvalues: ±1, respectively,
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TABLE I. Three distinct topological phases of the square lattice
Dirac mode: Its low-energy effective Hamiltonian around the � point
is given in Eqs. (1) and (2).

δ0 δ1 δ2 δ3 (ν0,ν1ν2ν3) Phase

�/B < 0 + + + + (0, 000) Trivial
0 < �/B < 4 − + + + (1, 000) STI
4 < �/B < 8 − − + + (0, 111) WTI
8 < �/B < 12 − − − + (1, 111) STI
12 < �/B − − − − (0, 000) Trivial

at � = (0,0,0) (for δ0), at three inequivalent but symmetric
X points: (π,0,0), (0,π,0), and (0,0,π ) (for δ1), at three
M points: (0,π,π ), (π,0,π ), and (π,π,0) (for δ2), and at
R = (π,π,π ) (for δ3). The above eight (by distinguishing
inequivalent points) symmetry points (�, X, M , and R) are
also called time-reversal invariant momenta (TRIM) of the
3D Brillouin zone. In our model, these parity eigenvalues are
related to the strong and weak indices as

(−1)ν0 = δ0δ1δ
′
1δ

′′
1δ2δ

′
2δ

′′
2δ3 = δ0δ

3
1δ

3
2δ3, (7)

(−1)ν1 = δ1δ
′
2δ

′′
2δ3 = δ1δ

2
2δ3, (8)

(−1)ν2 = δ′
1δ2δ

′′
2δ3 = δ1δ

2
2δ3, (9)

(−1)ν3 = δ′′
1δ2δ

′
2δ3 = δ1δ

2
2δ3. (10)

Here, we have distinguished, for later convenience, three δ2’s
and δ3’s at symmetric but inequivalent TRIM (the value of
these δ’s is identical in our model with high symmetry; as for
definitions of these δ’s, see Fig. 8).

In the following, we focus on the WTI phase: 4 < �/B <

8 and study how a protected 1D helical pair arises from a
topologically fragile surface of a WTI.

III. ENERGY SPECTRUM OF WTI IN THE PRESENCE
OF PUNCTURES AND DISLOCATION LINES

A WTI has an even number of Dirac cones on its surface as
depicted in Fig. 3. Here, the surface is chosen normal to the y

axis, i.e., a WTI occupying the half space y < 0 is in contact
with the vacuum occupying the remaining half at the y = 0

surface. The two Dirac cones are located at two TRIMs: (0,π )
and (π,0) in the surface coordinates (kz,kx).

A. Finite-size energy gap of surface Dirac cones
on a cylindrical surface

Imagine deforming this flat surface into a cylindrical tube.
The tube is further deformed adiabatically into a cut of Figs. 1
and 2. Now, the two Dirac cones are projected onto the kz axis
as shown in Fig. 4. Notice that the two projected Dirac cones
at kz = 0 and kz = π have acquired a finite-size gap in the
upper panel. Note that, here, the twist is not introduced yet.
The appearance of a gap is a rather unexpected phenomenon,
if one recalls that carbon nanotubes become either metallic or
semiconducting depending on the way the graphene is rolled
up into a tube.17 Here, a crucial difference from the carbon
nanotube case is that the Dirac cone involves a real spin and
not a sublattice pseudospin. The procedure of rolling up a
flat surface into a tube introduces a 2π rotation in the spin
space along a contour winding around the tube once.9–11 The
resulting −1 factor changes the boundary condition around the
tube from periodic to antiperiodic,

ei(px+k
(0)
x )s(−1) = 1. (11)

Here, we have decomposed the total crystal momentum of an
electron into short- and long-wavelength components,

k = k(0) + p. (12)

p = (px,py) refers to the long-wavelength component mea-
sured from the Dirac point. The short-wavelength component
k(0) = (k(0)

x ,k(0)
y ) is, on the other hand, a crystal momentum at

the Dirac point, and typically k(0)
x = 0,π . Recall here that the

circumference s = 2Nc of the cut is, by its construction, an
even integer multiple of the lattice constant, since the cut is
made by disconnecting Nc links of an otherwise locally perfect
crystal. This signifies that

eik
(0)
x s = 1 (13)

always holds. As a result, the antiperiodicity of the bound-
ary condition (11) must be taken care of solely by the
long-wavelength part of the crystal momentum and eliminates,
as seen, e.g., in the spectrum of Fig. 4 (top panel) states on

FIG. 3. (Color online) Calculated
spectrum of surface Dirac cones in the
WTI phase (�/B = 6, A = B = 1). The
periodic boundary condition in the y

direction is relaxed; the system forms a
slab or a torus of finite thickness. The two
Dirac cones are located at TRIM: (π,0)
and (0,π ).
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FIG. 4. (Color online) Energy spectrum E(k) of WTI (�/B = 6) in the presence of screw dislocations. Here, the 1D momentum k is
chosen to be along the cuts; k = kz. The Burgers vectors are given as �b = (0,0, ± b) with b = 0 (dislocation is absent), b = 1, b = 2, and
b = 3, respectively, in the top, second, third, and bottom panels. The calculation is performed for a system of size Nx × Ny = 16 × 16 and cut
width Nc = 8. The other parameters are set as A = B = 1.

the line px = 0 crossing the very bottom of a Dirac cone.
Low-energy states in the same figure consist of px = ±π/s,
leading to the occurrence of a finite-size gap,

�E = 2A
π

s
(14)

in the spectrum.

