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Moiré butterflies in twisted bilayer graphene
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The Hofstadter butterfly spectral patterns of lattice electrons in an external magnetic field yield some of the
most beguiling images in physics. Here we explore the magnetoelectronic spectra of systems with moiré spatial
patterns, concentrating on the case of twisted bilayer graphene. Because long-period spatial patterns are accurately
formed at small twist angles, fractal butterfly spectra and associated magnetotransport and magnetomechanical
anomalies emerge at accessible magnetic field strengths.
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I. INTRODUCTION

The fractal Hofstadter spectrum is a canonical example of
electronic structure in a system with incommensurate length
scales, and has fascinated physicists and mathematicians for
over a half a century.1–7 The classic butterfly pattern is formed
by the magnetic field dependent support of the eigenvalue
spectrum of the Schrodinger equation for a near-neighbor
hopping model on a square lattice. Similar but distinct8 patterns
describe the magnetospectrum of any two-dimensional (2D)
system of Bloch electrons.

Quite generally magneto-Bloch Hamiltonians are block
diagonalizable only when the magnetic flux through a 2D unit
cell � is a rational multiple of the magnetic flux quantum
�0. For α ≡ �0/� = p/q (p and q coprime) the spectrum
consists of continuous sub-bands each containing an areal
density of B/q�0, q times smaller than the usual semiclassical
Landau level density. Because the x and y components of
cyclotron orbit centers are canonically conjugate in a magnetic
field,9 smearing the periodic potential over the magnetic length
scale � = (�0/2πB)1/2, the fractal pattern of gaps within
Landau levels becomes visible only when α is not too much
larger than one. For atomic periodicity this condition is not met
until the magnetic field strength exceeds laboratory scales by a
factor of about 1000. In moiré systems,10 however, the pattern
period can easily exceed �. Graphene moiré systems realize
Hofstadter physics at fields of a few Tesla, without recourse
to the difficult and potentially damaging photolithographic
patterning previously used11 to realize Hofstadter physics in
the laboratory.

Because of the relatively weak forces between adjacent
graphene layers, double layer graphene systems with a variety
of different stacking sequences occur in bulk graphite,12

epitaxially grown multilayer graphene,13 and in mechanically
exfoliated multilayers. 14 Relative twists between layers can
also be created by folding a single layer.15,16 The stacking
arrangement in a two-layer system can be characterized by
the twist angle θ , and by a relative translation d. A variety
of different aspects of twisted bilayer electronic structure
have captured theoretical attention,17–23 and been studied
experimentally.14,24,25

For θ smaller than roughly 10◦, the low-energy spectrum
is faithfully described by a continuum model obtained via an
envelope function approximation.17,23 For small twist angles,
this model shows that it is meaningful to describe the electronic
structure in terms of Bloch bands for any θ even though the

atomic network is periodic only for a discrete set of angles.23

The Bloch bands in this description are intimately related
to the moiré pattern clearly observed in scanning tunneling
microscopy measurements.13 The moiré period for bilayer
graphene is a/[sin(θ/2)] where a is graphene’s lattice constant.
Because a translation of one layer with respect to the other only
shifts the moiré pattern, the electronic structure is virtually
independent of d 23 except at large commensurate twist angles.
In what follows, we therefore set d to zero.

The continuum limit of a π -band tight-binding model for
the twisted bilayer yields a transparent physical picture in
which Dirac cones are coupled by a position and sublattice
dependent interlayer hopping operator T (r) that captures the
local coordination of the twisted honeycomb lattices. As we
show below it is T (r), and not a periodic potential, which is
responsible for the moiré butterfly. Because the moiré unit cell
area �M ∝ θ−2, the flux through a moiré unit cell increases
rapidly as the twist angle is reduced. As in the periodic
potential case, gaps open within Landau levels for α � 1. It
turns out that B[T ] ≈ 4(θ◦)2/α. Significant splitting of the
isolated layer Dirac Landau levels therefore appear already at
low magnetic fields for small θ .

We now derive the equations we use to evaluate the moiré
butterfly spectrum at rational values of α, present numerical
results for a typical twist angle, and discuss the magnetotrans-
port and magnetomechanical anomalies that they imply.

