
PHYSICAL REVIEW B 84, 035433 (2011)

Theory of double-resonant Raman spectra in graphene: Intensity and line shape
of defect-induced and two-phonon bands
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We calculate the double-resonant (DR) Raman spectrum of graphene, and determine the lines associated to
both phonon-defect processes (such as in the D line at ∼1350 cm−1, D′ at ∼1600 cm−1, and D′′ at ∼1100 cm−1),
and two-phonon ones (such as in the 2D, 2D′, or D + D′′ lines). Phonon and electronic dispersions reproduce
calculations based on density-functional theory corrected with GW. Electron-light, -phonon, and -defect scattering
matrix elements and the electronic linewidth are explicitly calculated. Defect-induced processes are simulated
by considering different kinds of idealized defects. For an excitation energy of εL = 2.4 eV, the agreement with
measurements is very good and calculations reproduce the relative intensities among phonon-defect or among
two-phonon lines; the measured small widths of the D, D′, 2D, and 2D′ lines; the line shapes; the presence
of small intensity lines in the 1800–2000-cm−1 range. We determine how the spectra depend on the excitation
energy, on the light polarization, on the electronic linewidth, on the kind of defects, and on their concentration.
According to the present findings, the intensity ratio between the 2D′ and 2D lines can be used to determine
experimentally the electronic linewidth. The intensity ratio between the D and D′ lines depends on the kind of
model defect, suggesting that this ratio could possibly be used to identify the kind of defects present in actual
samples. Charged impurities outside the graphene plane provide an almost undetectable contribution to the Raman
signal. The present analysis reveals that, for both D and 2D lines, the dominant DR processes are those in which
electrons and holes are both involved in the scattering, because of a destructive quantum interference that kills
processes involving only electrons or only holes. The most important phonons belong to the K → � direction
(inner phonons) and not to the K → M one (outer phonons), as usually assumed. The small 2D linewidth at
εL = 2.4 eV is a consequence of the interplay between the opposite trigonal warpings of the electron and phonon
dispersions. At higher excitation, e.g., εL = 3.8 eV, the 2D line becomes broader and evolves in an asymmetric
double peak structure.
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I. INTRODUCTION

Raman spectroscopy is one of the most important ex-
perimental techniques for the characterization of graphitic
materials. In particular, for graphene, this technique pro-
vides information about the number of layers,1,2 doping,3–5

disorder,6–8 and phonon properties .9

Lowest-oder Raman processes correspond to the scattering
with a zero-momentum phonon (q = 0). The Raman G line
in graphene and graphite (∼1582 cm−1) is associated with the
E2g phonon at � and it is a lowest-order process. Graphene
and graphite present other lines, due to higher-order processes,
which are usually interpreted in terms of the so-called double-
resonance (DR) mechanism.10 The DR mechanism is used to
interpret two distinct kinds of phenomena. The first is the
excitation of a phonon with momentum q �= 0 due to the
presence of defects in the sample. This process, called defect
induced, is not allowed in a purely crystalline sample (without
defects) because of momentum conservation. In graphene and
graphite, it gives rise to the well studied D line at ∼1350 cm−1

and also to less intense lines such as the D′ (∼1600 cm−1) and
the D′′ [∼1100 cm−1 (Refs. 7 and 11)]. The second process
corresponds to the excitation of two phonons with opposite
momenta q and −q. This process, called two phonon, can be
observed in purely crystalline samples since the momentum
is conserved and gives rise to the very intense 2D line at
∼2700 cm−1 (which is an overtone of the D line) and, for

instance, to the D + D′′ and 2D′ lines at ∼2450 cm−1 and
∼3200 cm−1. The lines related to DR defect-induced and
two-phonon processes have a remarkable property: they are
dispersive, i.e., their positions change with excitation energy.

It has been shown experimentally1,2 that the 2D line in
graphene changes in shape, width, and position with the
number of layers. Later, the phonon dispersion of graphene,
near the Dirac K points, was probed by measurements9 of the
2D and D + D′′ lines as a function of the excitation energies.
Usually, Raman experiments are performed in graphene layers
that were deposited or grown over a substrate. However,
experimental measurements of the G and 2D lines have
also been performed for free-standing graphene monolayers.12

Lucchese et al.7 and Martins Ferreira et al.11 have studied
the evolution of the Raman spectra for mono- and multilayer
graphene with increasing disorder, showing that the intensity
of the D line, which is absent in pristine graphene, increases
when disorder is induced in the sample up to a maximum value
where it begins to decrease. On the other hand, the 2D line
intensity is maximum for pristine graphene and it decreases
with increasing disorder.

Frequencies, intensities, and linewidths of all DR Raman
bands may be determined by the calculation of the Raman cross
section.13 Several excellent theoretical works already appeared
on the topic providing an overall good understanding of the
situation. However, the many different approximations used
by different authors (e.g., constant electron-phonon matrix
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elements, resonant phonons are assumed to be on some high-
symmetry line, in some cases the electronic dispersion is conic,
the electronic lifetime is a parameter, etc.) and the several
debates still going on lead to the sensation that something
is missing. Thomsen and Reich10 and Kurti et al.14 studied
the D line for graphite and carbon nanotubes, respectively.
Also, Narula and Reich15 studied the D and 2D Raman lines
in graphene and graphite. In these works10,14,15 the scattering
matrix elements (electron light, electron phonon, and electron
defect) are assumed to be constants and the electronic linewidth
is a parameter set to a fixed value. Basko16 has studied
the two-phonon and four-phonon Raman bands in graphene
under the assumption of conical bands, which is valid only
in the limit of small excitation energies, not suitable for most
experimental data available in the literature. Also, his work is
limited to disorder-free graphene. Park et al.17 have studied
the two-phonon processes in single, double, and triple layer
graphene, making the assumption of conical bands and limiting
their work to disorder-free graphene.

In this context, some questions are currently debated.
For instance, according to previous theoretical works,10,14,15

phonons in the K → M direction of the Brillouin zone should
give the most important contribution to the D line intensity.
However, recent works18–22 have argued that the phonons in
the K → � direction should be more important. Other open
questions refer to the processes more relevant for the DR
Raman spectra. In some Raman processes only the electrons
are scattered, while in other processes both electrons and holes
are scattered simultaneously. Some authors claim that, at least
for the 2D line, this last kind of process should be dominant
because they are associated to a triple resonance.23 On the
other hand, several authors perform their studies considering
only electron-electron processes, as in the seminal work by
Thomsen and Reich.10

Besides, several fundamental questions are almost un-
touched. So far, the DR mechanism has been basically used
to give an overall description of the physics and to determine
which are the excited phonons. Can the DR theory be used to
obtain a quantitative description of the intensities of the Raman
lines? Can the DR theory be used to obtain a quantitative
description of the shape and of the width of the Raman lines?
The most studied Raman lines, the 2D and the D ones, present
a relatively narrow linewidth similar to the one of the G

line (which is not due to DR). This fact is very surprising
and, indeed, the theoretical approaches used so far were not
able to reproduce the observed small width of these lines.
Which are the missing ingredients? Is this a consequence of
the approximations used so far, or, on the contrary, is this a
limit of the perturbative approach inherent to the DR theory?
Finally, the D line is activated by disorder and is routinely
used to probe the quality of the samples of graphitic materials.
However, which kind of defects activate the D line is not

known. For instance, do neutral impurities, vacancies, and
charged defects affect the D line in the same way? Which kind
of defects are probed by measuring different defect-activates
lines? Does Raman spectroscopy probe the defects, which
mostly influence electronic transport?

Here, as a first step to answer these questions, we calculate
the double-resonant Raman spectrum of graphene, considering
both defect-induced and two-phonon processes, trying to pro-
vide a computational method overcoming the most common
approximations used in literature. Calculations are done using
the standard approach based on the golden rule generalized
to the perturbative fourth order.10 The electronic summation
is performed all over the two-dimensional Brillouin zone
and all the possible phonons (with any wave vector) are
considered. The phonon dispersion is obtained from fully
ab initio calculations based on density-functional theory
(DFT) corrected with GW. Electronic structure calculations
are based on a tight-binding approach in which the parameters
are fitted to reproduce DFT + GW calculations. The electronic
lifetime is calculated explicitly and the defect-induced pro-
cesses are simulated by considering three different kinds of
ideal model defects.

Section II describes the computational method; Sec. III
describes and discusses the results; Sec. IV resumes the main
conclusions of the paper.

II. METHOD

This section describes the method used to compute the
DR Raman spectra. Section II A gives the general framework
and provides the equations to obtain double-resonant Raman
spectra in graphene within the perturbative approach. The other
subsections describe the details to obtain the quantities used
in the actual implementation. In particular, Sec. II B describes
the electronic and phononic band dispersions; Secs. II C, II D,
and II E describe the electron-phonon, electron-light, and
electron-defect scattering matrix elements; Sec. II F describes
the calculation of the electronic linewidth.

A. Double-resonant Raman intensity

In vibrational Raman, the spectrum usually consists in well
defined lines associated with emission (Stokes) or absorption
(anti-Stokes) of a phonon. Here, only Stokes processes are
considered. Note also that the G line (lowest-order excitation
of the E2g � phonon) is not described by the present formalism
and is thus not present in the calculated spectra. Within
the DR scheme,10 the light-electron and electron-phonon
interactions, as well as the defect-induced electron-electron
scattering, are treated at the first order in perturbation theory.
The Raman cross section I of the light scattered by a crystal
is obtained from the golden rule generalized to the fourth
order:13

I ∝
∑
f

∣∣∣∣∣
∑

A,B,C

Mf CMCBMBAMAi(
εi − εC − i

γ C

2

)(
εi − εB − i

γ B

2

)(
εi − εA − i

γ A

2

)
∣∣∣∣∣
2

δ(εi − εf ), (1)
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where εi is the energy of the initial state, which consists of
a quantum of light with energy εL = h̄ωL (the laser energy)
and in which the crystal is in the ground state. The sum is
performed on intermediate virtual states A,B,C, with energy
εA, εB , εC , which are described by electronic and phononic
excitation of the crystal. εf is the energy of the final state f , in
which the electronic degrees of freedom of the crystal are in the
ground state, one or two phonons with total energy h̄ωp have
been excited, and a quantum of light with energy εL − h̄ωp

has been emitted. δ is the Dirac distribution. γ A, γ B , γ C are
the inverse of the lifetimes of the electronic excitations of
the virtual states A, B, C, respectively. MJK are first-order
scattering matrix elements between the states J and K . So far,
no attempts have been reported to go beyond the approximation
inherent to Eq. (1), for graphitic materials. Note that within
the present approach, the G line (which in literature is usually
referred to as a “first-order” process) is a third-order process.

The processes described by Eq. (1) are in general associated
to lines which are much weaker than first-order Raman lines.
Graphene and graphite are notable exceptions. During the
intermediate virtual transition the energy is not necessarily
conserved and the three denominators of Eq. (1) are in general
different from zero. However, in graphene and graphite two
or more of the denominators of Eq. (1) can be equal to zero
simultaneously. In literature this is called a double-resonance
condition, and can be associated to Raman lines that have an
intensity comparable to that of lower-order processes (the G

line).
In the DR Raman scattering, the process MAi in Eq. (1)

corresponds to the absorption of light by creation of an
electron-hole pair in the π/π∗ bands. Then the carriers are
scattered twice before recombination [MBA and MCB in
Eq. (1)]. For temperatures typically present in Raman measure-
ments in graphene, only Stoke processes (phonon emission)
are relevant. Thus in one possible case, one scattering event
is due to collision with a defect and the other to the creation
of a phonon (phonon-defect process). In a second possible
case, both scattering events are due to creation of phonons
(two-phonon process). Finally, the process Mf C in Eq. (1)

corresponds to the recombination of the carriers by light
emission. We define I

pd
qν as the probability to excite a phonon

−qν, with momentum −q, branch index ν, and energy h̄ων
−q

through a phonon-defect process. I
pp
qνμ is the probability to

excite the two phonons −qν and qμ through a two-phonon
process. The Raman intensity as a function of the frequency ω

of the scattered light is proportional to

I (ω) = 1

Nq

∑
q,ν

I pd
qν δ

(
ωL − ω − ων

−q

)[
n(ων

−q) + 1
]

+ 1

Nq

∑
q,ν,μ

Ipp
qνμδ

(
ωL − ω − ων

−q − ωμ
q

)
× [

n
(
ων

−q

) + 1
][

n
(
ωμ

q

) + 1
]
, (2)

Ipd
qν = Nd

∣∣∣∣∣ 1

Nk

∑
k,α

Kpd
α (k,q,ν)

∣∣∣∣∣
2

;

(3)

Ipp
qνμ =

∣∣∣∣∣∣
1

Nk

∑
k,β

K
pp

β (k,q,ν,μ)

∣∣∣∣∣∣
2

.