B. Screw dislocations

The second panel of Fig. 4 shows, on the other hand,
the spectrum when the system is twisted by a pair of screw
dislocations with Burgers vector �b = (0,0, ± b) where b = 1.
Such a lattice scale deformation modifies the periodicity
of the wave function associated with the short-wavelength
component of the crystal momentum, i.e., k(0)

z = π in the
present case. Note that the entire effect of a screw dislocation
can be concentrated on hopping amplitudes across a single
surface as in Eq. (5). Its influences on the electronic wave
function sums up to a phase shift eikzb on crossing the same
surface (here, this is a surface inserted between the two crystal
layers y = 0 and y = 1). Thus, adding this phase shift to
Eq. (11) and taking Eq. (13) into account, one finds that the

appropriate boundary condition in the presence of a screw
dislocation reads,

eipxseik
(0)
z b(−1) = 1. (15)

Note that, here, a small additional phase factor eipzb, which
modifies only gapped solutions with pz �= 0, has been omitted
for the sake of clarity. Equation (15) dictates that only the
surface Dirac cone projected onto k(0)

z = π is susceptible to
the change in the magnitude of the Burgers vector and closes
the gap (i.e., the px = 0 state is now allowed18) when b is an
odd integer.

Some examples confirming this even/odd feature are shown
in Fig. 4. In the last two panels of Fig. 4, one can also observe
that Kramers pairs at kz = 0 exchange their partners as kz

evolves up to kz = π in accordance with the twisting of the
boundary condition.

The antiperiodic boundary condition (11), the resulting
finite-size gap (14), as well as the twisting of the boundary
condition, such as Eq. (15), also underlie the origin of the
anomalous Aharonov-Bohm oscillations observed recently in
Bi2Se3 nanoribbbons.12 In the Aharonov-Bohm geometry, the
twisting of the boundary condition à la Eq. (15) is caused,
not by a dislocation, but instead by a magnetic-flux tube
penetrating the puncture.9–11
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FIG. 5. (Color online) Here, similar plots as the last two panels of Fig. 4 in the case of edge dislocations. Here, the Burgers vector is chosen
as �b = (±b,0,0) with b = 2 and b = 3, respectively, in the upper and lower panels.

C. Edge dislocations

The above argument needs to be modified in the case
of an edge dislocation associated with the same dislocation
line. Such defects can be introduced, e.g., as in Fig. 2 in
which dislocations terminate at a cut of finite width similar
to the case of a screw dislocation. The Burgers vector in this
implementation is along the x axis, b = (b,0,0). Here, b is
the number of subtracted (added) layers between the two cuts.
Recall that, for an edge (screw) dislocation, the Burgers vector
is perpendicular (parallel) to the dislocation line (parallel to
the z axis here). The effect of such an edge dislocation on the
electronic wave function can fully be taken into account as a
change in the boundary condition (11), i.e., by the replacement:
s → s + b in the same equation. This leads, when Eq. (13) is
taken into account, to

eipxseik
(0)
x b(−1) = 1, (16)

i.e., a twisted boundary condition analogous to Eq. (15) but
with k(0)

z replaced by k(0)
x . Note that, again, there is a small

additional phase factor eipxb, which appears only when px �= 0.
Equation (16) dictates, in contrast to Eq. (15), that among the

two surface Dirac cones projected onto the kz axis, only the one
with px = π is susceptible to the presence of edge dislocation,
and closes its finite-size gap when b is an odd integer. Two
panels of Fig. 5 indeed confirm this even/odd feature in a
few nontrivial cases: b = 2,3. Notice that protected gapless
modes appear at kz = 0 [b = 3 (odd) case] in contrast to the
case of screw dislocation. This is because, here, the underlying
surface Dirac cone responsible for the gap closing is located
at (kz,kx) = (0,π ), projected naturally to kz = 0.

