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Semiclassical model for the dephasing of a two-electron spin qubit coupled to a coherently
evolving nuclear spin bath
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We study electron spin decoherence in a two-electron double quantum dot due to the hyperfine interaction,
under spin-echo conditions as studied in recent experiments. We develop a semiclassical model for the interaction
between the electron and nuclear spins, in which the time-dependent Overhauser fields induced by the nuclear
spins are treated as classical vector variables. Comparison of the model with experimentally obtained echo signals
allows us to quantify the contributions to the nuclear spin evolution of various processes such as coherent Larmor
precession and spin diffusion.
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I. INTRODUCTION

In recent years, electron spin qubits in solid-state quantum
dots have emerged as promising candidates for the implemen-
tation of quantum information processing.1–8 The confined
electrons in these devices can be precisely manipulated
using microwave frequency electromagnetic fields and/or
nanosecond-scale pulses of nearby electrostatic gates, while
maintaining spin coherence over much longer times. The
main source of decoherence in such qubits is the hyperfine
interaction between the electron spins and the nuclear spins
of the host lattice.8–15 Through this interaction, the nuclear
spin bath produces a fluctuating effective Zeeman field on
the electron spins. However, the time scale for evolution of
this so-called Overhauser field is typically much longer than
that required for manipulation of a single qubit. Therefore,
dynamical decoupling techniques16,17 based on fast control of
the qubit can be employed to partially eliminate decoherence
due to the interaction with the nuclear spins. Recent exper-
iments confirm that such techniques can be used to extend
qubit coherence times by a few orders of magnitude, up to
approximately 200 μs.1,18

Usually, interactions between a single electron spin and
many weakly interacting spins (as described by the “central
spin problem”19) can lead to complicated evolution of the joint
quantum system.20–31 Moreover, the nuclear spin bath may
maintain coherence over a long time, which may in general
result in coherent back-action on the electron spin. Indeed,
using the Keldysh technique and a nontrivial resummation of
diagrams, the authors of Refs. 32 and 33 analyzed this problem,
and predicted periodic collapses and revivals of the electron
spin coherence over a specific range of external magnetic field
strengths. This phenomenon was subsequently observed in
two-electron spin-echo measurements.18

Despite the apparent complexity of the system, there are
several reasons why one might expect to find a more intuitive
semiclassical description of the electron spin dynamics. First,
due to the small nuclear Zeeman energy, the initial state of the
nuclear spin bath is well described by an infinite temperature
(completely random) state. Second, the state of the nuclear spin
bath is not measured in the experiment, and the experimental
outcome is an average over many runs. We note that the
semiclassical approximation of the nuclear spin system has

been used to describe a variety of other interesting phenomena
in quantum dots.21,28,30,31

The aim of this paper is to demonstrate that a wide
array of complex dynamical phenomena in two-electron
spin-echo measurements, such as those of Ref. 18, can be
understood within the context of a semiclassical treatment of
the nuclear spin bath. We first show that, within a simple
model which neglects the effects of the Knight shift and the
dipolar interaction between nuclear spins, the semiclassical
treatment reproduces the expressions for the spin-echo signal
obtained in Refs. 32 and 33, where a summation of diagrams
in a perturbative quantum mechanical treatment was used.
We then present a more detailed microscopic model, which
incorporates the Knight shift and the nuclear dipole-dipole
interactions, as well as inhomogeneous hyperfine and Zeeman
couplings. The semiclassical treatment for this model was
sketched in the supplemental material of Ref. 18. Here
we provide a systematic discussion of this semiclassical
treatment, which relies on a low-order expansion of the qubit
evolution in the inverse of the number of nuclear spins and
in the hyperfine coupling. Using this approach, we identify
the relevant physical processes which govern nuclear spin
evolution and electron spin coherence, as measured by the
spin-echo signal. The excellent agreement between the model
and the experimental data that were shown in Ref. 18 lends
additional justification to the approximations underlying the
semiclassical approach.

The paper is organized as follows. In Sec. II we de-
scribe the two-electron-spin qubit system and outline the
main physical processes which govern the qubit dynamics.
In Sec. III we review the Hahn spin-echo sequence. In
Sec. IV we describe the Hamiltonian of the two-electron-spin
system and the nuclear spin bath. We then derive a simpler
effective Hamiltonian through a perturbative treatment of the
Overhauser field. In Sec. V we show that a semiclassical
model based on this Hamiltonian reproduces the collapse
and revival phenomenon. A more complete semiclassical
approach is derived and justified in Sec. VI. There we
include the effect of the dipolar coupling between nuclear
spins and the back-action of the Knight field on the nuclear
spin precession. Conclusions and discussion are presented in
Sec. VII.
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II. THE TWO-ELECTRON-SPIN QUBIT

We consider a qubit consisting of two electrons in a double
quantum dot, in the regime where the two electrons are well
separated, with one electron occupying each dot. A uniform
in-plane magnetic field Bext = Bextẑ is applied along the z axis,
with Bext > 0. The qubit Hilbert space is spanned by the singlet
spin state |S〉 = 1√

2
(|↑↓〉 − |↓↑〉) and the triplet state with

zero net spin projection on the z axis |T0〉 = 1√
2

(|↑↓〉 + |↓↑〉).
In this notation, the two arrows represent the orientations of
the electron spins in each of the two dots, measured relative to
the external field direction ẑ. Due to the large Zeeman splitting,
this qubit subspace is energetically isolated from the two other
two-electron triplet spin states |T+〉 = |↑↑〉 and |T−〉 = |↓↓〉,
in which both electron spins point parallel or antiparallel to
the direction of the magnetic field.

The energy splitting between the two qubit states |S〉
and |T0〉 can be controlled on a fast time scale by rapidly
tuning nearby electrostatic gates which modify the confining
potential for the quantum dot, and hence control the shape
of the two-electron wave function. For tunings where the two
electrons are held far apart in the ground state, i.e., where the
electrons are separated into different dots, the states |S〉 and
|T0〉 are degenerate. However, when the potential is tuned to
favor partial double occupation of one dot, the difference in
orbital symmetry between |S〉 and |T0〉 leads to an exchange
energy splitting J between them.

In materials such as the commonly employed III-V com-
pounds, the confined electron spins interact with a background
of nuclear spins in the host lattice. This interaction is produced
by the hyperfine coupling HHF = ∑

d,n Ad,nIn · Sd . Here the
index n labels all nuclear spins, described by the operators {In},
d = L,R labels the electron spins in the left and right dots,
described by the operators {Sd}, and the coupling constants
{Ad,n} depend on the local electron spin density, as will
be described in detail below. Defining the nuclear (Over-
hauser) field operator in dot d as g∗μBBnuc,d ≡ ∑

n Ad,nIn,
we write the “effective” electron spin Zeeman Hamiltonian
as

Hel = g∗μB(SL · Btot,L + SR · Btot,R), (1)

with

Btot,d = Bext + Bnuc,d . (2)

Here g∗ ≈ −0.4 is the electron effective g factor in GaAs
and μB is the Bohr magneton. Equations (1) and (2) describe
the Zeeman coupling in a system of two isolated electrons,
where each electron is subjected to an effective field which
is the vector sum of a uniform static external magnetic
field Bext and a local, operator-valued, Overhauser field
Bnuc,d .

We can gain extremely useful intuition about electron spin
dynamics in this system by treating the operator-valued Over-
hauser fields Bnuc,L and Bnuc,R as classical (time-dependent)
vector variables. In typical GaAs dots, the Overhauser field
is produced by a large number of nuclear spins in each
dot, Nd ≈ 106. When all the nuclear spins are polarized, the

resulting effective Overhauser field has a magnitude |Bnuc,d | ∼
5 T. However, under experimental conditions, where thermal
fluctuations randomize the directions of all nuclear spins, the
typical values of |Bnuc,d | are reduced by a factor

√
Nd , and

are of order 1 mT. For strong enough external fields Bext 

|Bnuc,d |, the net fields Btot,L and Btot,R are nearly parallel to Bext.
Under these conditions, the two-dimensional qubit subspace
is only slightly perturbed by the misalignment of local fields,
and remains energetically isolated from the other two-electron
spin states. To leading order in |Bnuc,d |

Bext
, the effect of the nuclear

fields is simply to induce a Zeeman splitting between |↓↑〉
and |↑↓〉, proportional to the difference in z projections of the
effective fields in the two dots, �Bz

nuc = Bz
nuc,L − Bz

nuc,R .
If we define a Bloch sphere for the qubit, whose poles on

the z axis are the states |↓↑〉 and |↑↓〉, then the field �Bz
nuc

points along the z axis. The states |S〉 and |T0〉 lie on the
x axis of this Bloch sphere. The splitting induced by �Bz

nuc
leads to oscillations between the qubit states |S〉 and |T0〉,
with a frequency proportional to |�Bz

nuc|. Such oscillations are
polluted, however, by two sources of randomness. First, due
to the fact that the nuclear state is random for an equilibrium
nuclear spin bath, the magnitude of the initial nuclear field
|�Bz

nuc|, and hence the initial frequency of oscillations, is
unknown. Furthermore, due to internal dynamics of the bath
itself, the nuclear fields Bnuc,d (t) evolve in time. The resulting
“spectral diffusion” of the qubit oscillation frequency leads
to dephasing of the qubit oscillations.34 Using an electron-
spin-echo pulse, as explained below in Sec. III, dephasing due
to the unknown mean value of �Bz

nuc(t) over some interval
can be reversed. However, decoherence due to fluctuations of
�Bz

nuc(t) on a time scale comparable to or shorter than the
period between echo pulses in general cannot be eliminated in
this way.