The sum in Eq. (2) is performed on a uniform grid of Nq

phonon wave vectors q in the Brillouin zone and on all the
branch indexes ν and μ. In the limit Nq → ∞, δ(ω) is the
Dirac distribution. n(ω) is the Bose-Einstein occupation. In
Eq. (3), Nd is the average number of defects in the unit cell.
Ipd ∝ Nd , because we assume that the contributions of defects
on different sites add up incoherently. The first sum in Eq. (3)
is performed on a uniform grid of Nk electronic wave vectors
k. α and β are labels running on the eight different possible
processes that we call ee1,ee2,hh1,hh2,eh1,eh2,he1,he2,
which are represented diagrammatically in Fig. 1. The reader
might be familiar with an alternative representation of the
processes, reported in Fig. 2. Expressions for the DR scattering
amplitudes K are given in the appendixes. Here we report, as
examples, K

pd

ee1 and K
pp

ee1:

K
pd

ee1(k,q,ν) = 〈kπ |Dout|kπ∗〉〈kπ∗|HD|k + q,π∗〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ∗|Din|kπ〉(
εL − επ∗

k + επ
k − h̄ων−q − i

γ C
k
2

)(
εL − επ∗

k+q + επ
k − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) , (4)

K
pp

ee1(k,q,ν,μ) = 〈kπ |Dout|kπ∗〉〈kπ∗|
H−q,μ|k + q,π∗〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ∗|Din|kπ〉(
εL − επ∗

k + επ
k − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k+q + επ
k − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) . (5)

Equation (4) corresponds to the phonon-defect diagram ee1
in Fig. 1. Initially, the excitation laser creates an electron-
hole pair with momentum k. Thus using the notation of
Eq. (1), MAi = 〈π∗k|Din|πk〉, where |kπ〉 and |kπ∗〉 are the
electronic occupied and empty states and Din is the operator
coupling the incident electromagnetic wave with the crystal.
εi = εL and εA = επ∗

k − επ
k , with επ

k the energy of |kπ〉.
Second, the excited electron is scattered into a k + q state by
emitting a phonon with momentum −q. Thus MBA = 〈k +
q,π∗|
Hq,ν |kπ∗〉, with 
Hq,ν the electron-phonon coupling

operator. Now, εB = επ∗
k+q − επ

k + h̄ων
−q. The third step in the

process K
pd

ee1 is the scattering of the k + q electron by a defect
back to the k state. Thus MCB = 〈kπ∗|HD|k + q,π∗〉, with
HD the defect scattering operator and εC = επ∗

k − επ
k + h̄ων

−q.
Finally, the electron and hole recombine vertically in the k
state, by emitting light. Thus Mf C = 〈kπ |Dout|kπ∗〉, with
Dout the operator coupling the emitted photon with the crystal.
The broadening energies γk in the denominators of the DR
amplitudes K [e.g., in Eqs. (4) and (5)] are the inverse of the
corresponding electronic lifetimes (see Sec. II F).
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Phonon-defect (pd) processes:

ee1
-qν

ee2
-qν

hh1

-qν

hh2

-qν

eh1
-qν

eh2

-qν

he1

-qν

he2
-qν

Two-phonons (pp) processes:

ee1
-qν qμ

ee2
qμ -qν

hh1

-qν qμ

hh2

qμ -qν

eh1
-qν

qμ

eh2
qμ

-qν

he1
qμ

-qν

he2
-qν

qμ

Light: Electron: Hole: Phonon: Defect:

FIG. 1. Goldstone diagrams for the double-resonant Raman processes considered in this work. In this paper, the term “ab processes” refers
to the processes highlighted by the gray area (eh1, eh2, he1, and he2). The other processes are referred to as “aa processes.” The largest part
of the Raman intensity is due to the ab processes. The reader might be familiar with an alternative representation of the processes, reported in
Fig. 2.

Equation (5) corresponds to the phonon-phonon diagram
ee1 in Fig. 1. The first two steps are the same as in the
previous paragraph, while in the third step, the k + q electron
is scattered into a k electron, by emitting the phonon with
momentum qμ. Thus MCB = 〈kπ∗|
H−q,μ|k + qπ∗〉 and
εC = επ∗

k − επ
k + h̄ων

−q + h̄ω
μ
q . The fourth step is the same as

before. Finally, for graphene and graphite, the diagrams of
Fig. 1 are sometimes schematized with a different notation.
For a comparison, see Fig. 2.

The sums in Eq. (2) are performed on a uniform grid
of 120×120 q points (randomly shifted with respect to the
origin) and δ(ω) is a Lorentzian distribution with 8 cm−1

hh1,hh2:

ee1,ee2:

eh1,eh2,he1,he2:

FIG. 2. An alternative representation (customary for graphene
and graphite) of the processes associated to the diagrams of Fig. 1.
The crosses represent the electronic dispersion near the conic
region. The vertical arrows represent the electron/hole creation and
recombination. The horizontal arrows represent the scattering with a
defect or with a phonon. For simplicity we show only the processes
involving a phonon with momentum along the K-M line. In this
paper, the term “ab processes” refers to the processes highlighted
by the gray area (eh1, eh2, he1, and he2). The other processes are
referred to as “aa processes.”

full width at half maximum. The results will be plotted as
a function of the Raman shift ωL − ω. The sums in Eq. (3)
are performed on grids of k points that are sufficiently large to
ensure convergence. Depending on the value of γ 0

k , uniform
grids between 480 × 480 and 840 × 840 k points are used.
In Eq. (2), we consider h̄ων

q � KBT and thus n(ων
q) ∼ 0.

Unless otherwise specified, the intensities are normalized to
the maximum value of the 2D peak. In the following four
subsections (and in Appendix B), we describe the model to
obtain the DR scattering amplitudes K .

B. Electron and phonon dispersion

The electronic structure, εα
k and |k,α〉, is obtained from

a tight-binding (TB) model with one orthonormalized pz

orbital per site and interactions up to fifth neighbors (details
are in Appendix B 1). We use t1 = −3.40 eV, t2 = 0.33 eV,
t3 = −0.24 eV, t4 = 0.12 eV, and t5 = 0.09 eV, where ti is
the ith neighbor hopping parameter. The resulting electronic
dispersion is shown in Fig. 3. These TB parameters were
obtained as follows:24 first, the ti are fitted to density-functional
theory (DFT) electronic band dispersion to reproduce the
π − π∗ bands along the �-K-M line; then, all the ti are rescaled
by +18% in order to reproduce the π -band slope near K from
GW calculations, which are in excellent agreement with angle-
resolved photoemission spectra (ARPES) measurements on
graphite.25

We remark that, in the present context, a good description
of the trigonal warping of the π band cone is very relevant,
since the actual shape of the trigonal warping determines the
q vectors of the phonons associated to the D line. The present
five-neighbor TB can reproduce very well the trigonal warping
as obtained from DFT. On the contrary, by using a first-
neighbor TB model, the trigonal warping is underestimated.
Another relevant characteristic, which is badly described by
small-neighbor TBs, but which is well described by the present
five-neighbor TB, is the electron/hole asymmetry επ∗

k + επ
k .
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FIG. 3. Graphene electronic dispersion obtained with the five-
neighbor tight binding described in the text (solid line). For a
comparison we also show the dispersion obtained with the first-
neighbor TB having the same Fermi velocity at K (dashed line).
The electron/hole (e/h) asymmetry is defined as επ∗

k + επ
k and is

constant for the first-neighbor TB.

This quantity depends on the k direction and has values of the
order of the electronic broadening (see Sec. II F): e.g., for the
states in resonance with a laser of 2.4 eV, the asymmetry is
about 40 and 100 meV along the K-� and the K-M direction,
respectively (Fig. 3). On the contrary, in a first-neighbor TB
model, the e/h asymmetry is k independent and it is equal to
zero.

Phonon dispersions ων
q are obtained from ab initio DFT

calculations26 corrected with GW as in Refs. 27 and 28. In
particular, first we computed the DFT phonon dispersion, then
we “correct” the dispersion of the highest optical branch near
K (the branch that is TO near � and associated with the A′

1
mode at K; see Fig. 4) by rescaling the phonon self-energy
contribution to the dynamical matrix consistently with the GW
calculated electron-phonon coupling and electronic π band
dispersion.27 Calculations are done for graphene with the same
computational details of Ref. 28. In Ref. 28, the rescaling factor
is a constant, rGW = 1.61, all over the Brillouin zone (BZ) and
the phonons are studied just in the neighborhood of K. Here,
in order to obtain a phonon dispersion all over the BZ, the
rescaling factor rGW

q depends on q. rGW
q = rGW near K and

smoothly drops to 1 elsewhere:

rGW
q = 1 + (rGW − 1)

1

2
erfc

( |q − Kn| a0
2π

− 0.2

0.05

)
, (6)

with a0 the graphene lattice constant and Kn the nearest
vector to q among those equivalent to K. The GW correction
associated to rGW changes the phonon slope of the highest
optical branch near K by almost +60% (with respect to DFT)
providing a much better agreement with measurements for
graphite (Fig. 4). The precise value of the phonon dispersion
near K is essential in the present context, since it determines
the dependence of the D peak dispersion as a function of the
exciting laser energy.29

Finally, notice that the present DFT calculations reproduce
very well the experimental phonon dispersion from inelastic
x-ray scattering (IXS) of Ref. 30 of the highest optical branch
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FIG. 4. (Color online) Calculated graphene phonon dispersion
from DFT (lines) vs IXS measurements on graphite from Refs. 30
(filled dots), 31 (triangles), and 28 (open dots). The highest optical
branch near K is “corrected” to include GW effects following Refs. 27
and 28, and is plotted with a thicker gray (red) line. The dashed
line is the same branch calculated from standard DFT, without GW
correction. The cross at � is the measured Raman G line frequency
in graphite (1582 cm−1).

near �. We can thus assume that the DFT frequency for the E2g

� mode (1561 cm−1) is a precise fit of the IXS measurements.
The 1561-cm−1 value is, however, 1.3% smaller than the
measured frequency of the G Raman line of graphite, which is
1582 cm−1 (the corresponding infrared mode is 1586 cm−1).
This discrepancy between Raman and IXS measurements in
graphite is so far unexplained.

C. Electron-phonon scattering

The electron-phonon scattering matrix elements 
Hq,ν

are obtained from TB (explicit expressions are given in
Appendix B 2) and depend on the parameter η1, defined as the
derivative of the nearest-neighbors hopping parameter with
respect to the bond length. The present approach neglects
the derivative of the hopping parameters (with respect to
the atomic positions) for hopping computed for second and
more distant neighbors. This approximation reproduces very
well the k and q dependence of the electron-phonon matrix
elements for electronic states with k near K and for optical
phonons with q near � or near K. This was already verified in
Ref. 32 by direct comparison with DFT calculations.

We define the average square of
√

2Mωqν/h̄
Hq,ν between
π and π∗ at K as 〈D2

�〉F for the E2g phonon at �. 〈D2
K〉F

is the analogous quantity for the A′
1 phonon at K. From

Eqs. (B4) and (B5) from Appendix B 1, after some algebra,
〈D2

�〉F = 9/4(η1)2 and 〈D2
K〉F = 9/2(η1)2 (η1 is defined in the
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previous paragraph and the notation is consistent with Ref. 27).
It follows that, within TB, 〈D2

K〉F /〈D2
�〉F = 2 (that is, this

ratio does not depend on the actual value of the TB parameter
η1). This last relation is well reproduced by DFT calculations,
within LDA or GGA, but not by GW ones (see Table I of
Ref. 27). As a consequence, a single value for η1 could be
used to describe reasonably well the DFT electron-phonon
interaction for phonons in all the Brillouin zone. On the
contrary, we need two distinct values for η1, η�

1 = 5.25 eV/Å,
and ηK

1 = 6.55 eV/Å, to reproduce the GW value of 〈D2
K〉F

and 〈D2
�〉F , respectively, from Table I of Ref. 27. Here we will

use η1 = η�
1 for phonons near � (those associated to the D′

and 2D′ lines), and η1 = ηK
1 for phonons near K (D, 2D, and

D + D′′). A change of η�
1 and ηK

1 values will affect the present
calculations as a uniform intensity scaling of some peaks with
respect to others.

D. Electron-light scattering

Explicit expressions for the Din and Dout matrix elements
are given in Appendix B 3. We assume that the polarization
of the incoming and scattered light are on the graphene (x,y)
plane. The computed Raman intensity Ii,o depends on two
indexes determined by the polarization of the incident (i =
x,y) and of the scattered light (o = x,y). The polarizations
are chosen so as to reproduce different kinds of Raman
experiments. In the parallel polarization case, the incident
and scattered light are parallel polarized and I‖ = Ixx + Iyy .
In the transverse polarization case, the incident and scattered
light are perpendicularly polarized and I⊥ = Ixy + Iyx . If the
light is not polarized Iunpol = Ixx + Iyy + Ixy + Iyx . Unless
specified differently calculations are done in the nonpolarized
case. In Sec. III B 3, the effects of parallel and transverse light
polarizations are discussed.

E. Electron-defect scattering

Defect scattering is treated within the Born approximation.
Namely, the defect scattering operator HD is the difference
between the TB Hamiltonian in presence of the defect and that
of the defect-free system. HD is determined by considering
three distinct kinds of defects.

(i) The on-site defects: defects that change the value of the
on-site TB parameter by δV0.

(ii) The hopping defects: change the value of one of the
first-neighbor hopping TB parameters by δt1.

(iii) The Coulomb defects: charged impurities adsorbed at a
distance h from the graphene sheet that interact with graphene
with a Coulomb potential. Following Ref. 33, we consider an
environment dielectric constant κ = 2.5.

We remark that these are very simplified prototypical
models and that a realistic description of a given type of
impurity, which is beyond the present scope, will result in
a combination of these three kinds of perturbations. However,
it is reasonable to expect that the present three models describe
the most important characteristics of a certain kind of defects.
For instance, the on-site defect is the most simple description of
a hydrogen atom bound to a carbon atom in the graphene sheet.
Hopping defects are any defects that lead to deformations of the
carbon-carbon bonds in graphene. A Coulomb defect describes

any charged atom or molecule adsorbed over the graphene
sheet. Explicit expressions of the three defect scattering
operators HD are given in Appendix B 4. The three models are
characterized by the parameters δV0, δt1, and h, whose values
will be specified in the discussion. The results will be expressed
as a function of the defect concentration nd = Nd/A0, where
A0 = √

3/2a2
0 is the graphene unit-cell area, with a0 = 2.46 Å

the graphene lattice spacing.
Note that the Raman intensity of the defect-induced lines

(e.g., D, D′, and D′′) is proportional to the average number
of defects in the unit cell, Nd [Eq. (3)]. This is because the
scattering from defects on different sites is considered as
incoherent, which is reasonable for low defect concentrations.
In particular, for on-site and hopping defects, the defect-
induced intensities are proportional to αon = nd (δV0)2 and to
αhopp = nd (δt1)2, with nd the defect concentration. Through
the text, we will specify the value of these parameters, in order
to make meaningful the comparison of the defect-induced line
intensities with those of the phonon-phonon lines (e.g., 2D,
2D′, and D′ + D′′).

F. Electronic linewidth

An electronic state |kα〉 (α = π∗ or π ) has a finite
lifetime τα

k (which is associated to a line broadening energy
γ α

k = h̄/τα
k ) because the electronic states interact, e.g., with

phonons and with defects. The broadening energies γk in the
denominators of the DR amplitudes K[e.g., in Eqs. (4) and (5)]
are the sum of the broadenings of the corresponding electronic
states. As examples, in both Eqs. (4) and (5), γ A

k = γ π∗
k + γ π

k ,
γ B

k = γ π∗
k+q + γ π

k , and γ C
k = γ π∗

k + γ π
k . For α = π∗ or π , γ α

k
is the full width at half maximum of the electron/hole spectral
function as measured, e.g., by ARPES.