IV. FINITE-SIZE GAP OF PROJECTED 2D DIRAC
CONES AND THE PROTECTED 1D GAPLESS

HELICAL MODES

We have seen that 2D surface Dirac cones attain a finite-size
mass gap when the surface is deformed into a tube of finite
circumference s [cf. Eqs. (11) and (14)]. We point out that
this observation is the key for understanding the mechanism
of how the originally fragile 2D surface Dirac cones of WTI
acquire robustness upon the introduction of a dislocation and
transform into protected 1D gapless helical modes.
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FIG. 6. (Color online) Protected gapless helical modes along a pair of screw dislocations (b = 1). The spectrum is calculated at �/B = 6
for two different values of the cut width Nc; Nc = 0 (upper) and Nc = 16 (lower). The size of the system is chosen as Nx × Ny = 32 × 8. See
the text for discussions.

035443-5



KEN-ICHIRO IMURA, YOSITAKE TAKANE, AND AKIHIRO TANAKA PHYSICAL REVIEW B 84, 035443 (2011)

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

k π

E

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

k π

E

FIG. 7. (Color online) Protected gapless helical modes along a pair of edge dislocations (b = 1). The spectrum is calculated at �/B = 6
for two different values of the cut width Nc; Nc = 1 (upper) and Nc = 16 (lower). Nx × Ny = 32 × 8.

In the absence or presence of trivial (b, even) dislocations,
the finite-size gap evolves continuously into the bulk gap as
s → 0. When b is odd, the same evolution gives robustness to
the gapless modes. When the circumference s of the puncture,
around which the crystal is dislocated, is finite, the gapless
modes are separated from the (gapped) continuum only by
an energy on the order of A/s. As the size of the puncture
is reduced, only the gapless pairs stay intact, and its unique
property that it is topologically protected manifests, making it
distinguishable from the rest of the spectrum. Projected Dirac
cones without a pair of protected 1D gapless helical modes
become indistinguishable from the gapped bulk spectrum.

Figures 6 and 7 depicts such an evolution in the presence of
screw (edge) dislocations. In the two figures, one can observe,
upon reducing the size of the cuts (from lower to upper panels)
from Nc = 16 either to Nc = 0 (screw case) or to Nc = 1 (edge
case), that the gapless helical pair isolates. Note that, in the case
of edge dislocations, one cannot reduce the cut width smaller
than b. Note also that, in these plots, separation between the
two cuts is relatively small (Ny/2 = 4) in order to get the
width of the cut sufficiently large (Nc = 16). For this reason,
there appears a finite interference between the ideally gapless
counterpropagating modes, each localized in the vicinity of
two dislocation lines. Of course, when the size of the cut is
finite, the wave function of the gapless mode is extended almost
uniformly around the cut. The wave function shows a sharp
peak in its amplitude in the vicinity of a dislocation line in the
limit Nc → 0 (not shown).

V. RELATION BETWEEN WEAK INDICES
AND PROTECTED 1D HELICAL MODES

What is the relation between the weak indices and the condi-
tion for the appearance of protected 1D helical modes? A deep
connection between these two a priori unrelated quantities
becomes manifest when expressing both the weak indices and
the latter condition in terms of the parity eigenvalues at the
eight bulk TRIMs, since our system has inversion symmetry.7

The expressions for weak indices in terms of δ0, δ1, δ2, and
δ3 were given in Eq. (10). In order to identify the condition
for the appearance of protected 1D helical modes in terms of

δ0, δ1, δ2, δ3, and δ’s at symmetric but inequivalent points, we
project the 3D reciprocal space in which the eight 3D TRIMs
are defined in two steps; first onto the 2D reciprocal surface on
which surface Dirac cones appear, then, further onto the 1D
kz axis on which protected 1D helical modes appear. Figure 8
shows how the eight parity eigenvalues (among which only
four are independent) determine the weak indices, say, ν3,
upon being projected onto the (kz,kx) plane. Products of two
indices at four 2D TRIMs determine the position where surface
Dirac cones appear.7

Figure 9 shows, on the other hand, that the appearance
or disappearance of protected 1D helical modes along a
screw dislocation in the z direction is related to a relative
sign of indices, δ′′

1δ2 and δ′
2δ3 occurring at (kz,kx) = (π,0)

and (kz,kx) = (π,π ). When these indices have opposite

screw dislocations

edge dislocations

Relevant for

Relevant for

FIG. 8. (Color online) Parity eigenvalues determining both the
indices (ν0,ν1ν2ν3) and the position of surface Dirac cones on the
projected 2D plane; here, chosen as the (kz,kx) plane. Case 1.
Screw dislocation [�b = (0,0,b)]—δ′′

1δ2 and δ′
2δ3 occurring at

(kz,kx) = (π,0) and (kz,kx) = (π,π ) are relevant. Case 2. Edge
dislocation [�b = (b,0,0)]—δ1δ