II. HAMILTONIAN

The low-energy electronic structure of a twisted bilayer is
well captured by the continuum model in which23

H =
(

h(−θ/2) T (r)
T †(r) h(θ/2)

)
, (1)

where h = ivσ · ∇ with σ = (σx,σy) being the sublattice Pauli
matrices of the single-layer graphene Hamiltonian, and

T (r) = w
∑

j

e−iqj ·r Tj (2)

is the interlayer hopping matrix. Here

T1 =
(

1 1
1 1

)
,T2 =

(
e−iφ 1
eiφ e−iφ

)
,T3 =

(
eiφ 1
e−iφ eiφ

)
, (3)

where φ = 2π/3, q1 = kθ (0, − 1), q2 = kθ (
√

3,1)/2, q3 =
kθ (−√

3,1)/2, kθ = 2kD sin(θ/2) ≈ kDθ with kD being the
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Dirac momentum and w the hopping energy. Estimates based
on tight-binding models for AB bilayer graphene imply that
w ≈ 110 meV, however recent measurements suggest that w

might be considerably smaller for some epitaxially grown
layers.26

The AA entry of the T matrix is depicted in Fig. 1 (similar
figures are obtained for the other entries of T ). The direction
and size of an arrow at position r correspond respectively to
the phase of TAA(r) and to its magnitude. The red dots mark the
lattice associated with the moiré pattern23 whereas the green
circles mark the lattice on which T (r) is periodic. Interestingly,
the moiré unit cell area �M = 16π2/

√
3k2

θ is six times larger
than the area of the moiré pattern unit cell.

In the presence of a magnetic field it is convenient to work in
the Landau gauge A = B(−y,0) and express the Hamiltonian
in the representation of the basis states |Lnαy〉 where L = 1,2
labels the layer, n is the Landau level index, α = A,B stands
for the sublattice, and y is the guiding center coordinate. In
terms of these basis states the intralayer part of the Hamiltonian

h(θ ) = −ωc

∑
Lny

(e−iθ
√

n + 1|Ln + 1Ay〉〈LnBy| + H.c.)

(4)

is diagonal in y, however the T2 and T3 interlayer hopping
terms change y by ±� where � = √

3kθ�
2/2. In the presence

of a finite B the Hamiltonian therefore describes particles
hopping on a set of one-dimensional chains. The Hamiltonian
can be block-diagonalized in y by grouping guiding centers
separated by integer multiples of �.

The guiding center chains become periodic when �0/� is
rational (or equivalently when kθ�/2 = 2πp/q), allowing a
second wave vector to be introduced. The corresponding basis
functions are constructed by writing the y-guiding coordinate
as y = y0 + (mq + j )� and Fourier transforming with respect
to m. The resulting magnetic Brillouin zone is

{(k1,k2)|0 < k1 = y0/�
2 < �/�2,0 < k2 < 2π/q�}. (5)

The Hamiltonian matrix in this magnetic Bloch representation
has dimension 4q times the number of Landau levels retained.
For each momentum in this zone

T (k) =
∑

nmαβj

[
T

(0)
j |2nαj 〉〈1mβj | + T

(R)
j |2nα,j + 1〉 (6)

×〈1mβj | + T
(L)
j |2nαj − 1〉〈1mβj |],

where j = 0,1, . . . ,q − 1 (j is defined modulo q so that |j =
q〉 = |j = 0〉), and

T
(0)
j = T1Fnm

(
q1�√

2

)
e−ikθ y0e

−4πi
p

q
j
,

T
(R)
j = T2Fnm

(
q2�√

2

)
eik2�e

i
2 kθ y0e

iπ
p

q
(2j−1)

, (7)

T
(L)
j = T3Fnm

(
q3�√

2

)
e−ik2�e

i
2 kθ y0e

iπ
p

q
(2j+1)

.