We consider γ as the sum of two contributions

γ α
k = γ

α(ep)
k + γ

α(D)
k . (7)

The first is due to electron-phonon scattering. It is an intrinsic
broadening (present in perfectly crystalline samples) and,
according to the golden rule, is

γ
α(ep)
k = 2π

Nq

∑
q,ν

|〈k + q,α|
Hq,ν |k,α〉|2

× δ
(
εα

k − εα
k+q − h̄ων

−q

)
, (8)

where α refers to π or π∗ bands, the sum is performed on
a uniform grid of Nq q points in the Brillouin zone and on
all the phonon branches ν. A good approximation of γ α(ep)

is obtained by considering conic bands (|ε| = h̄vF k, being
vF the Fermi velocity) and only the two phonons E2g at
� and A′

1 at K, with energies h̄ω� and h̄ωK. By defining
〈g2

�〉 = √
h̄/(2Mω�)〈D2

�〉F and 〈g2
K〉 = √

h̄/(2MωK)〈D2
K〉F

(see Sec. II C), Eq. (8) becomes

γ α(ep)
conic = π

2

[
2
〈
g2

�

〉
Nα(|ε| − h̄ω�) + 〈

g2
K

〉
Nα(|ε| − h̄ωK)

]
,

Nα(ε) =
√

3

π

(
a0

h̄vF

)2

|ε|θ (|ε|), (9)

where Nα is the electronic density of states of the α = π or
π∗ band, with a0 the lattice spacing and θ (x) the Heaviside
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step function. Using the parameters of the present work,
Nα(ε) = 0.079 08 eV −2|ε|θ (|ε|) and for |ε| > 0.196 eV,

γ α(ep)
conic = 41.89(|ε| − 0.1645) meV, (10)

where ε is expressed in eV.
The second contribution in Eq. (7) is due to electron-defect

elastic scattering. It is extrinsic (it is induced by the presence
of impurities and depends on the sample quality) and is

γ
α(D)
k = Nd

2π

N ′
k

∑
k′

|〈k′,α|HD|k,α〉|2δ(εα
k − εα

k′
)
, (11)

where the sum is performed on a uniform grid of N ′
k k′ points

in the Brillouin zone. The electron-defect scattering operator
HD is defined as in Sec. II E and Appendix B 4 and depends
on the considered kind of defect. Nd is the average number of
defects in the unit cell.

Figure 5 shows γ (ep) and γ (D) for on-site and hopping
defects (γ (D) = γ (on), or γ (D) = γ (hopp)). The γ in Fig. 5 are
calculated with Eqs. (8) and (11) and are plotted as a function
of the energy of the corresponding electronic state (επ∗

k or επ
k ).

γ (ep) is compared with the conic-band results of Eq. (10). As
expected, the two results are similar for energies smaller than
1 eV.

γ (on) is univocally determined by the energy and, in Fig. 5,
is represented by a line. γ (on), in particular, is proportional
to the density of states. A detailed analysis of the Coulomb
case is discussed in Ref. 33. On the contrary, γ (ep) and γ (hopp)

display a dispersion associated to the fact that different k
electronic states with the same energy can have a different
lifetime. However, the dispersion is relatively small, and for
the present purpose they will also be considered a function
of the energy. All the contributions (γ (ep), γ (on), and γ (hopp))
increase with energy and display a noticeable asymmetry
between positive and negative energies due to the graphene
electron/hole asymmetry.
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FIG. 5. (Color online) Electronic linewidth as a function of
energy. (a) Contribution of electron-phonon scattering to the elec-
tronic linewidth, γ (ep), compared to conical bands results [Eq. (10)].
(b) Contribution of on-site and hopping impurity scattering to the
electronic linewidth. γ (on) is proportional to αon = nd (δV0)2 and
γ (hopp) is proportional to αhopp = nd (δt1)2 (Sec. II E). We thus plot
γ (i)/αi , where the label “i” refers to “on” (on-site defect) or to “hopp”
(hopping defect).

In actual calculations [e.g., in Eqs. (4) and ((5)] we neglect
the dependence on k and we use

γ A
k = γ B

k = γ C
k = γ tot, (12)

where γ tot depends only on the excitation energy εL, on the
kind of defect D, and on its concentration nD , through

γ tot = γ̃ (ep)(εL) + γ̃ (D)(εL,nD). (13)

γ̃ are the sum of the two contributions for π an π∗ bands in a
small energy range close to half the excitation energy εL. As an
example, γ̃ (ep) = γ (ep)(εL/2) + γ (ep)(−εL/2), where γ (ep)(ε)
is the average of γ (ep) from Fig. 5 at that energy, in particular,
for εL � 1.0 eV,

γ̃ (ep)(εL) = (
18.88εL + 6.802ε2

L

)
meV, (14)

where εL is expressed in eV. While comparing these values
with literature, notice that γ (tot) and the γ̃ ’s correspond to
the sum of the width of electrons and holes and are thus
roughly two times bigger than the width of electronic states.
To give some examples, for εL = 2.4 eV, and for the typical
defect concentrations of the present work, αon = αhopp =
6.4 × 1013 eV2 cm−2, γ̃ (on) = 5 meV, and γ̃ (hopp) = 12 meV.
On the other hand, for εL = 2.4 eV, γ̃ (ep) = 84 meV is the
dominant contribution and, in several cases, we will just
consider γ tot ∼ γ̃ (ep). Similar values of γ tot ∼ γ̃ (ep) have been
extracted from measurements in Ref. 34 (note that γe−ph of
Ref. 34 corresponds to γ̃ (ep)/4 in the present notation).

Finally, in charged graphene a further contribution to
the broadening due to electron-electron interaction34 can be
relevant when 0.06|εF | � γ̃ (ep)/4 where εF is the Fermi energy
[see, e.g., Eq. (8) of Ref. 34]. For electron/hole concentrations
of the order of 1012 cm−2 this contribution is negligible and,
here, it is not considered.

III. RESULTS AND DISCUSSION

This section presents the calculation of the double-resonant
(DR) Raman spectra of graphene and discuss the results.
Section III A describes the overall agreement with measure-
ments. Section III B describes the dependence of the spectra on
excitation energy and light polarization. Section III C describes
the dependence of the Raman intensities on various parameters
such as the electronic linewidth, the excitation energy, and the
defect concentration. Section III D describes the dependence
of the spectra on the type of defect. Section III E is dedicated to
the interpretation of the results. It is focused on some specific
issues such as the determination of the most relevant processes
and phonons, the role of quantum interference, and on the
interpretation of the small width of the main DR Raman lines.

A. Overall agreement with measurements

Figures 6 and 7 compare the present calculations with
Raman spectra of Refs. 11 and 1, for an excitation energy
εL = 2.4 eV. In Fig. 6, below 2000 cm−1 the processes are
due to phonon-defect scattering and calculations are done
considering only the hopping defects (this choice is justified in
Sec. III D), using the parameter αhopp = 6.4 × 1013 eV2 cm−2

(see Sec. II E), which reproduces the measured ratio of the
integrated areas between D and 2D lines of Ref. 11. Above
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FIG. 6. (Color online) Intensity vs Raman shift for εL = 2.4
eV. Comparison of the present calculations with the measurements
from Ref. 11. Notice that our model includes only double-resonant
processes and thus the G line is not present. Measurements correspond
to a defect concentration nd = 1012 cm−2. Calculations are done
using γ tot = 96 meV, and hopping defects with αhopp = 6.4 × 1013

eV2 cm−2. All the intensities are normalized to the maximum value
of the 2D line.

2000 cm−1, all the processes are due to two-phonon scattering.
We remark that the G line is a single-resonant process, which
is not included in the present calculations.

The agreement between calculations and measurements
is extremely good. In particular, all the lines observed
experimentally, even the small intensity ones, are present
in the calculated spectra and the relative intensities among
phonon-defect lines (such as the D and the D′) or among
two-phonon lines (such as 2D, 2D′, or D + D′′) are correctly
reproduced. The most remarkable agreement relates to the
linewidths. Indeed, the present model reproduces very well
the measured small widths of the D, D′, 2D, and 2D′ lines.
Moreover, the model reproduces quite well the symmetric
Lorentzian shapes of the 2D and 2D′ lines and the asymmetric
shape of D + D′′ band. We remark that, in the present model,
the only parameter used to fit the Raman data is αhopp. This
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FIG. 7. (Color online) Intensity vs Raman shift for εL = 2.4 eV.
Comparison of the present calculations with the measurements from
Ref. 1. The figure reports only two-phonon processes. Calculations
are done using γ tot = 84 meV. All the intensities are normalized to
the maximum value of the 2D line. The inset shows the D+D′′ band
in a different scale.

parameter determines the ratio of the D versus 2D intensities
but does not affect the relative intensities among phonon-defect
or among two-phonon lines, the width of the lines, and their
shape.

As far as the line frequencies are concerned, calculations
and measurements display some small deviations of the order
of a few meV. We remark that the line frequencies are
determined by a subtle interplay between the phononic and
electronic energy dispersions, and that the present dispersions
are obtained from state-of-the-art ab initio computational
methods, which correctly reproduce ARPES and IXS mea-
surements (Sec. II B). A correction of the electronic or of
the phononic dispersions, to reproduce with more precision
the Raman frequencies, would be done at the expense of
introducing fitting parameters to the model, which is beyond
the present scope.

B. Dependence of the spectra on the laser

This section describes the dependence of the spectra on
excitation energy and light polarization. Excitation energies
vary from 1.2 to 4.0 eV, which are energies mainly used in
actual experiments.

1. Dependence of the main lines on the excitation energy

Figure 8 displays the calculated spectra of the main double-
resonant Raman lines for three different excitation energies.
In all cases, we use the electronic broadening γ tot = γ̃ (ep),
calculated at the corresponding excitation energy (Sec. II F). In
general, by increasing the excitation energy, the bands become
broader and the relative intensities change. The behavior of
the 2D line is particularly interesting. At εL = 2.4 eV, the 2D

line presents a Lorentzian line shape with a relatively small
linewidth, while at εL = 3.8 eV, it is much broader showing
two components with smaller, 2D−, and higher, 2D+ Raman
shifts, as discussed in detail in Sec. III E 4. Here, we just remark
that the presence of a small width 2D line with Lorentzian
shape is commonly used to detect a graphene monolayer in
samples containing flakes with a different number of graphene
layers.1 According to Fig. 8, this kind of experiment makes
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FIG. 8. Calculated Raman spectra for εL = 1.2 eV and γ tot =
32 meV, εL = 2.4 eV and γ tot = 84 meV, εL = 3.8 eV and γ tot =
170 meV. Calculations are done using hopping defects with αhopp =
6.4 × 1013 eV2 cm−2. All the intensities are normalized to the
corresponding 2D line maxima.
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FIG. 9. (Color online) Phonon dispersion of graphene along
high-symmetry lines. Bold crosses indicate the phonons that mostly
contribute to the D, D′, D′′, D3, D4, and D5 Raman bands, for
εL = 2.4 eV. Dotted crosses indicate phonons that also contribute to
the D, D′, D3, and D4 bands but with smaller intensity. The crosses
are determined from the maximum of Iq as defined in Sec. III B 2.

sense only when it is done at εL � 2.4 eV, but not at higher
excitation energies.

Figure 9 shows the wave vector and the branch of the
high-symmetry phonons, which mostly contribute to the DR
graphene lines, for εL = 2.4 eV. The figure display the phonons
associated with the single-phonon Raman lines D, D′, D′′,
D3, D4, and D5, where D3, D4, and D5 refer to the small
intensity lines of Fig. 11. The D line is associated to the
phonon branch affected by the Kohn anomaly (thick gray line
in Fig. 4). This branch, near �, becomes almost transverse
(TO). The D′ line is associated to the branch which, near �,
is almost longitudinal (LO). The two-phonon bands, such as
the 2D, 2D′, and D + D′′ are associated with the emission
of two phonons which, in the scale of Fig. 9, are almost
indistinguishable from those of the D, D′, and D′′ lines.

Figure 10 shows the calculated shift of the main Raman
lines as a function of the excitation energy, εL. The Raman shift
of the D and 2D lines increases with increasing laser energy.
The D′ Raman shift does not show a monotonic behavior but
it does not change significantly. The D + D′′ Raman shift is
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FIG. 10. (Color online) Raman shift as a function of excitation
energy. Upper panel: two-phonon bands. Lower panel: disorder-
induced bands. Our results compared to experimental data from
Refs. 9 (circles) and 35 (triangles).

almost constant for εL between 1.2 and 1.8 eV, and decreases
for εL �1.8 eV. Figure 10 also shows the experimental data
from Ref. 9 for the 2D and D + D′′ lines and from Ref. 35 for
the 2D line. The good agreement with measurements is not
surprising since the dispersion of a DR line as a function of εL

is determined by the phonon dispersion and in Ref. 27 it was
already shown that the present phonon dispersions (obtained
from DFT plus GW corrections) reproduce the measured D

line shift as a function of εL. The behavior of the shift as
a function of εL is easily understood by comparing with the
phonon dispersions in Fig. 9. For instance, for the D line, when
the excitation energy increases, the phonons mostly involved
in the DR process move away from K, and their frequencies
are higher. The same reasoning explains the behavior of the
D′ frequency. For the two-phonon lines, one has to consider
the frequencies of the two phonons involved. For instance, the
2D line Raman shifts are twice as large as the D ones. For
the D + D′′ line, the energy of one phonon branch increases,
while the other decreases while moving away from K.

2. Small intensity bands

The calculated spectra display some small intensity bands,
which are shown in Fig. 11. Some of these bands are extremely
weak and it is not clear whether they could be possibly
measured, on the other hand the D′′ is observed7,11 and the
bands that we label as D′ + D4 and D′ + D3 have been
measured recently.36,37 Figure 12 reports the shift of these
small intensity bands as a function of the excitation energy.
The agreement with available measurements is good. Figure 9
reports the high-symmetry phonons associated with the bands
that we label as D3, D4, D5, and D′′. The D3 and D4 bands are
associated with phonons near �, which have a momentum very
similar to the momentum of the phonons associated to the D′
line. The D5 and D′′ bands are associated with phonons near
K, with a momentum very similar to the momentum of the D

phonons. The D3, D4, D5, and D′′ bands are, however, much
weaker than the D and D′ ones, because the electron-phonon
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FIG. 11. Calculated Raman spectra for small intensity bands.
Calculations are done using εL = 2.0 eV and γ tot = 65 meV
(upper), εL = 2.4 eV and γ tot = 84 meV (middle), εL = 2.8 eV
and γ tot = 106 meV (lower). We consider hopping defects with
αhopp = 6.4 × 1013 eV2 cm−2. All the intensities are normalized to
the corresponding 2D line maxima.
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panel calculations are compared with measurements from Refs. 36
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coupling (between π electronic bands) for those branches is
much weaker than the one of the D and D′ (see Ref. 32).