′′
2 and δ′

2δ3 occurring at (kz,kx) = (0,π )
and (kz,kx) = (π,π ) are relevant.
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FIG. 9. (Color online) (a) Necessary arrangement of the 2D
indices introduced in Fig. 8 for the appearance of protected 1D helical
modes along a screw dislocation in the z direction. Only relative signs
are relevant. Column (b), WTI example satisfying the condition in
(a); 4 < �/B < 8. Column (c), STI example satisfying the condition
in (a); 8 < �/B < 12.

signs,

(δ′′
1δ2)(δ′

2δ3) = −1, (17)

there appears to be an odd number of, i.e., single 2D surface
Dirac cones that is projected to kz = π . This projected Dirac
cone acquires a finite-size mass gap that is susceptible to the
change in the boundary condition [cf. Eq. (15)] caused by
the twisting associated with, e.g., a screw dislocation. The
projected Dirac valley features a protected 1D helical mode
when b is an odd integer. Notice, on the other hand, that the
same combination of parity eigenvalues in as Eq. (17) has

appeared in Eq. (10) (see also Fig. 8). Thus, ν3 = 1 and b is
odd—(A) is both a necessary and a sufficient condition for the
appearance of protected 1D gapless helical modes.

The situation is different for an edge dislocation, where
the dislocation line is taken to be parallel to the z axis
but with a Burgers vector b = (±b,0,0). In this case, the
appearance of protected 1D modes is related to a relative sign
of the indices δ1δ

′′
2 and δ′

2δ3 occurring at (kz,kx) = (0,π ) and
(kz,kx) = (π,π ); see Fig. 8. When these indices have opposite
signs, i.e.,

(δ1δ
′′
2 ) × (δ′

2δ3) = −1, (18)

an odd number of surface Dirac cones is susceptible to
the change in boundary condition (16) associated with the
insertion or subtraction of crystal layers between the two cuts.
The same combination of δ’s as in Eq. (18) has appeared,
in contrast to the previous case, in Eq. (8) (see also Fig. 8).
Thus, protected 1D gapless modes appear in the present case
iff ν1 = 1 and b is odd—(B).

The above statements (A) and (B) concerning the appear-
ance of protected 1D gapless modes are consistent with the
expression,

�M · �b = π mod 2π, (19)

which has appeared in Ref. 8. This formula is a straightforward
generalization of the criteria (A) and (B) for the case of the
absence of inversion symmetry. In Eq. (19), the vector �M is
defined as

�M = 1
2 (ν1 �G1 + ν2 �G2 + ν3 �G3), (20)

in terms of reciprocal lattice vectors �G1, �G2, and �G3. Note
that the same formula can be derived by considering winding
properties of a Bloch electron in an extended parameter space
incorporating the dislocation lines.19

In Fig. 9(a), the lower-left index δ0δ1 is irrelevant, since
Dirac cones projected onto kz = 0 are insensitive to the change
in boundary condition [cf. Eq. (13)]. This means that the
dislocation only probes weak indices. Protected 1D gapless
helical modes similarly appear both in the WTI and in the
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FIG. 10. (Color online) Plots similar to Figs. 4 and 5 here in the STI phase (�/B = 10). The upper (lower) panel corresponds to the case
of screw (edge) dislocations, b is chosen as b = 3 and b = 2, respectively, in the two cases.
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STI phases with the same weak indices [see Fig. 9 columns
(b)–(c)].

Figure 10 shows an STI example on the (dis)appearance of
protected gapless modes, both in the screw and in the edge
dislocation cases. Recall that, in the WTI phase, protected
gapless modes along an edge dislocation appear at kz = 0,
whereas, here, the same protected modes appear at kz = π ,
even though the two phases are characterized by the same
weak indices; (ν0,ν1ν2ν3) = (0,111) [WTI: 4 < �/B < 8]
and (ν0,ν1ν2ν3) = (1,111) [STI: 8 < �/B < 12].

VI. CONCLUSIONS

In this paper, we have addressed the question: How weak is a
WTI? The existence of protected gapless helical states parasitic
to a dislocation line of a WTI seems per se contradictory
to the fragility of the even numbers of surface Dirac cones
of a WTI. Using a simple model for a topological insulator
implemented on a square lattice, we systematically have
studied the nature of electronic states in the presence of
dislocation lines. In order to resolve the apparent contradiction

between the stability of 1D gapless helical modes and the
nonrobustness of 2D surface Dirac cones, we have invented
and have studied a modified variant of the defect-free model
in which a dislocation is extended along a cylinder of finite
circumference. The unexpected stability of the 1D helical
states was identified as an interplay of the finite-size energy
gap specific to surface states of a 3D topological insulator
and twisting of the boundary condition due to topologically
nontrivial geometry. This scenario is closely related to the
mechanism of recently observed anomalous Aharonov-Bohm
oscillations in a STI of ribbon geometry.
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