For experiments involving weaker external magnetic fields
and long enough evolution times, it is necessary to go beyond
the leading order in |Bnuc,d |

Bext
. Here we find that the transverse

components of the Overhauser field, B
x,y

nuc,d (t), crucially affect
the qubit evolution in two primary ways. First, these transverse
field components contribute to qubit decoherence by causing
leakage of the electron spin state into the “nonqubit” subspace
spanned by the states |↓↓〉 and |↑↑〉. Second, the magnitude
of the transverse part of the Overhauser field introduces
a correction to the frequency of the |S〉 − |T0〉 oscillations
described above. Note that, while in general a spin-echo pulse
cannot reverse dephasing due to time-dependent fluctuations
in the local fields, a partial or full recovery is possible if
these fields vary periodically in time. Such a periodic time
dependence, produced by the relative Larmor precession of
different nuclear species, is the origin of the collapse and
revival phenomenon.

An added complication in this moderate field regime arises
from the fact that, when we treat the Overhauser fields more
properly as quantum mechanical operators, Bx

nuc,d (t), By

nuc,d (t),
and Bz

nuc,d (t) do not commute. Consequently, at this order,
the semiclassical approach to electron spin dephasing requires
more justification. As we discuss below, such an approach is
valid when the number of nuclear spins is large, and when
the interaction between the electronic and nuclear spins is
weak.
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III. THE SPIN-ECHO SEQUENCE

With the above-described picture in mind, below we focus
on the Hahn echo experiment in GaAs double quantum
dots (see e.g. Ref. 18), where each electron spin interacts
weakly with N ≈ 106 nuclear spins. In such experiments, the
two-electron state in the double quantum dot is initialized to
the singlet ground state at large potential detuning, where both
electrons reside in the right dot, |(0,2)S〉. Here the numbers
in parentheses indicate the electron occupation numbers in
the left and right dots, respectively, and the letter S indicates
the two-electron (singlet) spin state. By rapidly tuning the
potentials of nearby electrostatic gates, one of the electrons is
transferred to the left dot within a time scale of approximately
1 ns. After this operation, the two separated electron spins
evolve freely for a time τ

2 under the influence of the net local
fields Btot,d , given in Eq. (2). The gate potentials are then
rapidly tuned to bring the electrons closer together. Here a
substantial exchange energy splitting between |S〉 and |T0〉 is
maintained for a time corresponding to a “π -phase” duration,
which effectively leads to the the swapping of the states
|↓↑〉 ↔ |↑↓〉. Then the gate voltages are rapidly tuned to
separate the electrons, and the system is allowed to evolve
over another interval of length τ

2 .
At the end of the cycle, a spin readout procedure is

performed. The gates are rapidly tuned to a large positive
potential bias, where the singlet ground state takes the “(0,2)”
orbital configuration, while the orbital part of the triplet state
remains of the “(1,1)” type due to Pauli exclusion. The charge
configuration is then measured via a nearby charge-sensitive
detector. Due to the correlation between the orbital and spin
degrees of freedom, the final spin state of the two electrons
can be inferred from this charge measurement. Ignoring any
imperfections of the measurement itself, we assume that the
average of the charge detector signal taken over many runs
depends linearly on the singlet return probability.

The detector signal is averaged over a time scale which
is long compared with all correlation times of the nuclear
spin bath. Therefore we equate the averaged singlet return
probability for evolution duration τ , PS(τ ), with the average
of single-run singlet return probabilities, taken over the
equilibrium ensemble of initial nuclear spin configurations.
Note that because the qubit is initialized in the singlet state,
PS(τ ) approaches 1 for very short evolution times τ . For very
long times, when coherence is lost and the qubit tends to an
equal-probability classical mixture of the states |S〉 and |T0〉,
PS(τ ) approaches 1/2. Therefore, by convention, we define
the echo signal as 2PS(τ ) − 1, which takes the value 1 for
PS(τ ) = 1 and 0 for PS(τ ) = 1/2. In this sense, the echo signal
is used as a measure of electron spin coherence.

In the recent experiment of Ref. 18, the echo signal
was observed to decay monotonically on a time scale of
approximately 30 μs in high external magnetic fields above
300 mT. At intermediate magnetic fields (120–300 mT)
additional small fast oscillations were observed. At lower
magnetic fields (50–120 mT) these oscillations evolved into a
complete collapse of the echo signal at τ ≈ 1 μs, followed by
a pattern of revivals and collapses on a time scale τ ≈ 10 μs.
The collapse and revival pattern was attenuated by a decaying
envelope over a time scale of τ ≈ 30 μs.

Our theoretical analysis of the echo experiments rests on
a separation of time scales in the dynamics of the system.
First, if one omits the π pulse from the experimental protocol,
PS(τ ) for the “free-induction decay” decays to the value of
1/2 on the time scale T ∗

2 ≈ 10 ns.1,8 This decay results from
the uncertainty in the z component of the Overhauser field,
�Bz

nuc, which varies from run to run. In contrast, in a spin-echo
measurement, the influence of a random, static Overhauser
field �Bz

nuc on the final electron spin state is eliminated by
the combination of the π pulse and the two equal-length free-
evolution periods. If the Overhauser field were truly static,
the electron spins would return to the state |S〉 at the end
of the evolution. In a perfect measurement, for such a static
Overhauser field, one would then obtain PS(τ ) = 1, or an echo
signal of value 1. Due to the time dependence of Bnuc,d (t),
however, the echo signal typically decays to zero on a time
scale of tens of microseconds.

During the free-evolution time while the electrons are
separated, the system exhibits oscillations between |S〉 and
|T0〉. Our crucial finding is that, for |Bnuc,d |

Bext
� 1, the oscillations

are well described in terms of the net accumulated phase
determined by difference of magnitudes of the total effective
fields on the two dots (we take h̄ = 1):

��(t) = g∗μB

∫ t

0
[|Btot,L(t ′)| − |Btot,R(t ′)|]dt ′. (3)

The magnitude of the total field is given by

|Btot,d (t)| =
√(

Bext + Bz
nuc,d

)2 + |B⊥
nuc,d (t)|2, (4)

where |B⊥
nuc,d (t)| is the magnitude of the component of the

Overhauser field in dot d which is perpendicular to the external
magnetic field. For Bext not too large, |Btot,d (t)| includes a
significant contribution from |B⊥

nuc,d (t)|. Note that the time
dependence of B⊥

nuc,d (t) is dominated by the relative Larmor
precession of the three nuclear spins species 69Ga, 71Ga,
and 75As. Such relative precession leads to a time-dependent
modulation of |Btot,d | and causes a reduction of PS(τ ) on a
time scale of microseconds. In addition, random fluctuations
of Bz

nuc,d (t), which arise due to interactions between nuclear
spins, lead to a reduction of PS(τ ) on the same time scale.
To account for all the above-mentioned effects, which were
observed in Ref. 18, we thus include a combination of
deterministic (Larmor precession) and stochastic processes in
the evolution of the Overhauser fields in our semiclassical
approach.