Here

Fnm(z) =
√

m!

n!
(−zx + izy)n−me− z2

2 Ln−m
m (z2) (8)

for n � m with L being the associated Laguerre polynomial.
For n < m the function F can be found using Fnm(z) =
F


mn(−z). Because (kθ�)2 = 8πp/
√

3q, the inter-layer Hamil-
tonian depends only on p/q. In the absence of Landau level
mixing the splitting of each Landau level into sub-bands is
therefore determined only by α.

We now comment on the range of validity of our model.
For the intralayer terms in Hamiltonian (1) we use the standard
Dirac-like model, which is valid up to energies ∼1 eV. For the
interlayer terms we use a continuum model that is valid when
the local coordination between layers varies slowly on a lattice
constant scale, i.e., when the moire period is long. Our model
is therefore valid for energies within ∼1 eV of the Dirac point
and rotation angles smaller than around 10◦. As mentioned
in the introduction we set d = 0 throughout this work. For
incommensurate structures a translation has no influence on
the spectrum (neglecting finite size effects). For commensurate
angles for which the bilayer is crystalline a translation of one
layer with respect to the other modifies the unit cell and does
in principle influence the spectrum. However, such d-related
corrections to the spectrum diminish as the size of the unit cell
increases becoming negligible for θ � 10◦. 22

III. SPECTRUM

In the absence of interlayer coupling, the spectrum consists
of degenerate Dirac Landau levels at energies ±ωc

√
n, where

ωc = √
2v/� is the cyclotron energy, and v is the graphene

sheet Dirac velocity. Because of the layer degeneracy, gaps
between Landau levels produce quantum Hall effects at odd,
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FIG. 1. (Color online) Moiré unit cell. The magnitude and phase
of the AA hopping amplitude (represented by arrows) is plotted as a
function of position (in units of k−1

θ ). The lattice that corresponds to
the moiré pattern is marked by the red dots and the lattice on which the
interlayer hopping Hamiltonian is periodic is denoted by the green
circles. It is this second lattice that determines the moiré unit cell
area �M.
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FIG. 2. (Color online) Spectrum support. The support of the
spectrum as a function of α for θ = 2◦ (w = 110 meV). The periodic
interlayer hopping amplitude results in a Hofstadter-like sub-band
structure. The integers denote the Hall conductivity associated with
the larger energy gaps between ν = 1 and ν = −1 for α ≈ 0.3.

rather than half-odd,27 integer filling factors. (Spin and valley
degeneracy are left implicit throughout this article.) Coupling
between the layers splits the Landau levels of both layers into
q sub-bands and couples them together as illustrated in Fig. 2
for the θ = 2◦ case. It is clear that interlayer coupling at strong
fields completely alters the spectrum.

Inter-Landau level transitions can significantly alter the
electronic spectrum.28,29 In the absence of a magnetic field
two momentum states are effectively coupled if their energy
difference is of order of E� = max(vkθ ,w) or less. The same
criteria holds also in the presence of a magnetic field. The
n = 0 Landau level therefore couples most strongly to the
n0 ≈ (E�/ωc)2 Landau level. In our calculations we retain
∼2n0 Landau levels30 in order to obtain spectra that are
accurate near the Dirac point. Comparing Fig. 2 with results
obtained neglecting Landau level mixing (not shown) we find
that, as expected, inter-Landau level hopping is increasingly
important as the magnetic field is reduced and as the energy is
increased.

Because α ∝ θ2/B the sub-band structure becomes more
conspicuous as θ is reduced. On the other hand, the band
structure for very small twist angles does not have simple Dirac
character even at B = 0.23 In Fig. 2 we show the support of the
spectrum for the intermediate case θ = 2◦. As the magnetic
field is increased (i.e., as α is decreased) all the gaps widen.
The terminology of Landau level splitting is useful as long
as the single layer Landau levels do not overlap. Minigaps as
large as 10 meV open up within the n = 0 Landau level for
B ≈ 40 T. When any one of the three tunneling processes Tj is
present alone, the n = 0 Landau level splits into two precisely
degenerate components. The relatively large gap at the ν = 0
neutrality point which is present over a wide range of α in
Fig. 2 is a remnant of this behavior which often remains when
all three hopping processes are restored.