3. Dependence on the light polarization

So far, we have shown calculations done with unpolarized
light. We now discuss how the results are affected by the use
of polarized light. For parallel and transverse polarizations, we
calculated I‖ and I⊥ as defined in Sec. II D. Figure 13 compares
the results obtained for εL = 2.4 eV and εL = 3.8 eV. The
intensity in the parallel polarization case is considerably larger
than in the transverse one, as expected. For εL = 2.4 eV, the
spectrum shape almost does not depend on the polarization
and the ratio I‖/I⊥ is about 2.7, in reasonable agreement
with measurements in graphite,38 graphene,39 and earlier
theoretical predictions.16 For εL = 3.8 eV, the D and 2D

bands split into two components (see Sec. III E 4 for a detailed
discussion) and the intensity ratio between the two components
depends on the polarization. For example, the intensities of
the two components of the 2D band, 2D+ and 2D−, are
very similar within transverse polarization, while the 2D+
intensity is slightly higher than the 2D− one, within parallel
polarization. This finding is very remarkable since it could
lead to measurable effects.

C. Dependence of the Raman intensities
on the various parameters

In this section we discuss how the intensity of the main
DR Raman lines is affected by the various parameters such
as the electronic linewidth (Sec. III C 1), the excitation energy
(Sec. III C 2), and the defect concentration (Sec. III C 3). In
general, the absolute value of the intensities is affected by
these parameters, however, we will mainly focus on how the
ratio of the intensities of different lines is affected, since this
last quantity can be measured more easily.
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FIG. 13. (Color online) Comparison of calculated Raman spectra
done with different light polarizations. Calculations are done us-
ing εL = 2.4 eV and γ tot = 84 meV (upper plot), or εL = 3.8 eV
and γ tot = 170 meV (lower plot). We used hopping defects with
αhopp = 6.4 × 1013 eV2 cm−2. The intensities are normalized to the
corresponding 2D line maxima calculated with unpolarized light.
“Parallel” and “transverse” refer to I‖ and I⊥ as defined in Sec. II D.

1. Dependence on the electronic broadening

As already discussed in Sec. II F, the broadening parameter
γ tot [the sum of the electron and hole linewidths; see Eq. (12)]
results from an intrinsic component (due to electron-phonon
scattering), which depends on the laser energy, and from an
extrinsic component, which increases by increasing the defect
concentration. Eventually, in charged (doped) graphene, a
further contribution due to electron-electron scattering can
be relevant. The actual value of γ tot, which depends on the
defect concentration, determines in a measurable way also
the intensities of the two-phonon lines (which are not defect
induced). Indeed, Fig. 14 reports the integrated areas under the
2D, 2D′, and D + D′′ lines [A(2D), A(2D′), and A(D + D′′)],
as a function of γ tot. The areas of these lines decrease by
increasing γ tot. In general, for all Raman lines studied here,
the intensity decreases when the electronic linewidth increases,
at fixed defect concentration. This is because, in Eq. (1),
an increase of the imaginary values iγ tends to kill the
double-resonance condition.
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FIG. 14. (Color online) Integrated areas under the 2D, 2D′, and
D + D′′ lines [A(2D), A(2D′), and A(D + D′′)] as a function of
the electron + hole linewidth (γ tot), for εL = 2.4 eV. The areas are
normalized to A(2D) calculated with γ tot = γ̃ (ep) = 84 meV. For
clarity, A(2D′) and A(D + D′′) are multiplied by 20. Symbols are
calculations, lines are the fit from Eq. (15). Inset: A(2D)/A(2D′)
ratio.

It is interesting to notice that also the ratio of the two
areas, A(2D)/A(2D′), depends on γ tot (inset of Fig. 14).
This result is particularly appealing since the ratio of the
two areas can be measured in a relatively easy way. The
measured value of A(2D)/A(2D′) compared to the inset of
Fig. 14 (which is obtained for εL = 2.4 eV) could thus be
used to determine experimentally the electron+hole linewidth
γ tot and, in particular, its components due to defects and/or
to electron-electron scattering in doped samples (keeping in
mind that for large doping the value of the electron-phonon
interaction itself is expected to change40 and thus the inset of
Fig. 14 cannot be used as it is). For γ tot = γ̃ (ep) = 84 meV,
which is suitable for comparison with pristine graphene,
A(2D)/A(2D′) = 21.5, in agreement with experimental works
that reported A(2D)/A(2D′) as being 27 (Ref. 1) and 26 ± 3.41

In Ref. 23 it has been shown that, if the electronic bands can
be considered conic, the dependence of A(2D) and A(2D′) on
γ tot should be A = A0/(γ tot)2, where A0 is a constant. This
functional form, however, cannot be used for a quantitative
description of the present results. Indeed, the integrated areas
as a function of γ tot reported in Fig. 14 can be fitted by a
similar, but different, law:

A(2D) = 9374/
[
(γ tot)2 + 48.52

]
,

A(2D′) = 629/
[
(γ tot)2 + 80.02

]
,

A(D + D′′) = 438/[(γ tot)2 + 59.62], (15)

where γ tot is expressed in meV. An explanation of the
discrepancy between Eqs. (15) and the model of Ref. 23 (which
is based on a simplified description of the electronic bands) is
probably associated to the importance of a proper inclusion of
the trigonal warping and of the electron/hole asymmetry in the
description of the electronic bands (Sec. II B). Another result
of Ref. 23 is that

A(2D)/A(2D′) = 2
(
ηK

1

/
η�

1

)4 × (ω2D′/ω2D)2. (16)
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FIG. 15. (Color online) Integrated area under the 2D line as a
function of the excitation energy εL. The defect concentration is
zero. The full line is obtained by including the dependence of the
broadening on εL, γ tot = γ̃ (ep)(εL) (see Sec. II F). The dashed line is
from an unrealistic simulation in which γ tot has been kept fixed to a
constant value γ tot = γ̃ (ep)(2.4eV) = 84 meV, independent from εL.

Equation (16) is obtained by rewriting the equation in the
last paragraph of Ref. 23 using the notation of Sec. II C
and considering ω2D and ω2D′ are the frequencies associated
with the two Raman lines. Indeed, for large γ tot, the ratio
A(2D)/A(2D′) from Eqs. (15) does not depend on γ tot.
However, using the parameters of the present work, Eq. (16),
gives A(2D)/A(2D′) = 6.8, which is almost two times smaller
than A(2D)/A(2D′) = 14.7 obtained from the limit γ tot → ∞
of Eqs. (15). This second discrepancy with the model of
Ref. 23 is so far unexplained, since in this limit the effect
of electron-hole asymmetry should become negligible. We
also remark that the model of Ref. 23 predicts that the ratio
A(2D)/A(2D′) does not depend on the excitation energy
εL. In the following we will show that, on the contrary,
A(2D)/A(2D′) strongly depends on εL.

2. Dependence on the excitation energy

The intensity of the 2D line decreases by increasing the
excitation energy εL (Fig. 15). The most important contribution
to the decrease comes from the fact that the electron/hole
broadening γ tot increases by increasing εL. This can be de-
duced from Fig. 15, which also shows the results for a fictitious
system in which γ tot is kept to a fixed value independent from
εL. Indeed, in this second case, the dependence of A(2D) on
εL is much less marked than in the full calculation.

Figure 16(a) reports the calculated ratio of the integrated ar-
eas under the bands, A(2D′)/A(2D) and A(D + D′′)/A(2D),
as a function of the excitation energy εL. These ratios
considerably change in the range of excitation energies of the
figure. A(2D′)/A(2D) decreases and A(D + D′′)/A(2D) in-
creases rapidly. The values calculated for εL = 2.4 eV compare
reasonably well with those obtained from the measurements
of Ref. 1. In the last paragraph of Sec. III C 1 we discussed the
model of Ref. 23, which was used to theoretically determine the
ratio A(2D′)/A(2D). The simplified model of Ref. 23 predicts
that the ratio A(2D′)/A(2D) does not depend on εL. On the
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FIG. 16. (Color online) Ratio of the integrated areas under Raman
bands as a function of excitation energy. (a) Two-phonon bands: our
results compared to experimental data from Ref. 1. (b) Disorder-
induced bands from hopping impurities, with αhopp = 6.4 × 1013

eV2 cm−2.

contrary, from Fig. 16(a), this dependence is very important.
Using Eq. (16) (which is adapted from Ref. 23) and using, for
consistency, the parameters of the present work, one obtains
A(2D′)/A(2D) = 0.15. This value is significantly higher than
0.09, which we obtain for the smallest εL of Fig. 16(a).

Figure 16(b) reports the ratio of the integrated areas under
the defect-induced bands, A(D′)/A(D) and A(D′′)/A(D).
Here, we consider again only hopping impurities. We also
remark that the present approach is expected to be valid in
the limit of small defect concentration. For small excitation
energies the D′′-band intensity is very small in comparison
to the D one. For larger excitation energies the D′′ rela-
tive intensity increases, reaching A(D′′)/A(D) = 0.09 when
εL = 4.0 eV. On the other hand, the intensity of the D′ band
compared to the D band decreases by increasing the excitation
energy. For εL up to about 3.0 eV the D′ band is more intense
than the D′′ band, while for εL � 3.2 eV, the D′′ is slightly
more intense than the D′.

3. Dependence on the defect concentration

We now discuss how the intensities of the Raman bands are
affected by defect concentration nd . We recall that two-phonon
Raman lines (such as the 2D) depend on nd only through the
electronic broadening parameter γ tot [Eq. (12)]. γ tot is given
by the sum of an intrinsic component γ̃ (ep) (due to the electron-
phonon interaction) and an extrinsic defect-induced compo-
nent γ̃ (D), which increases linearly by increasing nd [Eq. (13)].
On the other hand, the defect-induced Raman lines (such as the
D line) depend on nd through two distinct mechanisms. First,
it depends on nd through γ tot as for the two-phonon lines.
Second, there is a proportionality factor between the Raman
intensity and the number of defects in the sample [I ∝ Nd in
Eq. (3)]. Basically, for a higher number of defects there are
more scattering events that can activate the defect-induced
lines, which, in crystalline samples, are not Raman active.
In the following discussion, we will consider only hopping
defects. As already shown in Secs. II E and II F, the calculated
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FIG. 17. (Color online) Intensity of the D and 2D Raman lines as
a function of the defect concentration for εL = 2.4 eV. Calculations
are done using hopping defects and are reported as a function of
the parameter αhopp = nd (δt1)2 (nd is the defect concentration and
δt1 is the hopping parameter), in the upper horizontal scale. The
lower horizontal scale is obtained by considering δt1 = 8.0 eV.
(a) ID is the maximum of the intensity of the D line; symbols are
experimental data from Ref. 7. The dashed line is a linear fit of
the ID calculated values for nd < 5 × 1011 cm−2. Theoretical and
experimental intensities have been normalized by their maximum
values. (b) Integrated areas under D and 2D bands, A(D) and A(2D).
Experimental data are from Ref. 11. Theoretical and experimental
areas are normalized by A(2D) at minimum defect concentration.
The vertical line indicates the defect concentration of 7 × 1012 cm−2

(αhopp = 4.5 × 1014 cm−2 eV2) for which the two contributions to the
electronic broadening are equal: γ̃ (D) = γ̃ (ep).

Raman spectra depend on the defect concentration nd only
through the parameter αhopp = nd (δt1)2, with δt1 the hopping
parameter.

Figure 17 reports the D line peak maximum (ID) and the
integrated areas under the calculated 2D and D lines, A(D)
and A(2D), as a function of the parameter αhopp, for εL =
2.4 eV. For αhopp = 4.5 × 1014 cm−2 eV2, the two con-
tributions to the broadening are equal, γ̃ (D) = γ̃ (ep). The
corresponding αhopp is indicated in Fig. 17 with a vertical
line. The intensity of the 2D line (which corresponds to a two-
phonon process) monotonously decreases by increasing the
defect concentration. For small defect concentrations (αhopp �
1014 cm−2 eV2) γ̃ (D) � γ̃ (ep), γ tot ∼ γ̃ (ep) slightly depends
on the defect concentration, and A(2D) is almost constant.
For higher defect concentrations, γ̃ (D) becomes the dominant
contribution to γ tot, which, as a consequence, becomes more
sensitive to the defect concentration. The increase of γ tot by
increasing the defect concentration is associated to a decrease
of A(2D), because of the mechanism discussed in Sec. III C 1.

The intensity of the D line (which is a defect-induced pro-
cess) has a different behavior. For low defect concentrations,
it increases almost linearly, then it reaches a maximum, and
finally decreases. This behavior results from the interplay of
two competing mechanisms. For small defect concentration
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γ̃ (D) � γ̃ (ep) and γ tot ∼ γ̃ (ep). In this region, the intensity is
expected to increase linearly [I ∝ Nd in Eq. (3)]. Indeed, the
calculated intensity is well reproduced by a linear fit up to
αhopp � 1014 cm−2 eV2 (compare the continuous line with
the dashed one in Fig. 17, upper panel). For αhopp > 4.5 ×
1014 cm−2 eV2, the dependence of the broadening γ tot on
the defect concentration becomes the dominant mechanism,
leading to a decrease of the intensity as for the 2D line. It
is remarkable that the defect concentration for which αhopp =
4.5 × 1014 cm−2 eV2 (vertical line in Fig. 17) almost coincides
with the maximum value reached by the D intensity ID .

Figure 17 compares calculations with the intensities of the
D and 2D measured in Refs. 11 and 7 as a function of the
defect concentration. So far, we have discussed theoretical
results as a function of αhopp = nd (δt1)2. αhopp defines the
upper horizontal scale in Fig. 17. To make the comparison
with measurements we need to attribute a value to the hopping
energy δt1. The best fit to measurements is obtained for
δt1 = 8.0 eV. This value is used only to rescale the horizontal
axis of Fig. 17 and defines the defect concentration as reported
in the lower horizontal axis of Fig. 17. The measured behavior
as a function of the defect concentration is well reproduce by
calculations. It is remarkable that the same value δt1 = 8.0 eV
can be used to fit equally well the D and the 2D line data. The
value δt1 = 8.0 eV is very high. However, one should notice
that in Refs. 11 and 7 defects were induced in graphene by
means of Ar+ ion bombardment. This technique leads to the
formation of carbon multivacancies in the sample. In Ref. 7,
the defect average size is estimated, by means of scanning
tunnel microscopy, to be 1.85 nm. On the contrary, the present
model considers only point defects (the hopping parameters
are changed by δt1 for a single isolated carbon-carbon bond).
The large value δt1 = 8.0 eV is thus to be considered as an
effective variation of the hopping parameter that mimics the
existence of an extended defect (a realistic description of the
defect should be done by considering the variation of the
hopping parameters associated to many different neighboring
sites). For less damaging defects, δt1 will be smaller and the
critical defect concentration, above which the D line intensity
begins to decrease, will be larger than that of Fig. 17.