IV. THE QUBIT HAMILTONIAN

We begin our quantitative investigation by constructing the
quantum Hamiltonian that describes the spin-echo experiment.
Although the experiment consists of several temporal stages,
we focus on the free-evolution periods, during which the
Overhauser fields exert their main influence on the qubit
evolution. We consider all other stages of the experiment, i.e.,
the singlet state initialization at the first stage, the π pulse, and
the measurement of the final state, to be perfect.
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During the free-evolution period while the electrons are
well separated, the qubit state evolves according to the effective
Zeeman Hamiltonian

Hel = g∗μB(SL · Btot,L + SR · Btot,R), (5)

presented above in Eq. (1). The total effective field in dot d,
Btot,d , is formed by the vector sum of the uniform external field
Bext and the Overhauser field

g∗μBBnuc,d =
∑

n

Ad,nIn, Ad,n = Aα(n)|ψd,n|2, (6)

where n is a label which indexes all of the nuclei. The
parameter Aα(n) is the microscopic hyperfine coupling for
nuclear spin species α(n), while the factor |ψd,n|2 weights
the hyperfine coupling to nuclear spin n in dot d by the
local electron density, and satisfies the normalization condition∑

n |ψd,n|2 = nc, where nc = 2 is the number of nuclei per unit
cell of the GaAs lattice. In regions where the electron density
is substantial, the coupling to nuclei scales as |ψd,n|2 ∼ 1

Nd
,

where we define Nd ≡ n2
c/

∑
n |ψd,n|4 as the effective number

of nuclei in dot d. For typical GaAs quantum dots, Nd ≈
(1–4) × 106. The index α = {1,2,3} runs over the three nuclear
species 69Ga, 71Ga, and 75As.

To describe the evolution of the nuclear spin bath, we
employ a Hamiltonian which includes Zeeman terms with a
species- and site-dependent Larmor frequency for each nuclear
spin and the dipolar coupling between all pairs of nuclei:

Hnuc =
∑

n

ωnI
z
n +

∑
n,n′

D
ij

n,n′I
i
nI

j

n′ , (7)

where n and n′ run over all nuclei, and i and j label the
Cartesian components of the nuclear spin operators.

We wish to identify the main sources of decoherence for
the two-electron spin qubit which arise from the combined
evolution under the Hamiltonian in Eqs. (1) and (7). Naturally,
we shall use 1/Nd as a small parameter. In addition, we note
that the lowest external field used in the experiment in Ref. 18
(50 mT) was more than an order of magnitude bigger than the
typical magnitude of the Overhauser field. Therefore we will
proceed to study decoherence effects as an expansion in |Bnuc,d |

Bext
,

and to leading order in 1/Nd .
First, note that if one replaces the operators Bnuc,L(R) in

Eq. (2) by classical vectors with magnitudes much smaller than
Bext, then, as in the case when the Overhauser field was absent,
the system described by Hamiltonian (1) possesses a two-
dimensional subspace which is energetically well separated
from the remaining two levels. This new qubit subspace
is spanned by the states |↑n̂L

〉 ⊗ |↓n̂R
〉 and |↓n̂L

〉 ⊗ |↑n̂R
〉,

with eigenvalues ± 1
2μBg∗(|Btot,L| − |Btot,R|). Here the up and

down arrows indicate the projections of the electron spins
onto the quantization axes n̂L and n̂R parallel to the total fields
Btot,L(R) in each dot.

Deviations of the directions of n̂L and n̂R from the z axis
arise from the Overhauser field components perpendicular
to the applied field B⊥

nuc,d . Due to evolution of the nuclear
spin bath (primarily due to Larmor precession of the nuclear
spins), the fields B⊥

nuc,d (t), and hence n̂L and n̂R , are slowly
modulated in time. However, because the frequencies of such
modulations are typically two orders of magnitude smaller than

the value of the energy gap between the two instantaneous
eigenstates, �E = μBg∗(|Btot,L| − |Btot,R|), we assume that
each electron spin adiabatically follows its local, slowly
varying, quantization axis n̂L or n̂R . For small |Bnuc,d |

Bext
, the main

effect of the nuclear field is thus to modulate the magnitude
of the total field |Btot,d (t)|, Eq. (4), and hence to modify the
dynamical phase

∫
�E(t)dt accumulated between the two

eigenstates over the free evolution period. We therefore ignore
changes in the directions of the quantization axes in each dot,
and describe the evolution of the system by using the effective
Hamiltonian

Hel,z = g∗μB

(
Sz

L|Btot,L| + Sz
R|Btot,R|) . (8)

For given classical values of Btot,L and Btot,R , this Hamilto-
nian preserves the instantaneous eigenvalues of the original
Hamiltonian Hel, Eq. (1). Expanding |Btot,d | in Eq. (4) in the
small parameter |Bnuc,d |

|Bext| , the Hamiltonian Hel,z becomes

Hel,z ≈ g∗μB

∑
d=L,R

(
Bz

nuc,d + |B⊥
nuc,d |2

2|Bext|

)
Sz

d . (9)

The term proportional to Bz
nuc,d is the zeroth-order contribution

in |Bnuc,d |
|Bext| , and may give rise to a magnetic-field-independent

contribution to the electron spin decoherence. The term

proportional to
|B⊥

nuc,d |2
|Bext| is the first-order correction in |Bnuc,d |

|Bext| , and
is responsible for the interesting collapse-and-revival behavior
that we study below.

It should be noted that in writing Eqs. (8) and (9), we
have ignored effects arising from the relative angle θ ∼ |Bnuc,d |

Bext
between the quantization axes in the two dots, which enter at
order [ |Bnuc,d |

Bext
]2. First, the misalignment of axes may cause un-

wanted transitions to the |T±〉 states when initializing from the
singlet state, or during free evolution under Hamiltonian Hel.
However, these effects lead to a reduction of PS on the order of
θ2. Second, we neglect any possible geometric phases which
may accompany the dynamical phase accumulated while the
electron spins adiabatically follow the local quantization axes
in their separate dots. Such phases are proportional to the areas
of closed loops swept out by n̂L and n̂R during their evolution,
and for small θ are also proportional to θ2.

Although we obtained Eq. (9) by treating the nuclear spin
operators as classical vectors in a Taylor series approximation
to Eq. (8), an identical expression for Hel,z was formally
derived in Ref. 32 from the full quantum Hamiltonian,
Eq. (1), using a Schrieffer-Wolff transformation. The classical
argument above thus provides a simple intuitive explanation
for the formal perturbative derivation. Hereafter, unless oth-
erwise specified,we treat the fields in Eq. (9) as quantum
operators with appropriate commutation relations.

To complete the description of the problem, we now discuss
the π pulses employed in the Hahn echo sequence. These
pulses are achieved by applying a time-dependent perturba-
tion Hπ (t), which adds to the system’s total Hamiltonian
H = Hel,z + Hnuc + Hπ (t). We assume that Hπ (t) is only
nonzero over narrow intervals which are short compared to
all time scales relevant for evolution under Hel,z and Hnuc.
Rather than specifying a detailed time-dependent protocol for
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Hπ (t), we define Hπ implicitly in terms of its effect on the
electron spin operators Sz

d :

T̃
[

exp

(
i

∫ t

0
Hπ (t ′)dt ′

)]
Sz

d T
[

exp

(
−i

∫ t

0
Hπ (t ′′)dt ′′

)]
= c(t)Sz

d, (10)

where T (T̃ ) is the (reversed) time-ordering operator. In
writing Eq. (10), we assume that Hπ (t) acts only within the
two-dimensional qubit subspace. We shall consider perfect π

pulses, for which the “echo function” c(t) switches between 1
and −1 over the short duration of the pulse. For simplicity we
consider the pulses to be instantaneous and for the Hahn echo
sequence write

c(t) = 
 (τ/2 − t) − 
 (t − τ/2) . (11)

Using Eqs. (10) and (11) we switch to an interaction picture
with respect to Hπ (t), where

Sz
d (t) ≡ c(t)Sz

d, (12)

and where we employ the notation Sz
d ≡ Sz

d (t = 0). The
interaction-picture time-dependent Hamiltonian Hel,z(t) be-
comes

Hel,z(t) ≈ g∗μB

∑
d=L,R

(
Bz

nuc,d + |B⊥
nuc,d |2

2|Bext|

)
c(t)Sz

d . (13)

Equation (13), with Eq. (7), will serve as the starting point for
our analysis of decoherence in the spin-echo experiment.

V. SEMICLASSICAL MODEL FOR THE REVIVALS

We now show that a simple semiclassical approach in which
we treat the Overhauser field operators as classical vectors can
reproduce the electron spin coherence collapse and revival
effect predicted in Ref. 32 and observed in Ref. 18. In the
next section, we will provide a systematic derivation and
justification of this approach, starting from the full quantum
description.