IV. HALL CONDUCTIVITY

Since the pioneering work of Thouless et al.5 it has been
understood that the Hall conductivity σH (in units of e2/h) is a
topological number that must be quantized when the chemical
potential lies in an energy gap. Although the support of the
spectrum as a function of field has a fractal structure, gaps in
the spectra can exist continuously over finite ranges of field.
The Landau level filling factors ν at which gaps appear are
characterized by two topological integers σH and s5,31 which
satisfy

ν = σH + sα. (9)

Here

s = −�

A

(
∂N

∂�

)
B

= �

A

∂2F
∂μ ∂�

, (10)

A is the sample’s area, � is the area of the unit cell, N is the
number of electrons in states below that gap, μ is the chemical
potential, andF is the grand-canonical potential. As a function
of ν and α, the Diophantine equation (9) has an infinite number
of solutions: (s,σH) = (s0 − mq,σ0 + mp), where (s0,σ0) is
some particular solution and m is any integer. The topology
of the classic Hofstadter spectrum corresponds to the rule5

that s should be as small as possible. For general models
there are exceptions to this rule8 that alter the connectivity
of spectral gaps. For the moiré butterfly we therefore find s

and σH numerically by plotting the energy gaps as a function
of ν and α. The linear dependence assured by Eq. (9) allows
a straightforward identification of σH as the intercept of gap
lines with the α = 0 axis and of s as the gap-line slope. In
Fig. 3 the energy gaps are plotted for θ = 2◦.

Using Fig. 3 we can identify the topological quantum
numbers for every gap in Fig. 2, as illustrated for some of the
larger gaps that appear near α ≈ 0.3. The integers depicted in
Fig. 2 specify the quantized Hall conductance in the large gaps

FIG. 3. Hall conductivity. The energy gaps are depicted as a
function of filling factor ν and p/q for θ = 2◦ (w = 110 meV). The
conspicuous straight lines satisfy the Diophantine gap equation (9)
and determine both σH and s. The Hall conductivity corresponds to
the intercept of the line with the y-axis whereas s is given by its slope.
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which appear between ν = 1 and ν = −1. As the electronic
density is varied the quantized Hall conductivity follows the
nonmonotonic variation +1, − 1, + 2, − 2, + 1, − 1.

V. SUMMARY

The moiré pattern formed in twisted double layer graphene
systems is akin to an atomic periodic potential. In the presence
of a magnetic field the twisted bilayer possesses a Hofstadter-
like energy spectrum. Because the area of the moiré unit cell is
very large at small twist angles sub-bands can appear in twisted
bilayers at relatively low magnetic fields that are accessible in
a laboratory.

Two topological integers are associated with each energy
gap in the spectrum. The first is related to the Hall conductivity.
For twisted bilayers, we find that the second number has
an electromechanical origin. As evident from Eq. (10), the
quantum number s can be associated with the chemical poten-
tial dependence of a rotational torque. Measurement of this
electromechanical quantum number presents an interesting
challenge to experiment.

Our theory has intriguing consequences for magnetotrans-
port in double layers grown using chemical vapor deposition
(CVD). This type of sample is polycrystalline in nature,
characterized by graphene flakes of various sizes that are
misoriented relative to one another. A double-layer CVD

grown structure will therefore be characterized not by a single
twist angle but by a set of θ ’s. In the presence of a magnetic field
the Hall conductivity of each domain will depend on B and
on the particular twist angle of the domain. Because different
grains will in general have different Hall conductivities, chiral
currents will flow along most grain boundaries.

We note that the considerations presented here do not
account for electron-electron interactions.32 As in the case
of patterned semiconductor quantum wells, fractional quan-
tum Hall states with fractional charge and statistics are
possible.33,34 The large minigaps depicted in Fig. 2 and the
typical high mobilities of graphene multilayers are favorable
for the experimental observation of these fractional states in
exfoliated double-layer graphene samples.

Over the past decades many interesting theoretical pre-
dictions were made regarding the Hofstadter spectrum. As
this work shows twisted double-layer graphene systems may
enable to bridge between these predictions and experiments.
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