Finally, the behavior of the D line intensity as a function of
the defect concentration has been discussed in literature using
different models7,11 (see also Ref. 42). To make a comparison,
it can be useful to restate the present finding as follows.
According to the DR perturbative model, the intensity of
the defect-induced lines decreases by increasing the defect
concentration when γ̃ (D) becomes higher than γ̃ (ep), that is,
when the average length an electron/hole travels in between
two scatterings events with a defect becomes smaller than the
average length an electron/hole travels before scattering with
an optical phonon.

D. Dependence of the spectra on the type of defect

Here, we discuss how the results depend on the type of
defect. Calculations were done using three different model
defects, namely hopping defects, on-site defects, and Coulomb
ones (see Sec. II E for a description of the relevant parameters).
Figure 18 compares calculations with the measurements from
Ref. 11, which correspond to a defect concentration nd =
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FIG. 18. (Color online) Calculated Raman spectra obtained for
three different kinds of defects (hopping, on-site, and Coulomb),
compared with the measurements of Ref. 11 done at εL = 2.4 eV. The
Raman G line is not described by the present model. Calculations
are done using γ tot = 96 meV. Other relevant parameters are given
in the text. All intensities are normalized by the corresponding
2D maximum. The intensity of the Coulomb impurity spectrum is
enhanced by 102 for clarity.

1012 cm−2 and εL = 2.4 eV. For the hopping and on-site
defects, the calculations are done using αhopp = αon = 6.4 ×
1013 eV2 cm−2, which, for the hopping defect, reproduces
the ratio between the integrated areas of the measured D

and 2D lines of Ref. 11. By choosing δt1 = δV0 = 8.0 eV
(see also the discussion in Sec. III C 3), the above values of
α correspond to a defect concentration nd = 1012 cm−2. For
Coulomb impurities, the distance between the impurity and
graphene is h = 0.27 nm and nd = 1012 cm−2.

From Fig. 18, the hopping defect is the best model to study
defect-induced Raman processes. Indeed, contrary to the other
models, the hopping defect provides a ratio of the intensities
of the D and D′ lines, which is in good agreement with
measurements. The intensity ratio between D and D′ strongly
depends on the kind of model defect, suggesting that this ratio
could possibly be used to experimentally determine the kind
of defects present in a graphene sample. From Fig. 18, we also
notice that Coulomb defects (charged impurities outside the
graphene plane) provide an almost undetectable contribution
to the Raman signal. Indeed, for a defect concentration of
nd = 1012 cm−2, the D line is absent and the D′ intensity is
almost three orders of magnitude smaller than the experimental
one. We recall that Coulomb defects could be an important
source of scattering during electronic transport in graphene
(see Ref. 43 and references therein). The fact that they are not
detectable by Raman spectroscopy (which is routinely used to
characterize experimentally the quality of graphene samples)
is thus a relevant issue, which deserves some more comments.

The present simulations consider a very short
graphene/impurity distance h, in order to enhance the
Raman signal of the Coulomb impurities. Indeed, h = 0.27 nm
is the distance between K atoms and graphene planes in
the KC8 intercalated graphite. This distance corresponds to
the experimental conditions of Ref. 43, where K+ ions are
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deposited on graphene. In the case, where the impurities
are charges trapped in the substrate (e.g., SiO2) a longer
distance (e.g., 1 nm) is more appropriate. It is not surprising
that the contribution of Coulomb impurities to the D line
is completely negligible. Indeed, the Fourier transform of
the Coulomb potential is maximum close to � and decays
as 1/q far from it, Eq. (B10), and the D line is due to
phonons near the K point and far from �. This argument
also suggests that the D′ band, which is due to phonons near
�, should be more sensitive to the presence of Coulomb
impurities. According to calculations, this is actually the case,
however, for εL = 2.4 eV and nd = 1012 cm−2 the ratio of
the integrated area A(D′)/A(2D) = 1.5 × 10−4, meaning
that the presence of a D′ band due to Coulomb impurities
should not be detectable. The use of smaller energy laser
increases the intensity of the D′ signal since the excited
phonons are nearer �. However, for εL = 1.2 eV and nd =
1012 cm−2, A(D′)/A(2D) = 8.0 × 10−4, which is still very
small. Within the present model, A(D′)/A(2D) increases
linearly by increasing the impurity concentration, nd . nd ,
however, cannot be higher than 1014 cm−2, which corresponds
to the density of K atoms in KC8. On the other hand, for
Coulomb impurity concentrations higher than 1012 cm−2

doping effects should become important. These should be
associated to an increase of the electron-electron scattering
contribution to the electronic broadening,34 which, in turn, will
prevent the D′ intensity to become detectable. Concluding, the
presence of charged impurities is not associated to a Raman D

band. A D′ band is present, but should not be easily detectable.

E. Interpretation of the results

This section is dedicated to the interpretation of the
results. Section III E 1 describes which are the most important
processes associated to the DR. Section III E 2 describes which
are the phonon wave vectors contributing to each Raman band.
Section III E 3 analyzes the dominant directions of the phonon
wave vectors and Sec. III E 4 is dedicated to the interpretation
of the small width of the main DR Raman lines.

1. Dominant processes and interference effects

In this section we analyze which are the dominant processes
among those described in Fig. 1. We distinguish between two
classes of processes: processes aa are those in which the
two intermediate scattering processes are associated to both
electron states or to both hole states (namely the processes ee1,
ee2, hh1, and hh2, using the notation of Fig. 1); processes ab

are those in which the two scattering processes are associated
one to an electron state and the other to a hole state (eh1, eh2,
he1, and he2 in Fig. 1). The distinction between aa and ab

processes holds for both phonon-defect and two-phonon lines.
In general, for all the simulations performed here, the ab

processes are, by far, dominant over the aa ones, that is, the
largest part of the Raman intensities are due to ab processes.
This is true for both phonon-defect and two-phonon lines. In
general, among the ab processes, all the four processes eh1,
eh2, he1, and eh2 are associated to intensities of the same
order of magnitude. Indeed, Fig. 19 shows a typical Raman
spectrum, in which we compare the actual spectrum Itot with
two spectra obtained by including only aa processes, Iaa , or ab
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FIG. 19. (Color online) The upper panels compare the calculated
Raman spectrum Itot with spectra determined considering only aa

processes, Iaa , or ab processes, Iab. More precisely, Itot is determined
considering all the processes shown in Fig. 1; Iaa is computed by
considering only ee1, ee2, hh1, and hh2 processes; Iab is computed
by considering only eh1, eh2, he1, and he2 processes (see the text).
The lower panels display fictitious Raman intensities Ĩ obtained by
substituting to the DR scattering amplitudes K in Eqs. (3) their
modulus |K| (see the text). The two lines Ĩaa and Ĩab are obtained
by considering only aa and ab processes, as before. Calculations are
done using εL = 2.4 eV, γ tot = 84 meV, and hopping defects with
αhopp = 6.4 × 1013 eV2cm−2. All the intensities are normalized to the
2D line maximum of Itot.

ones, Iab. More precisely, Itot is the Raman intensity computed
including all the processes; Iaa is computed by restricting the
sums in α and β in Eqs. (3) only to the ee1, ee2, hh1, and hh2
processes; Iab is computed by restricting the sums in α and β

in Eqs. (3) only to the eh1, eh2, he1, and he2 processes. In
general, Itot �= Iaa + Iab. From Fig. 19, Iab � Iaa for both the
D and the 2D lines.

The dominance of the ab processes is due to quantum
interference effects. In particular, from Eq. (3), the Raman
intensity for a given q results from a sum over k of K(k)
scattering amplitudes, which are complex numbers. The sum
of these complex numbers can interfere in a constructive
way, as for the ab processes, or in a destructive way, as for
the aa processes. In particular, the DR condition determines
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that for some resonant electronic wave vectors kr , |K(kr )|
should have a maximum. This maximum can be enhanced or
suppressed by the interference of K(kr ) with the K(k) at wave
vectors k, which are not exactly at the resonance (this point
is further discussed in Appendix D). It is important to remark
that, according to the present calculations, the DR scattering
amplitudes K are complex numbers in which the real and
imaginary parts are of the same order of magnitude even for
the k = kr wave vectors that satisfy the DR condition.

To quantify the importance of quantum interference, we
consider a fictitious Raman intensity Ĩ , which is obtained by
substituting their modulus |K| to the scattering amplitudes
K in Eqs. (3). As example, in Eqs. (3) we substitute I

pp
q =

| ∑k,β Kβ(k,q)|2/Nk , with Ĩ
pp
q = | ∑k,β |Kβ(k,q)||2/Nk .

Thus within the intensities Ĩ , the presence of possible
destructive interference effect is canceled. Figure 19 shows a
typical Ĩ spectrum, in which we compare Ĩaa and Ĩab obtained
by solely including aa or ab processes. The ratio Ĩab/Ĩaa is
very different from Iab/Iaa for both the D and the 2D lines. In
particular, Ĩab is no more dominant and it is always comparable
in intensity to Ĩaa . Thus the fact that Iab � Iaa is indeed due
to destructive interference effects. Moreover, certain lines of
the fictitious Ĩ spectrum, such as the D′ or the 2D′, do not
appear as narrow and well defined lines as they are in the
actual Raman spectrum I . Thus interference effects also play
a role in determining the shape of certain lines.

Notice that, often, when discussing the DR processes,
it is used a simplified argument, which consists in finding
the electronic and phonon states which let two (or more) of the
denominators in Eq. (1) go to zero. The assumption is that the
physics is led only by those scattering amplitudes K that satisfy
the DR condition. This simplified approach, which we call the
“resonance argument,” has been extensively used in literature
with success (e.g., to determine the momenta of the phonons
associated to certain lines), despite the fact that, within this ap-
proach, the possible role of quantum interference is completely
neglected. The results of the previous paragraph show that in
certain specific situation the “resonance argument” can be very
misleading. For example, on the basis of a “resonance argu-
ment” one would deduce that the intensity associated aa pro-
cesses are of the same order of magnitude as that associated to
the ab ones (indeed, Ĩaa ∼ Ĩab in Fig. 19), which is not the case.

We remark that several authors describe the DR by simply
considering the aa processes (usually the ee processes in
Figs. 1 and 4), as it is done in the seminal work by Thomsen and
Reich.10 However, following the present conclusions, these
processes cannot be used alone to describe quantitatively
the intensities of the D and 2D lines. The importance of
interference effects in determining the shape of the DR Raman
lines has been already outlined by Maultzsh et al. in Ref. 29.
However, Ref. 29 just considers ee processes and completely
neglects the ab ones, which are the most important. The fact
the ab processes should be dominant for the 2D line has been
argued by Basko in Ref. 23. But this conclusion is reached
on the basis of a “resonance argument.” Indeed, according to
Ref. 23, the ab processes should be dominant because within
these processes one can reach a condition in which all the
transitions are real (nonvirtual) and the three denominators
of Eq. (1) can be nullified simultaneously (triple resonance).
As already said, this kind of argument cannot be applied to

describe the intensity of the 2D line (basically, the conclusion
is good but the argument is wrong). The best way to understand
this point is to put to zero the phonon energies h̄ωph in all the
denominators of the Raman scattering amplitudes K [e.g., in
Eqs. (4) and (5)]. By doing this, the triple resonance condition
of Basko applies also to the aa processes (not only to the
ab). However, actual calculations show that Iab remains much
larger than Iaa even when h̄ωph = 0. Actually, the intensity and
the shape of the 2D line are marginally affected by including or
not including h̄ωph in the denominators of the Ks (see Fig. 27
in Appendix C). We also remark that the triple resonance
argument does not explain why Iab � Iaa also for the D line.
Finally, Ref. 44 argues that quantum interference in real space
plays a crucial role in enhancing the role of the ab processes
versus the aa ones, for the D line. However, the model of
Ref. 44 predicts a behavior that is in contrast with the present
calculations.45 Notice that the model of Ref. 44 was developed
to describe extended defects such as edges, while here we are
considering point defects.

The main conclusion of this section is that the ab processes
(eh1, eh2, he1, and eh2 processes of Figs. 1 and 4) are
responsible for most of the Raman intensity because of
quantum interference. We remark that this conclusion is not
due to the complex details of the present calculations but can be
deduced with a very simplified model in which the scattering
matrix elements in the numerator of Eq. (1) are constant, the
phonon energies in the denominators [e.g., h̄ων

q in Eqs. (4) and
(5) are neglected, and in which the electronic bands are conic.
This simple model can also be used to shed light on the role
played by quantum interference; see Appendix D.

2. Phonons wave vectors associated to the Raman lines

We now discuss which phonons are responsible for the lines
presented in Figs. 6 and 7. In Fig. 20, we consider the most
important Raman lines and we decompose the Raman intensity
of a given band into its components associated to phonons with
a given wave vector q. For the defect-induced bands, D, D′,
and D′′, we plot Iq = ∑∗

ν I
pd
qν , and for the two-phonon bands,

2D, 2D′, and D + D′′, we plot Iq = ∑∗
ν,μ I

pp
qνμ, with I

pd
qν and

I
pp
qνμ defined in Eq. (3) and the symbol ∗ indicates that the

summation is restricted to a frequency window corresponding
to a given Raman band (see Ref. 46). The q-dependent intensity
Iq discloses which are the phonon wave vectors q that mostly
contribute to a given Raman line. The most remarkable result
from Fig. 20 is that these phonons belong to limited regions
of the BZ consisting in very narrow (almost one-dimensional)
lines. As expected, the D, D′′, 2D, and D + D′′ Raman bands
originate from phonon q wave vectors belonging to a closed
line around the K and K′ high-symmetry points.