In this section, we treat the Overhauser field in each
dot d in Eq. (13) as a sum of three classical vectors
Bnuc,d (t) = ∑3

α=1 Bα,d (t), where α indexes the three nuclear
spin species. We assume that the magnitudes of the species-
dependent fields {|Bα,d |}, and their z components {Bz

α,d},
are random but constant throughout the evolution. The time
dependence of Bnuc,d (t) within each run arises solely from the
Larmor precession of the transverse nuclear spin components.
Explicitly, we neglect the nuclear dipole-dipole interaction
and the influence of the Knight shift on the nuclear Larmor
precession. We assume that all nuclei of the same species
precess at a single Larmor angular velocity ωα = γαBext.

The echo signal PS(τ ) is obtained by averaging over
many experimental runs. Thus we must average the results
of electron spin dynamics against the distribution of initial
states of the nuclear spins. Due to the large number of nuclear
spins, N ≈ 106, the initial values of the components of each
vector Bα,d (t = 0) are Gaussian distributed with zero mean
and a standard deviation bα,d of order 1 mT (see calculations
below).

The model in Eq. (13), under the assumptions above, is
sufficient to produce the collapse and revival effect in PS(τ ),

and further provides an intuitive semiclassical picture in which
to understand the phenomenon. However, because we neglect
the time dependence of Bz

nuc,d (t), and the effects of the Knight
shift and other dephasing mechanisms of the nuclear Larmor
precession, this model does not capture the decaying envelope
observed in the experiment of Ref. 18. These issues will be
addressed in detail in Sec. VI.

We now calculate PS(τ ), using the singlet initial state
|ψ(t = 0)〉 = |S〉 = 1√

2
(|↑↓〉 − |↓↑〉). For any given set of

initial values of the (18 total) components of the six classical
vectors {Bα,d (t = 0)}, the Hamiltonian in Eq. (13) generates a
pure quantum evolution which after an evolution time t = τ

yields

|ψ(τ )〉 = e−i��(τ )/2

√
2

(|↑↓〉 − ei��(τ )|↓↑〉). (14)

The relative phase ��(τ ) = �L − �R is related to the differ-
ence of the magnitudes of the total effective fields |Btot,d (t)|
in the two dots. Within the approximation of |Btot,d (t)| used to
write Eq. (13), we obtain

�d (τ ) = g∗μB

2|Bext|
∫ τ

0
|B⊥

nuc,d (t)|2c(t) dt. (15)

Note that the phase �d is determined solely by the dynamics
of a single isolated electron in dot d. Below we will use this
fact to relate the decoherence of the two-electron singlet-triplet
qubit to that of a single electron spin in a quantum dot.

For the final state |ψ(τ )〉 in Eq. (14), the singlet return
probability is given by

|〈S | ψ(τ ) 〉|2 = 1
2 + 1

2 cos(��). (16)

The ensemble-averaged singlet return probability PS(τ ) is
found by averaging the result for a single run, Eq. (16),
with respect to the distribution of initial magnitudes and
directions of the six vectors {Bα,d (t = 0)}. Note that because
cos(��) = Re[ei�Re−i�L ], and because the Overhauser field
configurations in the two dots are independent, we can average
over ei�L and ei�R independently,

Ps = 1
2 + 1

2 Re[〈ei�R 〉〈e−i�L〉]. (17)

To perform the averaging, we calculate �d (τ ) using Eq. (15),
with c(t) given by Eq. (11), and with the classical evolution for
B⊥

nuc,d (t) resulting from the free precession of the underlying
nuclear spins. We write |B⊥

nuc,d (t)|2 = ∑
α,β bα,d (t)b∗

β,d (t) in
terms of the complex-valued fields bα,d = Bx

α,d + iB
y

α,d . In
this decomposition, the time evolution of the Overhauser field
due to Larmor precession is given by bα,d (t) = bα,d (0)eiωαt .
Each phase �d is then given by

�d = g∗μB

2|Bext|
∫ τ

0
c(t)

∑
α,β

bα,d (t)b∗
β,d (t) dt

= 2g∗μB

|Bext|
∑
α,β

bα,d (0)b∗
β,d (0)

eiωαβτ/2

iωαβ

sin2(ωαβτ/4), (18)

where ωαβ = ωα − ωβ .
Next we must integrate over all initial conditions, i.e., over

the initial magnitudes and phases of the three fields {bα,d (0)} in
each dot d. For this purpose we express the initial conditions as
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bα,d (0) = bα,dzα , where each zα = xα + iyα is a dimensionless
complex variable. The quantity bα,d is the root-mean-squared
(rms) value of each component of the transverse field for
species α in dot d,

g∗μbbα,d =
√

aαn̄α/NdAα, (19)

with aα = 2
3 (Iα + 1)Iα = 5

2 . Here n̄α is the average number of
nuclei of species α, per unit cell (see Ref. 32). This substitution
gives

�d =
∑
α,β

Tαβ,d

zαz∗
β

2
(20)

with

Tαβ,d = −4g∗μBbα,dbβ,d

|Bext|
eiωαβτ/2

iωαβ

sin2(ωαβτ/4). (21)

We now carry out an ensemble average over the initial
conditions by treating all components of the {zα} as in-
dependent Gaussian-distributed random variables with zero
mean and unit variance, i.e., with probability density function
p({zα′ }) ∏3

α=1 dxαdyα = 1
(2π)3

∏3
α=1 exp(−|zα |2

2 )dxαdyα:

〈e−i�d 〉 =
∫ ∏

α

dxαdyα p({zα′ }) exp

⎛⎝− i

2

∑
β,β ′

Tββ ′,dz
∗
βzβ ′

⎞⎠
=

∏
α

1

1 + iλα,d

. (22)

Here the parameters {λα,d} are the eigenvalues of the T matrix
for dot d.

The 3 × 3 Hermitian matrix T in Eq. (21) corresponds to
that of Ref. 32. Because T is Hermitian and is similar to an
antisymmetric matrix, it has one zero eigenvalue λ1,d = 0 and

a pair of eigenvalues λ2(3),d = ±
√∑

α>β |Tαβ,d |2. Inserting

these eigenvalues into Eq. (22), and using Eq. (21) for Tαβ,d ,
we obtain

〈e−i�d 〉 =
⎡⎣1 +

∑
α>β

(
4g∗μBbα,dbβ,d

|Bext|

)2
sin4(ωαβτ/4)

ω2
αβ

⎤⎦−1

.

(23)

Thus we see that the semiclassical model used in this section
reproduces the result of Ref. 32 for the decay of the spin-
echo signal in a single quantum dot. The echo signal shows

oscillations with amplitude ( 4g∗μBbα,dbβ,d

|Bext|ωαβ
)2, which develop into

the complete collapses and revivals at low magnetic fields.
Note that the expression for the phase in Eq. (18) includes
terms which are bilinear combinations of Gaussian variables,
and so are not Gaussian themselves. Therefore the decay in
the interval τ � 1/ωαβ behaves like an inverse polynomial,
rather than the form e−const×τ 4

expected for spectral diffusion
(see below and Refs. 35–37).

We now return to computing the echo signal in the double-
dot system, Eq. (17). First, note that 〈e−i�d 〉 in Eq. (23) is
strictly real. This fact is a consequence of antisymmetry of the

echo function around the time τ/2. Thus we can drop the “Re”
from Eq. (17) and write the echo signal as

2PS − 1 = 〈e−i�L〉〈e−i�R 〉. (24)

The expressions in Eqs. (22) and (23), which describe the
dephasing of a single electron spin in an isolated quantum
dot, were derived previously from a fully quantum mechanical
treatment in Ref. 32. A key element of the derivation in
that work was the vanishing of the contribution of the
commutator [I+

k ,I−
l ] between nuclear spin operators in the

low-order perturbation expansion of the evolution operator.
The vanishing commutator is indicative of classical behavior,
and further motivates our classical treatment of the nuclear
evolution.

To conclude this section, we show that the classical treat-
ment provides an intuitive explanation for the collapses and
revivals. The total effective electron Zeeman field in each dot
d, |Bext + Bnuc,d |, depends on the square of the transverse Over-
hauser field, |B⊥

nuc,d |2. The terms in the expansion |B⊥
nuc,d |2 =∑

αα′ (Bx
α,dB

x
α′,d + B

y

α,dB
y

α′,d ) which involve nuclear spins of
two different species, α �= α′, oscillate at the relative Larmor
angular velocity ωα − ωα′ . As a result, the magnitude of the
total field |Btot,d |, and hence the splitting between electron
spin energy levels, oscillates as a function of time. These
oscillations determine the phase accumulation during each run
of the experiment. In this simple semiclassical treatment the
nuclear spin evolution is not affected by the electron spin,
so that the phase between electron spin components remains
well defined during each run. However, averaging over the
ensemble of nuclear spin initial states amounts to averaging
over the phases and amplitudes of these oscillations, and causes
the collapse of the echo signal. If the free evolution time
τ/2 is simultaneously an integer multiple of each of the three
relative Larmor periods, though, then the contribution of those
oscillations vanishes independently of the initial nuclear state,
and a revival of electron spin coherence is observed. Note that it
is a fortunate coincidence in GaAs that the Larmor frequencies
of the three species are nearly equidistant, which, to a good
approximation, allows the commensurability condition to be
easily fulfilled simultaneously for all three pairs of nuclear
species.

VI. DERIVATION OF THE SEMICLASSICAL APPROACH

In this section we present a systematic derivation of the
semiclassical treatment of electron spin dynamics presented
above. Keeping in mind the discussion surrounding Eq. (9), we
now restore the quantum nature of the electron spin operators
and begin with the interaction-picture quantum Hamiltonian
H = Hel,z(t) + Hnuc, Eq. (13). We also now reintroduce the
nuclear dipolar interaction [see Eq. (7)] and allow for local
variations of the nuclear Larmor frequencies, which were
omitted from the simple model in Sec. V. At each step in
the derivation, we will justify the approximations needed to
arrive at the semiclassical model with arguments from first
principles, or with the help of experimental data. Along the
way, we will also incorporate several important features of the
dynamics, such as the time dependence of Bz

nuc(t), back-action
of the electron spin evolution on the nuclear state, and nuclear
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spin dephasing, which were ignored in the heuristic treatment
in the previous section.

A. Quantum expression for the echo signal

Our aim is to derive an expression for the echo signal at the
end of the full Hahn echo sequence, via the calculation of the
singlet return probability

PS(τ ) = 1

Z∞
Trnuc[〈S| U †(τ ) |S〉 〈S| U (τ ) |S〉], (25)

where U (τ ) = T exp{−i
∫ τ

0 [Hel,z(t) + Hnuc]dt} is the inter-
action picture evolution operator of the joint electron-nuclear
spin system, with T representing the time-ordering operator.
Here we have assumed that the electron spins are initialized
to the singlet state |S〉. The trace in Eq. (25) is taken
over all nuclear spin states, with Z∞ = Trnuc[1̂] representing
the partition function for an infinite-temperature (completely
random) nuclear spin state.

To separate the time evolution due to the static part of Bz
nuc

[which dominates the evolution for t < τ , but has no influence
on U (t = τ ) due to the spin echo], we introduce the zero-order
Hamiltonian

H0(t) = g∗μB

∑
d=L,R

Bz
nuc,d c(t)Sz

d +
∑

k

ωkI
z
k , (26)

and a corresponding zero-order evolution operator U0(t) =
exp[−i

∫ t

0 H0(t ′)dt ′]. Note that due to antisymmetry of the
echo function

∫ τ

0 c(t ′)dt ′ = 0, the evolution operator U0(t = τ )
at the end of the full sequence does not depend on the electron
spin operators and simply rotates all nuclear spins about the z

axis.
The full evolution operator U (τ ) can be rewritten as

U (τ ) = U0(τ )T

× exp

(
−i

∫ τ

0
dt

∑
d

[
H⊥,d (t)Sz

dc(t) + HD,d (t)
])

,

(27)

where the time-dependent operators in the exponent are

given by H⊥,d (t) = U
†
0 (t)[g∗μB

|B⊥
nuc,d |2

2|Bext| ]U0(t) and HD,d (t) =
U

†
0 (t)[

∑
n,n′∈d D

ij

n,n′I i
nI

j

n′ ]U0(t) see [Eq. (7)]. These terms
describe the evolution of the Overhauser fields due to Larmor
precession and the dipole-dipole interaction between nuclear
spins in dot d, respectively. We assume that the two dots
are well separated, such that the interdot dipolar coupling
can be neglected. This approximation is not essential for the
derivation ahead, however, and the existence of a small interdot
coupling would not significantly affect the final result.

In order to evaluate Eq. (25), we decompose the evolution
operator U (τ ) into four separate pieces. Because operators
describing spins in different dots commute, the exponentials
in Eq. (27) can be factored by dot index d. Therefore the
evolution operator can be written as U (τ ) = UL(τ )UR(τ ),
where UL(R)(τ ) only involves spin operators in the left (right)
dot. In addition, because the z projection of electron spin in
each dot is conserved by U (τ ) [see Eq. (27)], we can separate

the evolution by introducing projectors onto the product states
|↑↓〉 and |↓↑〉:

U (τ ) = UL+(τ )UR−(τ ) |↑↓〉 〈↑↓|
+UL−(τ )UR+(τ ) |↓↑〉 〈↓↑| , (28)

where Udσ is a unitary operator acting only on the nuclear
spins in dot d, with the electron spin taken to be in the Sz

d

eigenstate |↑〉 for σ = +, or |↓〉 for σ = −. Inserting Eq. (28)
into Eq. (25), and performing the trace over nuclear spin states
separately for the two dots, we find that the echo signal is given
by [cf. Eq. (24)]

2PS − 1 = Re (CLCR) , (29)

where

Cd = 1

Z∞,d

Trnuc[U †
d+(τ )Ud−(τ )], d = L,R. (30)

The echo signal Eq. (29) is a product of two similar averages
which are taken over the different sets of nuclear spins in the
two dots. In the remainder of this section we focus on the
behavior of the average within a single dot, which we denote
as C = 1

Z∞
Trnuc[U †

+(τ )U−(τ )]. This allows us to simplify
all formulas by suppressing the dot index d. At the end of
Sec. VI C we will return to the two-electron double-dot echo
signal, including the combined effects of dephasing in each of
the two dots.

B. The semiclassical approximation of separating the dynamics
of the spin diffusion and transverse Overhauser field

In this section we introduce a semiclassical treatment in
which the evolution operators in Eq. (29) are factorized into
contributions depending separately on H⊥(t) and HD(t). We
start by using Eq. (27) and the fact that U0(τ ) involves only
nuclear spin operators to write the evolution operator in C as

U
†
+(τ )U−(τ )

= T̃
{

exp

[
i

∫ τ

0
dt

(
1

2
H+

⊥ (t)c(t) + H+
D (t)

)]}
× T

{
exp

[
−i

∫ τ

0
dt ′

(
−1

2
H−

⊥ (t ′)c(t ′) + H−
D (t ′)

)]}
,

(31)

where the superscripts + and − indicate projection onto the |↑〉
and |↓〉 electron spin states. The projection is needed because
H⊥(t) and HD(t) depend on U0(t), which for t �= τ depends
on Sz.

Intuitively, the two terms involving H⊥(t) and HD(t) lead to
suppression of the echo signal, each through a different physi-
cal mechanism. In the spirit of the semiclassical approximation
in Sec. V, where the Overhauser field operators were treated
as classical vector variables, H⊥(t) causes dephasing through
the time dependence of |B⊥

nuc(t)| generated by nuclear Larmor
precession, while HD(t) causes decoherence through fluctua-
tions of Bz

nuc(t) generated by dipolar-interaction-mediated spin
diffusion.

The semiclassical approach relies on three main approxi-
mations, which involve neglecting various commutators of the
form [Bi

nuc(t),Bj
nuc(t ′)]. When the number of nuclei Nd is large,
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these commutators scale as |Bnuc(t)|/Nd . Below we provide a
physical motivation for each such approximation, and discuss
the associated range of validity.

First, we neglect the commutator between H⊥(t) and
HD(t ′), and factor the exponentials appearing in Eq. (31):

Uσ (τ ) ≈ U⊥σ (τ )UDσ (τ ), (32)

with

U⊥σ (τ ) = T exp

(
− i

2

∫ τ

0
σHσ

⊥(t)c(t)dt

)
,

(33)
UDσ (τ ) = T exp

(
−i

∫ τ

0
Hσ

D(t)dt

)
.

The commutator [H⊥(t),HD(t ′)] which was set to zero in
writing Eq. (32) leads to nuclear spin dephasing, i.e., decay of
the correlator 〈I i

k (t)I j

k (t ′)〉, due to dipolar flip-flop events. In
our model, we account for this effect phenomenologically by
introducing random site-to-site small variations of the nuclear
Larmor frequencies (see Sec. VI C). In doing so, we assume
that intrinsic and extrinsic dephasing of nuclear spins affects
the electron spin dynamics in the same way.