In literature, the DR condition on the virtual transitions is
often used to determine the Raman-dominant phonon wave
vectors (see, e.g., Refs. 10, 47, 14, 48, 1, and 9). To verify
the validity of such a procedure, we focus on the 2D line,
which is mostly due to eh processes (Sec. III E 1) and consider
an excitation energy εL = 2.4 eV. The DR consists in three
processes of excitation, phonon scattering, and recombination.
The k vectors of the electronic states, which are excited by a
laser with energy εL, form a triangularly distorted closed line,
as the isoenergy contour surrounding the K point in Fig. 21(a).
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FIG. 20. (Color online) Decomposition the intensity of the most
important Raman bands into their components associated to phonons
with a given wave vector q, Iq. The rhombi are the graphene first Bril-
louin zone. For each band, we consider the contribution to the Raman
intensity in a window of frequencies corresponding to that particular
band (Ref. 46). The intensities are normalized to the maximum of
each band. Calculations are done using εL = 2.4 eV, γ tot = 84 meV,
and hopping defects with αhopp = 6.4 × 1013 eV2 cm−2.

The states involved in the emission of a quantum of light with
energy εL − 2h̄ων

q (recombination) form a second triangularly
distorted closed line, as the isoenergy contour surrounding the
K′ point in Fig. 21(a). These isoenergy contours are expected to
give the important contribution to the DR, although the energy
is not conserved in the intermediate virtual transitions. The
intermediate DR processes are associated to a phonon q and
the important processes are expected to be those associated
to q vectors that connect the two triangles of Fig. 21(a). In
particular, let us translate the K triangle by q and let us consider
the nesting vectors (qn) for which the K triangle becomes
tangent to the K′ one, as in Fig. 21(b). These phonon wave
vectors are expected to dominate the Raman spectra, since
for such nesting vectors there is a high density of electronic
transitions satisfying the DR mechanism.14,48 The qn vectors
are shown in Fig. 21(c) as a dashed white line, which is
compared with the Raman intensity Iq from our most precise
calculation (as in Fig. 20). Within the scale of the figure,
the nesting vectors reproduce very well the maximum of the
Iq, meaning that the simple picture of Fig. 21(b) provides a
quantitative prediction of the relevant phonon momenta.

To generalize the analysis to an arbitrary laser excitation
energy, we now consider the isoenergy electronic contours
as those of Fig. 21(a) for different values of εL. For each
εL, we determined the phonon qn vectors that are nesting
the corresponding contours. Among these points, we consider
only the vectors along high-symmetry lines. In this case
the nesting vectors, qinner and qouter, can be easily extracted
from the one-dimensional electronic-band dispersion along
the high-symmetry line, as schematically shown in Fig. 22. In
the lower panel of Fig. 23 we report qinner and qouter obtained
by the DR condition of Fig. 22 as a function of εL. In Fig. 23,
we also report the corresponding vectors obtained by finding
the maximum intensity in the Iq plots (as those in Fig. 20)

FIG. 21. (Color online) Electron and phonon states relevant for
the 2D line. The rhombi are the graphene Brillouin zone. (a) The
triangularly distorted contour around K is obtained from επ∗

k − επ
k =

2.4 eV and represents the electronic states near K that are excited
by a laser with energy εL = 2.4 eV. The contour around K′ = 2K
is obtained from επ∗

k − επ
k = 2.06 eV and represents the electronic

states near K′ that are deexcited by the emission of a quantum of light
with energy εL − 2ωph eV, with ωph = 1354 cm−1 (half the energy
of the 2D line for εL = 2.4 eV). (b) qn is one of the vectors such
that the contour near K translated by qn is tangent to the contour
near K′. (c) Iq decomposition of the 2D intensity (same figure as
the 2D panel in Fig. 20). The dashed closed line is defined by the
ensemble of the qn vectors. (d) The dashed line is the same as in (c).
The thick gray (red) line is the phonon isoenergy contour obtained
from ων

q = 1354 cm−1. The relevant phonon branch, thick gray line in
Fig. 4, is disentangled from the other branches as in Fig. 2 of Ref. 28.
Notice that the isoenergy contours of electron states [panels (a) and
(b)] and phonons [panels (c) and (d)] have opposite trigonal warpings.
Notice also that phonon isoenergy contours in Fig. 2 of Ref. 28 are
plotted with respect to the K′ of the present notation.

corresponding to that excitation energy. The sets of q vectors
obtained with these two different procedures nicely coincide.

We remark that the simplified scheme of Figs. 21(b) and 22
is used for the 2D line, and that its validity comes a posteriori
after the comparison with our most precise calculations. The
analogous construction for the 2D′ line works equally well,
as can be seen in Fig. 24(b), by comparing the nesting vector
profile (dashed line) with the Iq decomposition of the 2D′
intensity.

3. Dominant directions of the Raman phonon wave vectors

A close look at Fig. 20 reveals that the most intense
contributions of D, D′′, 2D, and D + D′′ are due to q points
along the high-symmetry directions K → � and K′ → �. The
D′ and 2D′ bands originate from a closed line around � and
the most intense contributions are due to q points along the
high-symmetry � → M direction.
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FIG. 22. (Color online) Scheme of the double-resonant process
associated to the 2D line. The momenta of the phonons mostly
involved are indicated as “inner” and “outer.”

To analyze the results we consider the following definitions.
The intensities Iq (Fig. 20) form, basically, a closed profile
surrounding one high-symmetry point (K for the D and 2D

lines, and � for the 2D′). Taking the high-symmetry point
as the reference, we consider how the intensity of a given
Raman band varies as a function of the direction q̂ of the
vector q. Thus in the lower panel of Fig. 25 we plot Iq̂ =∫ q

0 qdqIq, where the integral is done in a region containing
the most intense contribution. It is also interesting to consider
the intensity weighted average phonon frequency associated
to a given Raman band and to a given q point, 〈ωq〉. As an
example, for the two-phonon lines 〈ωq〉 = [

∑∗
ν,μ I

pp
qνμ(ων

q +
ω

μ
q )]/[

∑∗
ν,μ I

pp
qνμ], where the summation is restricted to the
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FIG. 23. (Color online) Lower panel: momenta of the inner and
outer high-symmetry phonons which mostly contribute to the 2D

band. The lines are obtained from the vectors connecting the isoenergy
electronic contours corresponding to that excitation energy. For
example, the values for εL = 2.4 eV are the moduli of the inner and
outer vectors reported in Figs. 21 and 22. The symbols are obtained
from the maximum intensity in the Iq plots (as those in Fig. 20 or
in the left panels of Fig. 26) corresponding to that excitation energy.
Upper panel: frequency of the inner and outer phonons reported in
the lower panel.

FIG. 24. (Color online) Electron and phonon states relevant for
the 2D′ line. (a) The triangularly distorted contours around K are
obtained from επ∗

k − επ
k = 2.4 eV and επ∗

k − επ
k = 2.0 eV. They

represent the electronic states that are excited by a laser with energy
εL = 2.4 eV and those that are deexcited by the emission of a quantum
of light with energy εL − 2ωph eV, with ωph = 1602 cm−1 (half the
energy of the 2D′ line for εL = 2.4 eV). qn is one of the vectors
such that the excited-states’ contour translated by qn is tangent to the
second contour. The analogous construction arond K′ is also shown.
(b) Iq decomposition of the 2D′ intensity (same figure as the 2D′

panel in Fig. 20). The two dashed (green) closed lines (almost indis-
tinguishable in the scale of the figure) are defined by the ensemble of
the nesting qn vectors among K states or among K′ states.

corresponding frequency window.46 This quantity, basically,
gives the frequency of the phonons associated to that Raman
band. In analogy to Iq̂ , we define 〈ωq̂〉 as the average of 〈ωq〉
along a direction q̂ of the vector q. Here, also, the origin of q̂ is
K for the D and 2D lines, and � for the 2D′. Figure 25 shows
the angular dependence of the averaged phonon frequency 〈ωq̂ 〉
for the D, 2D, and 2D′ lines (actually, the shifts in the upper
panel of Fig. 25 are obtained after an average on a small-angle
interval from θ − 
θ to θ + 
θ ).

Let us consider the D and 2D bands. From Fig. 25, the
phonons along the K → � directions (in literature these are
usually called “inner” phonons; Fig. 22) provide a contribution
that is almost four times higher than the one from the K → M
ones (“outer” phonons). Contrary to the present findings,
in literature it is usually assumed1,10,14 that the phonons
which mostly contribute to the D and 2D lines are outer
phonons (along K → M). Only very recently some authors
have outlined the possible importance of the inner phonons
(K → �).18–22 The present finding is counterintuitive and
stems from the complex behavior of the scattering matrix
elements in the numerators of Eq. (1). To understand this
point, in Fig. 25 we show the results of calculations in which
the numerators in Eq. (1) are taken as a constant [that is,
independent form k and q as, e.g., in Eqs. (4) and (5). Within
this simplified approach (which completely neglects, for
example, the dependence electron-phonon scattering matrix
elements on q) the outer phonons become dominant (in Fig. 25,
lower panel, the intensity has the maximum along the K → M
direction for both D and 2D), in agreement with the simplified
models previously used in literature, but in disagreement with
our most precise calculations. Concluding, inner processes are
dominant for both D and 2D lines. A proper description of
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FIG. 25. (Color online) Angular dependence of the intensity
(lower panels) and of the weighted average Raman shift (upper
panels) for the D, 2D, and 2D′ bands. The angles are measured
taking the horizontal direction in Fig. 20 as reference. Thus for
the D and 2D bands, 0◦ is the K → � direction in the BZ, while
±60◦ are the K → M one. For the 2D′ band, zero degrees is the
� → K direction, while, ±30◦ are the � → M direction. In the lower
panels, the solid lines correspond to our most precise calculation.
Dashed lines correspond to an approximated simulations in which
the electron-light, electron-phonon, and electron-defect scattering
matrix elements are kept constant (see the text). Calculations are
done using εL = 2.4 eV, γ tot = 84 meV, and hopping defects with
αhopp = 6.4 × 1013 eV2 cm−2.

the electronic scattering matrix elements (in particular of the
electron-phonon coupling) is crucial to obtain this result.

4. Width of the Raman bands

One of the most interesting features of the simulated Raman
spectra of Figs. 6 and 7 is the narrow width of the bands,
which reproduces the measured spectra. The narrow width
of the D and 2D lines is indeed surprising since already
at εL = 2.4 eV the electronic states involved in the Raman
process display an important trigonal warping [i.e., the electron
isoenergy contours are triangularly distorted as in Fig. 21(a)].
In the presence of trigonal warping one should expect the
excited phonons to have energies distributed in a broad range.
Indeed, previous calculations14,17 did not reproduce narrow
line shape of the DR lines. The present improved description
of the electronic scattering matrix elements partially explains
such narrow lines. The most important role is played by
the phonon energy dispersions. The upper panels of Fig. 25
show that, for the D, 2D, and 2D′ lines at εL = 2.4 eV,
the excited phonons have almost the same energy (within
∼5 cm−1), despite the strong electron trigonal warping. This
fact explains the small width of the DR Raman lines and
it is due to the details of the phonon dispersion we used.
Indeed, with a reasonable description of the electronic trigonal
warping and using a rough description of the phonon energies,
larger dispersions in frequencies (and broader Raman lines)
are found.17 Reference 28 has clearly demonstrated that the
phonon trigonal warping is important and that it is opposite to

the electronic one. The present results show that, as already
argued in Ref. 28, the interplay between the electronic and
phononic trigonal warping provides a sort of cancellation. This
results in the small dispersion of the phonon frequencies of the
upper panel of Fig. 25 and, consequently, in the small width
of the associated Raman lines.

To illustrate the concept of trigonal warpings cancellation,
Fig. 21(d) compares the line of the nesting vectors qn [white
dashed line; see Fig. 21(b) and Sec. III E 2] with the isoenergy
contour of the phonons having half the energy of the 2D

(thick red lines). The two lines nicely resemble each other,
meaning that all the nesting phonons have nearly the same
energy and, as a consequence, the 2D linewidth is small. If the
phonon isoenergy contour was different, the two lines would
not superimpose and the 2D line would have a broader shape.
The perfect cancellation of electronic and phononic trigonal
warping breaks down for laser energy in the UV range. Indeed
in the upper panel of Fig. 23, we report, as a function of εL,
the frequency associated with the inner and outer phonons.
At εL = 2.4 eV, the frequencies associated to inner and outer
phonons almost coincide. However, for higher εL, the two
frequencies become different, meaning that for a sufficiently
high εL the 2D line is expected to become broader.

Indeed, according to our most precise calculations, at
εL = 3.8 eV the Raman 2D band appears much broader than
the one at εL = 2.4 eV and displays two maxima at 2790 and
2840 cm−1 (Fig. 8). At εL = 3.8 eV (Fig. 26) the angular
dependence of the average frequency shift is more dispersive
than in the εL = 2.4 eV case. The inner phonons correspond to
the highest frequency components, 2D+ at ∼2840 cm−1, and
the outer phonons to the lowest one, 2D− at ∼2790 cm−1.
In Fig. 26 we also show the q vectors’ decomposition of
the intensities of the 2D+ and 2D− components. For the
2D+, the shape is triangularly distorted and the maximum
corresponds to the inner phonons, while for the 2D− the
maximum corresponds to the outer phonons.

FIG. 26. (Color online) Calculated 2D line for the excitation
εL = 3.8 eV and γ tot = 170 meV. Top right panel: intensity vs
Raman shift. The line appears as a broad band with two maxima
near 2790 cm−1 (2D−) and 2840 cm−1 (2D+). Left panels: mapping
of the Raman intensity in the Brillouin zone (as in Fig. 20) of the two
components 2D− 2D+ obtained by integrating in the corresponding
frequency windows (Ref. 46). Central panels: angular dependence of
the weighted average Raman shift and of the intensity, as in Fig. 25
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IV. CONCLUSIONS

We calculated the double-resonant Raman spectrum of
graphene with a computational method, which tries to over-
come the most common approximations used in literature.
Calculations are done using the standard approach based on
the golden rule generalized to the fourth perturbative order10

[Eq. (1)]. We determined the Raman lines associated to both
phonon-defect processes (defect-induced excitations of q �= 0
phonons, such as in the D, D′, and D′′ Raman lines) and
two-phonon processes (excitations in a defect-free sample of a
−q and a q phonons, such as in the 2D, 2D′, or D + D′′ lines).
The lowest-order processes (excitation of a q= 0 phonon, such
as in the G line) and higher-order processes (such as in the
D + D′ line at ∼2900 cm−1, which is usually attributed to a
defect-induced excitation of two phonons q and q′ with q +
q′ �= 0) are not described by the present approach.