In addition, the commutators neglected above may lead to
enhanced nuclear spin diffusion through the combination of
dipole-dipole and hyperfine-mediated spin flips. The validity
of this approximation thus depends on material and system
parameters. However, it can be checked by comparison with
experimental data, as discussed in more detail in Sec. VII.

The second approximation is to split the average of the
product of operators involving UDσ and U⊥σ into a product of
averages involving UDσ and U⊥σ separately:

1

Z∞
Trnuc[U †

D+U
†
⊥+UD−U⊥−]

≈ 1

Z∞
Trnuc[U †

D+UD−]
1

Z∞
Trnuc[U †

⊥+U⊥−]. (34)

The correlations which are neglected by splitting this average
are related to correlations of the longitudinal and transverse
components of the Overhauser fields Bz

nuc(t) and B⊥
nuc(t). These

correlations are contributed by expectation values of at least
four operators of the same nuclear spin n, e.g., (I x

n )2(I z
n )2. On

the other hand, the leading contribution to the split average
comes from the expectation values of only two operators of
the same nuclear spin, e.g., (I z

n )2, and therefore is roughly Nd

times bigger, due to the fact that it contains a sum over at least
Nd times as many terms.

C. The semiclassical approximation of averaging over all
nuclear spin states

Through Eq. (34), the dephasing in a single dot can
be approximately expressed as a product of two separate
averages, one involving UDσ and the other involving U⊥σ . The
average over UDσ can be associated with decoherence due to
spectral diffusion caused by dipole-dipole mediated nuclear
spin diffusion. This process was analyzed in Refs. 35–37, and
was shown to result in an echo decay factor exp[−(τ/τSD)4].
Using this result and Eq. (34), we rewrite Eq. (30) as

C (τ ) ≈ e−(τ/τSD)4 1

Z∞
Trnuc[U †

⊥+(τ )U⊥−(τ )]. (35)

The spectral diffusion time τSD depends on the details of
the quantum dots, and weakly depends on the magnetic field
strength. According to Refs. 35 and 36 τSD is of order 10 μs,
which is comparable to the duration of the experiment. Thus,
the decay factor is likely to be important for a detailed fit to
the experiments, and will be dominant at high magnetic fields.
However, as we show below, at low enough magnetic field
the dephasing associated with U⊥σ , i.e., with the evolution of
the transverse components of the Overhauser fields, becomes
dominant.

We now turn to calculate the the dephasing associated
with U⊥σ semiclassically. Making use of the large number
of nuclei involved, Nd � 106, the trace in Eq. (35) can be
cast into a form which closely resembles the classical average
described in Sec. V. We first combine together large groups
of nuclei with similar couplings to form a set of “giant”
collective spins. Then, by evaluating the trace in a basis of
coherent states with well-defined orientations of these giant
spins, we find that their induced Overhauser fields effectively
act as classical variables like those introduced “by hand” in
Sec. V. However, there are two important differences in this
more refined treatment. First, whereas in Sec. V all nuclear
spins within each species were forced to precess at a fixed
Larmor frequency, we now account for the electron-spin-
dependent shift (i.e., the Knight shift) of the nuclear precession
rate which is inherent in Eqs. (9) and (26). Second, we now
account for inhomogeneity in the system, both in the Knight
field terms and in the Larmor frequencies of all nuclear
spins. Site-to-site variations of the Larmor frequencies ωn

[see Eq. (7)] phenomenologically account for nuclear spin
dephasing due to, e.g., local quadrupole moments. We assume
that the inhomogeneities are weak, such that the differences
between the mean Larmor angular velocities of the three
species, ωα = γαBext, are much larger than the widths of the
distributions for each one.

To account for inhomogeneities in the system, we divide
the nuclei in each dot into K groups labeled by the index
k = 1, . . . ,K , with each group k containing nuclei of the
same species α(k). These Ñk are picked from the Nd nuclei
in dot d such that all members of the group have nearly
the same hyperfine coupling Ak and experience nearly the
same phenomenological local shift in magnetic field, δBk . The
Larmor angular velocity for nuclear spins in group k is given
by ωα(k) + δωk + 1

2σc(t)Ak where δωk = γα(k)δBk . Note that
the sign of the Knight shift ± 1

2Ak depends on the state of the
electron spin in the dot at time t , and is therefore proportional
to σc(t).

To calculate C, the single-dot contribution to the echo
signal, we need to choose a basis for the nuclear spin Hilbert
space. For each group k, we form a collective spin from all
of the nuclear spins in the group, and consider “giant spin”
states of well-defined total angular momentum Ik and orien-
tation n̂k = (sin θk cos ϕk, sin θk sin ϕk, cos θk): |Ik|2|Ik,n̂k〉 =
Ik(Ik + 1)|Ik,n̂k〉, (n̂k · Ik)|Ik,n̂k〉 = Ik|Ik,n̂k〉, where θk and ϕk

are the polar and azimuthal angles of giant spin k, respectively.
A wave function in the Hilbert space of all nuclear spins is
written as |�〉 = ⊗K

k=1 |Ik,n̂k〉. The trace is then performed
by summing over all possible assignments of the values {Ik}
with appropriate weights,38 and integrating over all possible
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directions {n̂k}. The length Ik of each giant spin k can vary
from 0 to 3

2 Ñk , but the vast majority of giant spin states have

lengths of order Ik ∼
√

Ñk . The relative quantum uncertainty
in the transverse components of the giant-spin coherent states,
�Ii

k/I
i
k , scales as 1/

√
Ik = 1/

4
√

Ñk . As we shall see below, for
analyzing the behavior near the revivals peaks it is sufficient
to divide the nuclei into about K ∼ 10 groups, which leaves
as many as Ñk ≈ 105 nuclei in each group.

In the coherent state basis, the semiclassical approxima-
tion converts the expectation values 〈�|U †

⊥d+(τ )U⊥d−(τ )|�〉,
which arise in the evaluation of the trace in Eq. (35), into
“classical” expressions

〈�| U †
⊥+(τ )U⊥−(τ ) |�〉

� exp

(
−i

∫ τ

0

g∗μB

4Bext

∣∣B⊥+
nuc,d (t)

∣∣2
clc(t)dt

)
× exp

(
−i

∫ τ

0

g∗μB

4Bext

∣∣B⊥−
nuc,d (t)

∣∣2
clc(t)dt

)
, (36)

where |B⊥+
nuc,d (t)|2cl is determined by the expectation values

I
σx(y)
k (t) = 〈 Ik,n̂k | I σx(y)

k (t) | Ik,n̂k 〉 of the giant-spin compo-
nents:

g∗μB

4Bext

∣∣B⊥σ
nuc,d (t)

∣∣2
cl

≡ 1

4g∗μBBext

∑
k,k′

AkAk′
(
I σx

k (t) I σx
k′ (t) + I

σy

k (t) I
σy

k′ (t)
)
.

The superscript σ indicates that the time dependence of the
operators is determined by the evolution with respect to H0,
Eq. (26), which depends on the electron spin state σ .

The validity of the approximation Eq. (36) is discussed
in Sec. VI E below. After making the approximation, however,
the trace reduces to an integration over all possible expectation

values I
σx(y)
k (t) of the components of the K giant spins.

We perform the integrations using a similar method to that
used in Sec. V. First we write the classical field |B⊥σ

nuc(t)|2cl =∑
k,l b

σ
k (t)bσ∗

l (t) as a sum of products of complex variables,

where bσ
k = Ak[I σx

k (t) + iI
σy

k (t)]. Each bσ
k (t) evolves accord-

ing to bσ
k (t) = bk(0) exp{i[ωα(k)t + δωkt + σAk

∫ t

0 c(t ′)dt ′]}.
Using the approximation in Eq. (36) to evaluate the trace in
Eq. (35), we have

C(τ ) ≈ Csc (τ ) = e−(τ/τSD)4〈ei�〉, (37)

where the angular brackets indicate a classical averaging over
the complex random variables bσ

k (0), and the phase � is given
by the integrals in the exponents in Eq. (36),

� (τ ) = g∗μB

4|Bext|
∑

σ=±1

∫ τ

0
dt

∑
k,l

bσ
k (t)bσ∗

l (t)

= g∗μB

4|Bext|
∑
k,l

bk(0)bl(0)
∑

σ=±1

∫ τ

0
dt c(t)

× exp

[
i(ωkl + δωkl)t + iσAkl

∫ t

0
dt ′c(t ′)

]
,

(38)

with ωkl = ωα(k) − ωα(l), δωkl = δωk − δωl , and Akl = Ak −
Al .

Assuming that Ñk is large for every group k, we perform the
average over all initial coherent nuclear spin states by writing
bk(0) = bkzk in terms of a collection of independent, complex
Gaussian random variables {zk} with unit variance. Here

g∗μBbk =
√

Ñkaα(k)/2Ak is the rms value of each component
of the Overhauser field associated with group k in the dot,
similar to the parameters {bα} appearing in Eq. (21). In this
representation, Eq. (38) becomes

� (τ ) =
∑
k,l

Tkl

zkz
∗
l

2
, (39)

with

Tkl (τ ) = ig∗μBblbk(ωkl + δωkl)

2|Bext|
×4

cos(Aklτ/2) − cos [(ωkl + δωkl)τ/2]

(ωkl + δωkl)2 − A2
kl

. (40)

Performing the Gaussian average over {zk}, we obtain

〈e−i�〉 =
∫ ∏

k′
dxk′dyk′p(|zk′ |2) exp

(
−i

∑
k,l

Tkl

z∗
kzl

2

)

=
∏
m

1

1 + iλm (τ )
, (41)

where the parameters {λm} are the eigenvalues of the M × M

Hermitian matrix with elements {Tkl}.
Finally, we calculate the spin-echo signal of the two-

electron double-quantum-dot singlet-triplet qubit, incorporat-
ing the dephasing due to both dots, Eq. (29), using Eqs. (37)
and (41) for each dot d = L,R:

2Ps − 1 = e−(τ/τ̃SD)4
∏

d=L,R

(∏
m

1

1 + iλm,d

)
. (42)

Here τ̃SD is the effective spectral diffusion time scale for the
two-electron system, τ̃−4

SD = τ−4
SD,L + τ−4

SD,R . For nonidentical
dots, the eigenvalues λm,d are generally different due to
the differing number of nuclei Nd , and their associated
distributions of coupling constants {Ak} and {ωk}. All of these
parameters affect the grouping of spins into giant spins and
the matrix elements Tlk , calculated according to Eq. (40).

Equation (42) is the main result of the paper. This result
shows that, within the semiclassical approach, the echo signal
2PS − 1 in the Hahn echo experiment can be understood in
terms of a decay envelope arising from spectral diffusion, along
with an additional factor which arises from the relative pre-
cession of different nuclear species comprising the transverse
Overhauser field. At low magnetic fields, this precession term
leads to the collapse and revival effect.

D. Stability of the revivals peaks against system inhomogeneities

In this subsection we investigate how modifications of
nuclear precession induced by the small spatial variations of
the Knight fields and nuclear Zeeman couplings affect the
electron spin-echo signal, Eq. (42). In particular, we focus on
the stability of the revival peaks.
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Note that a necessary condition for the revivals to appear
is the clear separation of Larmor frequencies, such that
ωkl 
 δωkl,Akl for α(k) �= α(l). For δωkl = Akl = 0, i.e., for
a homogeneous nuclear system with no intrinsic nuclear spin
dephasing, Eq. (41) reduces to Eq. (23), where the right-hand
side exhibits revivals for values of the free-evolution time τ

satisfying ωαβτ ≈ 4πn, for any integer n. In this case the
overall decay of the spin-echo signal results solely from the
spectral diffusion factor e−(τ/τ̃SD)4

in Eq. (42).
Small but nonzero frequency differences δωkl and Akl can

give rise to nuclear spin dephasing and cause additional decay
of the revival peak envelope as a function of τ . We now
analyze this decay and discuss its physical origin. Near the
revival peaks ωklτ ≈ 4πn, and for early times τ satisfying
δωklτ,Aklτ � 1, Eq. (40) simplifies to

Tkl|peak ≈ ig∗μBblbk(ωkl + δωkl)

4|Bext|
(Aklτ )2 − (δωklτ )2

(ωkl + δωkl)2 − A2
kl

.

(43)

For homonuclear terms with ωkl = 0 (i.e., for groups k and l

comprised of the same nuclear species), we find

Tkl|peak ≈ ig∗μBblbkδωkl

4|Bext| τ 2, α(k) = α(l), (44)

while heteronuclear terms are given by

Tkl|peak ≈ ig∗μBblbk

4|Bext|
A2

kl − δω2
kl

ωkl

τ 2, α(k) �= α(l). (45)

Note that the heteronuclear terms are suppressed by the
small ratios of δωkl

ωkl
or Akl

ωkl
. Hence, for δωklτ,Aklτ � 1, near

the revival peaks the T matrix is approximately block diagonal
with respect to the three species. Up to second order in
ωklτ,Aklτ , we find that each block has a single pair of nonzero
eigenvalues given by

λα|peak = ±
g∗μBaαnαA2

α

√〈
δω2

α

〉
4Nd |Bext| τ 2, (46)

where
√〈δω2

α〉 is the rms spread of Larmor angular frequencies
of species α. Thus, we obtain a simple expression for the echo
envelope decay at the revival peaks:

〈ei�〉|peak =
∏
α

[
1 +

(
g∗μBaαnαA2

α

4Nd |Bext|
)2 〈

δω2
α

〉
τ 4

]−1

. (47)

Physically, Eq. (47) describes decay of the revival envelope

with time scale τ−4
⊥ = ( g∗μBaαnαA2

α

4Nd |Bext| )2〈δω2
α〉, which arises pri-

marily from the intraspecies spread of the Larmor frequencies√〈δω2
α〉. The effect of the off-diagonal matrix elements

between different species is negligible. Additionally, the effect
of the Knight field is also negligible, due to the fact that the
Knight field reverses its sign halfway through the evolution
when the electron spin is flipped by the π pulse of the spin-echo
sequence.

E. Estimate of quantum corrections to the semiclassical results

The semiclassical treatment is expected to be valid in the
limit of a large number of participating nuclei, Nd . To better
understand the validity of the approximation for finite Nd , in

this section we provide a heuristic estimate for the deviation of
the semiclassical expression for the single-electron coherence
function Ccs , Eq. (37), from the quantum expression for C,
given in Eq. (35). We define the quantum error as Ccs − C.

We are interested in particular in the quantum error asso-
ciated with the semiclassical approximation to the dynamics
induced by the hyperfine and Zeeman couplings. Therefore
we ignore the nuclear spin diffusion contribution to the
decoherence, which is caused by the dipolar interaction. This
is done by setting τSD = ∞ in Eqs. (35) and (37). We analyze
the scaling of the quantum error as Nd is increased. However,
while changing Nd , we wish to keep fixed the rms values of
the Overhauser field components, which determine the time
scale for the decoherence of the electron spins. Given Eq. (6),
the rms value of the Overhauser field for each species scales
as Aα/

√
Nd ; therefore we require Aα ∝ √

Nd .
For large Nd , the leading contribution to the quantum error

comes from the fact that for a given initial nuclear spin state
|�i〉 = ⊗

k |Ik,n̂k〉, the overlap of the final nuclear spin states
for different initial electron spin states, |�f +〉 ≡ U⊥+(τ )|�〉
for σ = + and |�f −〉 ≡ U⊥−(τ )|�〉 for σ = −, is not unity,
|〈�f + | �f − 〉| < 1. In other words, for every initial coherent
state, the final state includes quantum correlations between
the electron and nuclear spins, which are not captured by
the semiclassical treatment. Thus, the electron-state-dependent
modification to the nuclear evolution contributes an additional
suppression of C which is not accounted for in Eq. (36).

Up to leading order in the hyperfine coupling, the nuclear
spin evolution is dominated by Larmor precession due to the
combination of the external magnetic field and the component
of the Knight field parallel to the external field axis z.
Both contributions are included in H0 in Eq. (26). However,
these two effects alone will result in a perfect overlap of
the final states, |�f +〉 = |�f −〉. This is because the Larmor
precession about the external field is independent of the
electron spin state, while the precession due to the Knight
field is perfectly reversed halfway through the evolution due
to the echo pulse which flips the electron spin. Thus both
effects were fully accounted for in the semiclassical treatment
above.

The quantum error results from the higher-order terms in
the hyperfine coupling, in particular from the transverse com-
ponents of the Knight field, i.e., from the terms S+

d I−
n + S−

d I+
n

in the system’s Hamiltonian, Eq. (5). These terms contribute

to σHσ
⊥(t) = σ

g∗μB |B⊥σ
nuc,d (t)|2

4|Bext| in the reduced Hamiltonian,
Eq. (13). Although the transverse components of the Knight
field are also reversed after the echo pulse, the fact that they do
not commute with H0 means that difference in the final states
|�f +〉 and |�f −〉 may survive the echo.