The electronic summation is performed all over the two-
dimensional Brillouin zone and all the possible phonons (with
any wave vector) are considered. Electronic bands are obtained
from a five-neighbor tight-binding (TB) approach in which
the parameters are fitted to reproduce ab initio calculations
based on density-functional theory (DFT) corrected with GW.
This procedure provides a Fermi velocity (the slope of the
Dirac cone) in good agreement with measurements and a good
description of the trigonal warping. The resulting electron/hole
asymmetry is not negligible. The phonon dispersion is ob-
tained from fully ab initio DFT calculations corrected with
GW. This procedure is necessary to obtain a good description
of the slope of the phonon branch associated with the D

and 2D lines, near K. The electron-phonon, electron-light,
and electron-defect scattering matrix elements are obtained
within the TB approach. The defect-induced Raman processes
are simulated by considering three different kinds of model
defects: (i) on-site defects, obtained by changing the on-site
TB parameter; (ii) hopping defects, obtained by changing one
of the first-neighbor hopping TB parameters; (iii) Coulomb
defects, corresponding to charged impurities adsorbed at a
given distance from the graphene sheet, which interact with
graphene through a Coulomb potential.

The electronic linewidth (the inverse of the electronic
lifetime), which turns out to be a very relevant parameter,
is calculated explicitly considering the contributions from
electron-phonon and electron-impurity scattering. To give an
idea, for εL = 2.4 eV, in the absence of defects and for
zero doping, the sum of the electron and hole linewidths is
γ tot = 84 meV (which is roughly two times the full width at
half maximum of the electron spectral function).

By looking at the overall shape of the typical Raman spectra,
for an excitation energy of εL = 2.4 eV, the agreement between
calculations and measurements is very good. In particular,
all the Raman lines observed experimentally, even the small
intensity ones, are present in the calculated spectra and the
relative intensities among two-phonon lines (such as 2D,
2D′, or D + D′′ lines) or among phonon-defect lines (such
as the D and the D′ lines) are correctly reproduced (with the
hopping defect being the best model to study defect-induced
Raman processes). The most remarkable agreement between
theory and measurements relates to the linewidths. Indeed, the
present calculations reproduce very well the measured small
widths of the D, D′, 2D, and 2D′ lines. Moreover, calculations

reproduce quite well the symmetric Lorentzian shapes of the
2D and 2D′ lines and the asymmetric shape of D + D′′ band.
We remark that, in the present model, the only parameter used
to fit Raman measurements, αhopp, determines the ratio of the D

versus 2D intensities but does not affect the relative intensities
among phonon-defect or two-phonon lines, the width of the
lines, and their shape.

We determined how the Raman spectra change by changing
the laser excitation energy εL from 1.2 to 4.0 eV, which are
the energies mainly used experimentally. All the visible lines
change in position, intensity, and shape. In particular, the 2D

line has a small-width Lorentzian shape for εL � 2.4 eV and
it is asymmetric and broader at εL = 3.8 eV. The measured
shift of the Raman line position as a function of εL is well
reproduced for all the available measurements. The calculated
spectra also display some small intensity bands associated to
acoustic phonons. Some of them, such as the D′ + D3 and the
D′ + D4 (in the 1800–2000-cm−1 range) are actually visible in
the measured spectra.36,37 Finally, for high-energy excitations,
e.g., εL = 3.8 eV, the most intense Raman lines (2D and D)
change shape and intensity as a function of the polarization
of the light. This finding is remarkable since it could lead to
measurable effects.

We determined how the intensity of the main DR Raman
lines is affected by various parameters such as the electronic
linewidth, the excitation energy, and the defect concentration.
The absolute intensity of the double-resonant Raman lines
is strongly affected by the actual value of the electronic
linewidth γ tot. In general, the intensity of a DR Raman
line decreases when the electronic linewidth increases (at
fixed defect concentration) because the electronic broadening
tends to kill the double-resonance condition. According to
the present findings, also the ratio of the intensities of the
2D and 2D′ lines depends on γ tot. This result is particularly
appealing since the measurement of this ratio (followed by
the comparison with the present calculations) could be used
to determine experimentally the electron/hole linewidth γ tot

and, in particular, its components due to defects and/or to
electron-electron scattering in doped samples. We determined
how the intensity ratio among various Raman lines change as
a function of the excitation energy of the laser. In particular,
we determined the evolution of A(2D′)/A(2D), A(D +
D′′)/A(2D), A(D′′)/A(D), and A(D′)/A(D) [where A(X) is
the integrated area under the X Raman line] as a function of the
excitation energy. All these ratios considerably change in the
range of excitation energies available experimentally, however,
measurements to compare with are not presently available.

We studied the dependence of the D and 2D lines’
intensity on the defect concentration, comparing to recent
measurements.7,11 We first remind that the electronic linewidth
γ tot is given by the sum of an intrinsic component γ̃ (ep)

(due to the electron-phonon interaction) and an extrinsic
defect-induced component γ̃ (D), which increases linearly by
increasing the defect concentration. The intensity of the
2D line monotonously decreases by increasing the defect
concentration nd . Indeed, the 2D line (which is a two-phonon
process) depends on nd only through the electronic linewidth
γ tot, which, in turn, increases by increasing nd . The intensity of
the D line has a nonmonotonic behavior. The D line (which is
a defect-induced process) depends on nd through two distinct
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mechanisms: first there is a proportionality factor between the
Raman intensity and nd ; second, the linewidth γ tot depends
on nd as for the 2D line. For small nd , γ tot ∼ γ̃ (ep) and
the D intensity increases linearly with nd . For high nd , the
dependence of γ tot on nd becomes the dominant mechanism,
leading to a decrease of the intensity, as for the 2D line.
The maximum of the D intensity is reached for the defect
concentration corresponding to the condition γ̃ (D) ∼ γ̃ (ep).

We have compared Raman spectra calculated with the
three different model defects. The intensity ratio between
the defect-induced D and D′ lines strongly depends on the
kind of model defect, suggesting that this ratio could possibly
be tuned in actual experiments by selecting a special kind
of impurities on the sample. Charged impurities outside the
graphene plane (Coulomb defects) could be an important
source of scattering during electronic transport. However,
according to the present calculations, they should provide an
almost undetectable contribution to the Raman signal, the D

line being completely absent and the D′ having an intensity
orders of magnitude smaller than the 2D line.

Finally, the analysis of the results has focused on certain
specific issues currently debated.

Among the different possible DR processes, the electron-
hole ones (processes in which both electronic and hole states
are involved in the scattering, ab in the text) are responsible
for most of the Raman intensity of both the D and the 2D

lines. Several authors (e.g., Ref. 10) describe the DR by
simply considering electron-electron or hole-hole processes
(processes in which only electrons or only holes are involved
in the scattering, aa in the text) which, according to the present
findings, give a negligible contribution to the Raman intensity.
The dominance of the electron-hole processes stems from the
presence of a destructive quantum interference that kills the
contribution of the electron-electron and hole-hole ones. This
conclusion is not due to the complex details of the present
calculations but can be deduced with a very simplified model,
easy to implement.

The most intense contribution to both the D and 2D

lines is due to phonons along the high-symmetry directions
K→ � (inner phonons). This is contrary to the common
assumption1,10,14 that the phonons that mostly contribute to
the D and 2D lines belong to the K → M direction (outer

phonons). The present result (the dominance of the inner
phonons) is counterintuitive and stems from the complex

behavior of the electronic scattering matrix elements in the
numerator of the double-resonance scattering amplitude.

The observed small width of the 2D line at εL = 2.4 eV
is explained as a consequence of the interplay between
the opposite trigonal warpings of the electron and phonon
dispersions: the excited electronic states form a triangularly
distorted profile having vertex along the K → M direction,
while the phonon isoenergy contour is a triangularly distorted
profile having a vertex along the K→ � direction. Because
of this, the excited phonons (both the inner and the outer
ones) have almost the same energy and, as a consequence,
the 2D linewidth is small. At higher excitation energies
this condition is no more verified and the 2D line becomes
broader and asymmetric. For instance, at εL = 3.8 eV the
calculated spectrum displays two maxima corresponding to a
main component at ∼2840 cm−1 (due to inner phonons) and
to a less intense one at ∼2790 cm−1 (due to outer phonons).
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APPENDIX A: RAMAN DOUBLE-RESONANT
SCATTERING AMPLITUDES

Explicit expressions are now given for all the double-
resonant scattering amplitudes Kpd(k,q,ν) and Kpp(k,q,ν,μ),
which have been included in the sums of Eq. (3). The
following processes are described diagrammatically in Fig. 1.
The arguments k, q, ν, and μ are dropped for simplicity.
The sign ± before each K is determined by the fermionic
statistics of the carriers. The broadening energies γk in
the denominators of the DR scattering amplitudes K are
the sum of the broadenings of the corresponding electronic
states (see Sec. II F). As examples, in K

pd
ee1γ

A
k = γ π∗

k + γ π
k ,

γ B
k = γ π∗

k+q + γ π
k , γ C

k = γ π∗
k + γ π

k . In K
pd
eh1γ

A
k = γ π∗

k + γ π
k ,

γ B
k = γ π∗

k+q + γ π
k , γ C

k = γ π∗
k+q + γ π

k+q.
There are eight phonon-defect (pd) processes. Process

ee1:the electron is first scattered by a phonon and then by
a defect,

K
pd
ee1 = 〈kπ |Dout|kπ∗〉〈kπ∗|HD|k + q,π∗〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ∗|Din|kπ〉(

εL − επ∗
k + επ

k − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k+q + επ
k − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process ee2: the electron is first scattered by a defect and then by a phonon,

K
pd
ee2 = 〈kπ |Dout|kπ∗〉〈kπ∗|
Hq,ν |k − q,π∗〉〈k − q,π∗|HD|kπ∗〉〈kπ∗|Din|kπ〉(

εL − επ∗
k + επ

k − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k−q + επ
k − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process hh1: the hole is first scattered by a phonon and then by a defect,

K
pd
hh1 = 〈kπ |Dout|kπ∗〉〈k − q,π |HD|kπ〉〈kπ |
Hq,ν |k − q,π〉〈kπ∗|Din|kπ〉(

εL − επ∗
k + επ

k − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k + επ
k−q − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .
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Process hh2: the hole is first scattered by a defect and then by a phonon,

K
pd
hh2 = 〈kπ |Dout|kπ∗〉〈k + q,π |
Hq,ν |kπ〉〈kπ |HD|k + q,π〉〈kπ∗|Din|kπ〉(

εL − επ∗
k + επ

k − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k + επ
k+q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process eh1: first the electron is scattered by a phonon and then the hole by a defect,

K
pd
eh1 = − 〈k + q,π |Dout|k + q,π∗〉〈kπ |HD|k + q,π〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ∗|Din|kπ〉(

εL − επ∗
k+q + επ

k+q − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k+q + επ
k − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process eh2: first the electron is scattered by a defect and then the hole by a phonon,

K
pd
eh2 = − 〈k − q,π |Dout|k − q,π∗〉〈kπ |
Hq,ν |k − q,π〉〈k − q,π∗|HD|kπ∗〉〈kπ∗|Din|kπ〉(

εL − επ∗
k−q + επ

k−q − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k−q + επ
k − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process he1: first the hole is scattered by a phonon and then the electron by a defect,

K
pd
he1 = − 〈k − q,π |Dout|k − q,π∗〉〈k − q,π∗|HD|kπ∗〉〈kπ |
Hq,ν |k − q,π〉〈kπ∗|Din|kπ〉(

εL − επ∗
k−q + επ

k−q − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k + επ
k−q − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ
Q
k
2

) .

Process he2: first the hole is scattered by a defect and then the electron by a phonon,

K
pd
he2 = − 〈k + q,π |Dout|k + q,π∗〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ |HD|k + q,π〉〈kπ∗|Din|kπ〉(

εL − επ∗
k+q + επ

k+q − h̄ων−q − i
γ C

k
2

)(
εL − επ∗

k + επ
k+q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

There are eight two-phonon (pp) processes. Process ee1: the electron is first scattered by the −qν phonon and then by the qμ

one,

K
pp

ee1 = 〈kπ |Dout|kπ∗〉〈kπ∗|
H−q,μ|k + q,π∗〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ∗|Din|kπ〉(
εL − επ∗

k + επ
k − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k+q + επ
k − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process ee2: the electron is first scattered by the qμ phonon and then by the −qν one,

K
pp

ee2 = 〈kπ |Dout|kπ∗〉〈kπ∗|
Hq,ν |k − q,π∗〉〈k − q,π∗|
H−q,μ|kπ∗〉〈kπ∗|Din|kπ〉(
εL − επ∗

k + επ
k − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k−q + επ
k − h̄ω

μ
q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process hh1: the hole is first scattered by the −qν phonon and then by the qμ one,

K
pp

hh1 = 〈kπ |Dout|kπ∗〉〈k − q,π |
H−q,μ|kπ〉〈kπ |
Hq,ν |k − q,π〉〈kπ∗|Din|kπ〉(
εL − επ∗

k + επ
k − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k + επ
k−q − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process hh2: the hole is first scattered by the qμ phonon and then by the −qν one,

K
pp

hh2 = 〈kπ |Dout|kπ∗〉〈k + q,π |
Hq,ν |kπ〉〈kπ |
H−q,μ|k + q,π〉〈kπ∗|Din|kπ〉(
εL − επ∗

k + επ
k − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k + επ
k+q − h̄ω

μ
q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process eh1: first the electron is scattered by the −qν phonon and then the hole by the qμ one,

K
pp

eh1 = − 〈k + q,π |Dout|k + q,π∗〉〈kπ |
H−q,μ|k + q,π〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ∗|Din|kπ〉(
εL − επ∗

k+q + επ
k+q − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k+q + επ
k − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process eh2: first the electron is scattered by the qμ phonon and then the hole by the −qν one,

K
pp

eh2 = − 〈k − q,π |Dout|k − q,π∗〉〈kπ |
Hq,ν |k − q,π〉〈k − q,π∗|
H−q,μ|kπ∗〉〈kπ∗|Din|kπ〉(
εL − επ∗

k−q + επ
k−q − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k−q + επ
k − h̄ω

μ
q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process he1: first the hole is scattered by the −qν phonon and then the electron by the qμ one,

K
pp

he1 = − 〈k − q,π |Dout|k − q,π∗〉〈k − q,π∗|
H−q,μ|kπ∗〉〈kπ |
Hq,ν |k − q,π〉〈kπ∗|Din|kπ〉(
εL − επ∗

k−q + επ
k−q − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k + επ
k−q − h̄ων−q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .

Process he2: first the hole is scattered by the qμ phonon and then the electron by the −qν one,

K
pp

he2 = − 〈k + q,π |Dout|k + q,π∗〉〈k + q,π∗|
Hq,ν |kπ∗〉〈kπ |
H−q,μ|k + q,π〉〈kπ∗|Din|kπ〉(
εL − επ∗

k+q + επ
k+q − h̄ων−q − h̄ω

μ
q − i

γ C
k
2

)(
εL − επ∗

k + επ
k+q − h̄ω

μ
q − i

γ B
k
2

)(
εL − επ∗

k + επ
k − i

γ A
k
2

) .
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APPENDIX B: TIGHT-BINDING MODEL

Here we describe the tight-binding model, which is used
to calculate the electronic structure, the electron-phonon,
the electron-light, and the electron-defect scattering matrix
elements.

1. Electronic structure

Let us call |l,s〉 the orthonormalized pz orbital of the s atom
(in graphene s = 1,2), in the position τs , in the cell identified
by the lattice vectors Rl (l = 1,∞). Let us consider the wave
function (normalized in the unit cell)

|k,s〉 =
∑

l

eik·(Rl+τs )|l,s〉.

Given the tight-binding Hamiltonian H , Hk,s,s ′ =
〈k,s|H |k,s ′〉/N (N is the number of cells in the crystal) is
the 2 × 2 matrix:

Hk =
(

g(k) f (k)

f ∗(k) g(k)

)
, (B1)

where

f (k) = −t1
∑
i=1,3

eik·C1
i − t3

∑
i=1,3

eik·C3
i − t4

∑
i=1,6

eik·C4
i ,

g(k) = −t2
∑
i=1,6

eik·C2
i − t5

∑
i=1,6

eik·C5
i = g∗(k). (B2)

Here, ti is the ith-neighbor hopping parameter. C1
i are the

three vectors connecting the s = 1 atom with its three nearest
neighbors (i = 1,3). More in general, Cj

i are the vectors
connecting the s = 1 atom with the ith atom in the j th
neighborhood.

By diagonalizing Hk,s,s ′ ,∑
s ′=1,2

Hk,s,s ′aα
ks ′ = εα

k aα
ks ,

one obtains the eigenvalues εα
k (α = π ,π∗) and the eigenwave

functions |k,α〉 = ∑
s aα

ks |k,s〉:

επ∗
k = g(k) + |f (k)|,aπ∗

k = 1√
2

(
1
φ(k)

)
,

επ
k = g(k) − |f (k)|,aπ

k = 1√
2

(
1
−φ(k)

)
, (B3)

where φ(k) = f ∗(k)/|f (k)|.
Finally, here the overlap matrix is the identity because of

the use of orthonormal pz orbitals. An alternative, a precise
description of the bands, can also be obtained by using a
pristine (nonorthonormal) pz orbital with only three neighbors’
interaction parameters at the expense of using a nondiagonal
overlap matrix (see, e.g., Refs. 49 and 50).

2. Electron-phonon scattering

Given a phonon mode qν, with pulsation ωqν and polar-
ization εs,c

q,ν (s = 1,2 is an atomic index and c = 1,3 is a
Cartersian coordinate index, εs,c

q,ν is normalized to 1 in the
unit cell, corresponding to a displacement εs,c

q,νe
iq·(Rl+τ s ) of the

s atom in the l unit cell), the electron-phonon scattering matrix
element is

〈k + q,α|
Hq,ν |k,β〉 =
√

h̄

2Mωq,ν

∑
s,c

εs,c
q,ν

× (
aα

k+q

)†

H

s,c
k+q,ka

β

k , (B4)

where M is the carbon mass. All the unit cells give the same
contribution and the bra-ket integration is done on the unit cell
(with this choice the numerators of the scattering amplitudes
are independent of the number of cells of the crystal). The
2 × 2 matrix 
H

s,c
k+q,k is the derivative of the TB Hamiltonian

with respect to a periodic displacement (with periodicity q) of
the atom s along the c Cartesian coordinate. By defining η1

as the derivative of the nearest-neighbor hopping parameter t1
with respect to the bond length,


H
1,c
k+q,k =

√
3η1

(
0 hc(k)

h∗
c (k + q) 0

)
,


H
2,c
k+q,k = −

√
3η1

(
0 hc(k + q)

h∗
c (k) 0

)
,

hc(k) =
∑
i=1,3

eik·C1
i C1

i,c/a0, (B5)

where C1
i,c is the Cartesian component along the c direction of

C1
i , and a0 is the graphene lattice spacing.

3. Electron-light scattering

The electron-light interaction is calculated as

〈kπ∗|Din|kπ〉 = e �Pin · (
aπ

k

)† �∇H (k)aπ∗
k

εL

,

〈kπ |Dout|kπ∗〉 = e �Pout · (
aπ

k

)† �∇H (k)aπ∗
k

εout
L

, (B6)

where �Pin and �Pout are the polarizations of the incident
and scattered radiation, �∇H (k) is the gradient of the TB
Hamiltonian, and it is a 2 × 2 matrix. εL is the incident laser
energy and εout

L is the scattered radiation energy [εout
L = εL −

h̄ων
−q for a Kpd(q,ν) process and εout

L = εL − h̄ων
−q − h̄ω

μ
q for

a Kpp(q,ν,μ) process].

4. Electron-defect scattering

We consider three distinct kinds of defects. The electron-
defect scattering operator is defined accordingly.

(i) The on-site defect changes the on-site TB parameter
of the atom τ1 by δV0, in this case we will use the notation
HD = Von and

〈kα|Von|k′α〉 = δV0

2
; (B7)

α = π or π∗. Here we have considered τ1 in the origin
and here the bra-ket integration is done all over the space.
(ii) The hopping defect changes the hopping parameter of two
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FIG. 27. (Color online) Comparison of a typical Raman spectrum
(full calculation) with a test calculation in which the phonon energies
in the denominators of the DR scattering amplitudes K are considered
zero. Calculations are done using εL = 2.4 eV, γ tot = 96 meV,
and hopping defects with αhopp = 6.4 × 1013 eV2 cm−2. All the
intensities are normalized to the 2D line maximum value of the full
calculation.

nearest-neighbor atoms connected by the vector C1
i by δt1.

HD = Vhopp and

〈kα|Vhopp|k′α〉 = δt1

2

[
φ∗(k)e−ik·C1

i + φ(k′)eik′ ·C1
i
]
, (B8)

where φ is defined as in Eq. (B3). In the calculations of
the Raman scattering probability averages among the three
different C1

i vectors are taken.
(iii) The Coulomb defect is a Coulomb impurity with charge

e, placed at a distance h from the graphene sheet. In this case,
HD = VCoul. The Coulomb potential in the position r in the
graphene’s plane is

VCoul(r) = e2

4πε0κ

1√
r2 + h2

= e2

4πε0κ

∫
d2k

e−kh

k
eik·r,

(B9)

where ε0 is the vacuum permittivity, κ is an environment
dielectric constant, and the integral is performed on all the
reciprocal space. By assuming that the pz orbitals are localized
with respect to a0 and h (this is done to avoid the introduction
of new parameters in the model),

〈kα|VCoul|k′α〉 = e2

2ε0κA0

∑
G

e−|k−k′+G|h

|k − k′ + G|
×[1 + ei(k−k′+G)·C1

1φ∗(k)φ(k′)], (B10)

where the sum is done on the reciprocal-lattice vectors G and
A0 is the unit-cell area.

Note that in the three cases the Raman intensity is calculated
by Eqs. (2) and (3). As a consequence, for the cases of on-
site and hopping defects the intensity is proportional to αon =
ndδV

2
0 and αhopp = ndδt

2
1 , respectively, being nd the impurity

concentration. On the other hand, for the Coulomb impurities,
the intensity is proportional to nd , but it also depends on the
impurity-graphene distance h, as in Eq. (B10) above.

APPENDIX C: ROLE OF THE PHONON ENERGIES
IN THE DR

The Raman spectra depend on the phonon frequencies ων
q

through the energy conservation between the initial and the
final states [expressed in the δ functions in Eq. (2)] and through
the denominators of the DR scattering amplitudes K [e.g., in
Eqs. (4) and (5)]. We performed a series of test calculations
in which we consider the phonon energies ων

q = 0 in all the
denominators of the amplitudes K [e.g., ων

−q = ω
μ
q = 0 in

Eqs. (4) and (5)]. It turns out that, qualitatively, the Raman
spectra are not affected. For example, the 2D line intensity
is basically unchanged, while the D one remains of the same
orders of magnitude (Fig. 27). We also checked that the results
of Sec. III E 1 are not affected by the actual value of ων

q in
the denominators. Using the notation of Sec. III E 1, by letting
ων

q = 0 in the K denominators, Iab � Iaa and Ĩaa ∼ Ĩab for
both the 2D and the D lines. That is, the ab processes are still,
by far, the dominant ones.

APPENDIX D: A SIMPLE MODEL

In Sec. III E 1 we have shown that the largest part of the
DR Raman spectrum is due to the processes involving the
scattering of both one electron and one hole (ab processes).
We now show that the same conclusions are reached by
considering a simple model in which the scattering matrix
elements in the numerator of Eq. (1) are constant, the phonon
energies in the denominators [e.g., h̄ων

q in Eqs. (4) and (5)] are
neglected (see discussion in Appendix C), and in which the
electronic bands are conic: ε

π∗/π
k = ±h̄vF |k|, where vF is the

Fermi velocity and k=0 corresponds to the high symmetry K
point.

For a given excitation energy εL, the scattering cross
sections associated to a phonon of momentum q are Iaa(q,εL)
and Iab(q,εL). As usual, aa refers to the ee1, ee2, hh1, and
hh2 processes, and ab to the eh1, eh2, he1, and he2 ones. By
using the equations of Appendix A, one obtains

Iaa(q,εL) =
∣∣∣∣
∫

d2k
(2π )2

Kaa(k,q,εL)

∣∣∣∣
2

, Iab(q,εL) =
∣∣∣∣
∫

d2k
(2π )2

Kab(k,q,εL)

∣∣∣∣
2

,

Kaa(k,q,εL) = 1(
εL − 2h̄vF k − i

γ

2

) (
εL − h̄vF |k + q| − h̄vF k − i

γ

2

) (
εL − 2h̄vF k − i

γ

2

) , (D1)

Kab(k,q,εL) = 1(
εL − 2h̄vF |k + q| − i

γ

2

) (
εL − h̄vF |k + q| − h̄vF k − i

γ

2

) (
εL − 2h̄vF k − i

γ

2

) .
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FIG. 28. (Color online) Numerical solution of Eqs. (D1) using
εL = 2.4 eV, γ = 84 meV, and h̄vF = 6.49 eV Å. q = 2qh̄vF /εL is
an adimensional momentum and q = 2 corresponds to the double-
resonance condition. Iaa is magnified by 102 for clarity. Ĩaa and Ĩab

are intensities in which quantum interference has been artificially
suppressed (see the text).

In analogy to Sec. III E 1, Ĩaa and Ĩab are obtained by
considering only the modulus of the integrand, e.g., Ĩaa =
| ∫ d2k/(2π )2|Kaa||2. Figure 28 reports the intensities I thus
obtained for a fixed value of εL, as a function of q (the results
do not depend on the direction of q). As expected from the
DR picture, I (q) has a maximum at q = εL/(h̄vF ). Even with
this simplified model, one recovers the result that ab processes
are by far dominant: Iab � Iaa from Fig. 28. The importance
of quantum interference effects is understood by considering
that the intensities Ĩab and Ĩaa (in which quantum interference
effects are artificially canceled; Sec. III E 1) are very different
from Iab and Iaa . In particular, Ĩab and Ĩaa have the same
order of magnitude. As already noticed in Ref. 29 the shapes
of I (q) and Ĩ (q) are very different, thus the fact that I (q) is
associated to a well defined narrow line is a direct consequence
of quantum interference. Notice that, however, the authors of
Ref. 29 consider only the aa processes.

To further explain the concept of quantum interference we
consider that for a fixed value of εL the resonance condition
qr = εL/(h̄vF ) (q = 2 in Fig. 28) implies that the maximum
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FIG. 29. (Color online) DR scattering amplitudes Kr as defined in
Eq. (D2) for the aa and ab processes, as a function of the adimensional
momentum k = 2kh̄vF /εL. The real and imaginary part of the
complex number Kr are plotted as two different lines. Calculations
are done using εL = 2.4 eV, γ = 84 meV, and h̄vF = 6.49 eV Å.

of the intensities are

Iα(qr,εL) =
∣∣∣∣
∫ ∞

0

kdk

2π
Kr

α(k)

∣∣∣∣
2

, (D2)

where the label α = aa or ab, and Kr
α(k) are the K scattering

amplitudes of Eqs. (D1) calculated at εL and qr , averaged over
the angular dependence of k.

Figure 29 shows Kr
aa(k) and Kr

ab(k) for realistic values of
the parameters εL, γ , and vF . Both Kr

aa(k) and Kr
ab(k) have a

maximum near k = εL/(2h̄vF ), which corresponds to the DR
condition (k = 1 in Fig. 29). First we remark that, for realistic
values of γ , the real, Re, and imaginary parts, Im, of the Kr

amplitudes are of the same order of magnitude. Thus the Kr

cannot be approximated as purely real or purely imaginary
numbers. Second we notice that Re(Kr

ab) and Im(Kr
ab) do not

change their sign when plotted as a function of k. On the
contrary, Re(Kr

aa) and Im(Kr
aa) change their sign (Fig. 29).

Because of this, the Kr
ab(k) inside the integral of Eq. (D2) add

coherently, while the Kr
aa(k) interfere in a destructive way. As

a consequence, Iab � Iaa , despite the fact that Kr
ab and Kr

aa

are of the same order of magnitude.
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48L. G. Cançado, M. A. Pimenta, R. Saito, A. Jorio, L. O. Ladeira,
A. Grueneis, A. G. Souza-Filho, and G. Dresselhaus, and M. S.
Dresselhaus, Phys. Rev. B 66, 035415 (2002).

49S. Reich, J. Maultzsch, and C. Thomsen, and P. Ordejon, Phys. Rev.
B 66, 035412 (2002).
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