Below we first focus our discussion on a theoretical model
which, in the semiclassical treatment, produces perfect revivals
in the echo signal due to exact commensuration between
Larmor periods of different nuclear species. We separate the
discussion into two cases, in which the free-evolution time τ

is either exactly on, or is away from, a revival peak. Then,
at the end of the section we consider the quantum error at a
revival peak which is not perfect, even within the semiclassical
approximation, due to a lack of commensuration between
nuclear Larmor periods.
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For the initial state |�i〉 given above, which is a product
of giant-spin coherent states in each of the K groups of
nuclear spins, we argue that, to leading order in Nd , the final
states |�f σ 〉 remain approximately tensor products of coherent
states,

|�f σ 〉 ≈
⊗

k

|Ik,n̂k,f σ 〉. (48)

Within this picture, σHσ
⊥(t) causes the giant-spin coherent

states to rotate to new directions {n̂k,f σ }, which depend on the
electron spin state σ = + or −. Other quantum effects such as
coherent spin state squeezing due to the (I x

k )2 + (I y

k )2 terms in
Hσ

⊥(t), which may stretch the coherent states anisotropically,
or a buildup of quantum correlations between different giant
spins, are also expected. However, these effects enter only at
higher order in 1/Ik , because they are seeded by the small
quantum fluctuations of the spin components in the initial
coherent state.

Using the argument above, we find that away from the
revival peaks the angle between the directions of the two final
states of each giant spin k, for σ = + or −, scales as 1/Ik . Why
is this so? First, according to Eq. (5), the Knight field acting on
the nuclear spins, Ad,nSd , is smaller than the Overhauser field
acting on the electron by a factor 1/

√
Nd ∼ 1/Ik . Second,

assuming that the time scale of the electron spin coherence
collapse is comparable to the time scale between revivals, the
contribution of H⊥(t) to the Overhauser field causes electron
spin precession through an angle of order 2π . Over the same
time interval, the corresponding part of the Knight field will
cause the nuclear spins to rotate through an angle which is
1/Ik times smaller.

The overlap |〈�f + | �f − 〉| can thus be approximated to
leading order by a product of overlaps between pairs of
coherent states

∏
k |〈 Ik,n̂k,f + | Ik,n̂k,f − 〉|, which are mis-

aligned by an angle that scales down as 1/Ik . Further-
more, because Ik is large, each coherent state |Ik,n̂kf ±〉 is
characterized by a Gaussian phase space distribution with
angular width of order 1/

√
Ik . The reduction of the overlap,

1 − |〈 Ik,n̂k,f + | Ik,n̂k,f − 〉|, therefore scales as 1/Ik ∼
√

K
Nd

.

We therefore find that the overall reduction of the total overlap,
1 − |〈�f + | �f − 〉|, scales down at least as K

Ik
∼

√
K3/Nd , as

does the quantum error.
However, exactly at a revival peak, where the condition

of perfect nuclear precession commensurability is met, this
leading contribution vanishes. Here, for a given giant spin
k, treating all other spins k′ �= k as classical vectors, the
precession and squeezing induced by Hσ

⊥(t) is perfectly
reversed after the π pulse. Thus the quantum error at a revival
peak is a higher-order effect in 1/

√
Nd . Numerical simulations

with just two giant spins indicate that the quantum error at the
revival peaks may scale down even faster than 1/Nd , but a
more detailed analysis is a subject for further study.

In more realistic cases, when the commensurability condi-
tion of all nuclear species cannot be exactly met, the quantum
error near the quasirevival peak scales like f (τ )

√
K3/Nd ,

with the prefactor f (τ ) becoming small as τ approaches the
approximate commensuration point. At the quasirevival peak,
f (τ ) is then dominated by the classical effect of imperfect
commensuration, captured by 1 − Csc(τ ). We estimate the

error in the case of GaAs quantum dots with Nd = (2–4) ×
106. For this estimate, we take the minimal number of groups
of nuclear spins K which, within the semiclassical treatment,
accurately produces the echo signal behavior near the revival
peaks, without changing significantly upon further refinement
to more groups. For that purpose, note that only the spread of
the Larmor frequencies for each nuclear species, 〈δω2

α〉, enters
the expression for 1 − Csc(τ ) in Eq. (47). Consequently, it is
sufficient to divide each of the three species into two collective
groups. Grouping the nuclei into K ≈ 6 collective giant spins
gives

√
K3/Nd � 1/90. Therefore the quantum contribution

to the imperfect revival is smaller than the semiclassical
contribution by more than an order of magnitude.

VII. DISCUSSION

Equation (42), together with Eq. (40), was used to fit the
experimental echo signal data in Ref. 18. As stated in Sec. VI C,
in general the matrix Tkl and its eigenvalues {λm} are different
for each dot due to variations in dot size and local environment.
In particular, the distribution of hyperfine couplings {Ak} and
the number of nuclei Nd depend on the distribution of electron
density in the dot. Furthermore, the distribution of {δωk}
depends on, e.g., local electric field gradients which couple
to the nuclear quadrupole moments. However, in practice we
found that choosing the same parameters for Tkl in the two dots
produced a very good fit to the experimental data. Allowing,
for example, different values of Nd for the two dots did not
significantly improve the fits.

The spread of the Larmor frequencies
√〈δω2

α〉 that was
found from fitting to the experimental results18 was equivalent
to 3 G effective spread of magnetic field, somewhat bigger than
the values of nuclear magnetic resonance (NMR) linewidths,
typically about 1 Gequivalent spread, reported for bulk GaAs
in the literature.39,40 In addition to a random contribution to
the local magnetic field coming from the dipolar interaction
with neighboring nuclei, the nuclear spins in a GaAs quantum
dot experience a quadrupolar splitting due to electric field
gradients originating from the confined electrons, which we
estimate to be at the order of a few gauss (see Ref. 18,
supplemental materials). These quadrupolar shifts may be
responsible for the difference between the observed value
and the NMR linewidth. In the echo experiments which have
been performed so far there is no way to distinguish between
different origins of the apparent spread of nuclear Larmor
frequencies (i.e., between decay due to nuclear spin flipflop,
due to inhomogeneous broadening, or due to quadrupolar
effects).

Our model does not directly include the dipole-dipole-
induced temporal decay of local nuclear spin correla-
tions 〈I i

n(0)I j
n (t)〉. However, such decay is accounted for

phenomenologically by a time-independent spread of site-
dependent Larmor precession frequencies. Because the current
Hahn echo experiments cannot distinguish between these
intrinsic and extrinsic nuclear spin dephasing processes, our
approximation of accounting for these effects by a random
static, disordered, Zeeman field is reasonable. According to
Eq. (47), the effect of this random field is to cause an additional
decay to the echo signal with a time scale τ⊥. This decay
becomes dominant at low magnetic fields, as τ⊥ becomes

035441-11



IZHAR NEDER et al. PHYSICAL REVIEW B 84, 035441 (2011)

shorter then the decay time associated with the spectral
diffusion, τSD.

In addition, note that the spectral diffusion decay time τSD

was found experimentally to be independent of the magnetic
field strength. Other experiments41 have also suggested that
the external magnetic field does not significantly influence
spin diffusion at the relevant field range, above 20 mT. This
provides further justification for neglecting the commutators
[H⊥,Hd ] in Sec. VI, which, a priori, could introduce such a
dependence.

In conclusion, we have provided physical justification for
treating the Overhauser fields in a GaAs double-quantum-dot
system as classical vector variables, based on the relative
smallness of the commutation relations due to the large
number of spins in each dot. For the simple model in
Sec. V, in which we ignored the nuclear dipole-dipole interac-
tion and the Knight shift of the nuclear Larmor frequencies, we
demonstrated the equivalence of the semiclassical treatment
and the quantum diagrammatic summation of Ref. 32. The
semiclassical treatment quantitatively captures the observed
phenomena of monotonic decay of the echo signal in strong
magnetic fields, and the collapses and revivals of the echo
signal in weaker magnetic fields. The overall effect of the

Knight field on the spin echo is found to be negligible. This
fact is parameter dependent. However, note that the Knight
field is reversed by the echo pulse. As a result, if one treats
the Knight field contribution to the phase in Eqs. (39) and
(43) as a perturbation, it vanishes in the leading order in τ ,
near the revival peak. This is unlike the contribution of the
competing process, i.e., the spread of the Larmor frequencies.
This means that, for the typical parameters in GaAs quantum
dots, after averaging over all nuclear spin states, both the
collapse-revival effect and the overall envelope decay can
be understood simply as arising from averaging over the
initial conditions of the Larmor precession of the nuclear
spins.
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