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Dispersion of spoof surface plasmons in open-ended metallic hole arrays
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Using phase sensitive microwave frequency measurements, we obtain the dispersion of spoof surface plasmon
waves on a highly conducting sheet perforated with a two-dimensional array of subwavelength holes, and
compare our results to an explicit analytical dispersion relation obtained by the modal matching method. We
observe splitting into symmetric and antisymmetric surface modes, a behavior analogous to that of surface
plasmons in thin metallic films at optical frequencies. We show that spoof surface modes play an important role
in both near and far field transmissions. Specifically, we show that superfocussing effects which are present for
surface plasmons in metallic films are absent for hole arrays (i.e., no amplification of near fields is possible for
spoof surface plasmons). While many of the apparent properties of spoof surface plasmons resemble those of
surface plasmons in thin metallic films, the analogy is therefore incomplete in the high frequency limit.
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I. INTRODUCTION

Surface plasmons are electromagnetic modes with fields
localized near the surface of a metal. The electromagnetic
interaction between light and the metal is driven by the
free electrons of the metal, which give rise to a negative
permittivity for frequencies below their plasma frequencies. As
a consequence, metals only support bound surface plasmons
at frequencies near the plasma frequency of the metal. Surface
plasmons are responsible for a host of interesting phenomena
unique to metals.1 For example, surface plasmons are thought
to play an important role in the surface-enhanced Raman
effect and anomalous transmission through subwavelength
hole arrays in metal films.2 More recently, Pendry3 and
others4–6 highlighted the critical role that surface plasmons
play in metal slab superlenses.

Bound surface plasmons in metal films are not supported
at frequencies far from the metal plasma frequency. However,
it has been shown that one can mimic the behavior of surface
plasmons by structuring the surface of the conductor; for
example, by introducing periodic arrays of dimples on the
surface. Such a structured surface of a highly conducting
sample can support surface plasmon-like modes at frequencies
well below the plasma frequency of the conductor.7–9 These
surface modes have since become known as “designer”
or “spoof” surface plasmon modes, with almost arbitrary
dispersion generated through structure rather than material
composition. For dimpled metal surfaces, the properties of
spoof surface modes were first considered using simple analyt-
ical formalisms,7–9 and have since been confirmed by rigorous
numerical modeling10–13 and experiments at microwave14,15

and, subsequently THz frequencies.16 Previous experimental
work has found the dispersion of surface waves on open
ended hole arrays at 337 μm (Ref. 17), but it should be
noted that the curvature away from the lightline is due only to
diffraction effects therefore only occurs close to the Brillouin
zone boundaries.

In this paper, we investigate surface modes in two-
dimensional arrays of subwavelength, open holes in a highly
conducting sheet [shown in Fig. 1(a)]. It is thought that spoof
plasmons might play an important role in the anomalous
transmission displayed by such structures.18–20 We employ

phase-resolved, microwave-frequency measurements to obtain
the dispersion of spoof surface plasmon waves, comparing our
experimental results to dispersion relations obtained using a
modified modal matching method, similar to that developed
for dimpled conducting surfaces.9 We observe splitting into
symmetric and antisymmetric surface modes, a behavior
analogous to that of surface plasmons in thin metallic films
at optical frequencies. However, by considering the role of
these spoof plasmon modes in near and far field transmission
of our hole arrays, we show that the analogy breaks down in the
high frequency limit, with superfocusing effects absent from
hole array structures.

II. THEORETICAL FORMALISM

A. Modal matching approach

To better understand the properties of surface modes in open
ended hole arrays, we start by introducing a rigorous modal
matching model. Subwavelength hole arrays in metals at low
frequencies (such as the THz range and below) have previously
been modeled using modal-matching techniques.21,22 We
describe in brief how this technique works: the electromagnetic
fields in the superstrate (assumed here to be air) and substrate
are matched to the fields of the waveguide modes inside
the subwavelength holes. By exploiting continuity of electric
and magnetic fields at the boundaries, we can obtain explicit
analytical expressions for transmission and reflection of a
square array (period d) of square holes (side a) in a thin
metallic sheet of thickness h. Below, we develop the formalism
for this based on earlier work.9,22

We begin by defining expressions for the electric and
magnetic fields in three regions of a hole array: in the incident
vacuum region (superstrate), inside the holes, and in the
substrate. For simplicity, note that in the following we omit
the time (t) dependent component to the fields, ≈exp(iωt),
where ω is the radial frequency. We consider a unit source
field incident as shown in Fig. 1(a). We express the electric
field on the incident side of the hole array (region 1) as a sum
of our unit plane wave with wave vector, kx,ky,kz, and a two-
dimensional Fourier-Floquet expansion of diffracted orders
with wave vectors, km1,m2

x ,km1,m2
y ,km1,m2

z . Approximating the
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FIG. 1. (Color online) (a) Two-dimensional periodic array of
square holes in a perfect conductor. The holes considered here are
of depth h, side a, separated by distance d, and filled by dielectric
material with εh, while the substrate (region 3) is defined by material
with dielectric constant εsub. (b) A schematic side view of the
experiment: a microwave horn Hi is directed into a wedge waveguide
P . A second horn Hii, is directed at a metal rod, R, ≈3 mm above the
sample, which scatters power from the surface. (c) The unit cell of
the sample used in the experiments. The arrow indicates the direction
of propagation measured in the experiments.

metal as perfectly conducting (a reasonable approximation at
THz and microwave frequencies), the electric field inside the
holes (region 2) is expressed by the fundamental modes of a
square cavity of width a, while in the substrate (region 3) we
have again a Fourier-Floquet expansion of diffracted orders.
These definitions amount to x components of the form

E1
x = exp

(
ikxx + ikyy + ik0,0

z z
)

+
∑

m1,m2

rm1,m2ψ
m1,m2
1 exp

( − ikm1,m2
z z

)
, (1a)

E2
x =

∑
s1,s2

Bs1,s2ψ
s1,s2
2 exp

(
iqs1,s2

z z
)

−Cs1,s2ψ
s1,s2
2 exp

(−iqs1,s2
z z

)
, (1b)

E3
x =

∑
n1,n2

tn1,n2ψ
n1,n2
1 exp

[
ikn1,n2

z (z − h)
]
, (1c)

where ψ
m1,m2
1 = exp[i(kx + 2m1π

d
)x] exp[i(ky + 2m2π

d
)y] and

ψ
s1,s2
2 = sin( s1π

a
y) cos( s2π

a
x). Note that similar expressions for

y components of field can also be defined. The integer pairs
(m1,m2) and (n1,n2) denote the diffracted orders, on the
incident and substrate sides of the hole array, respectively, from
the grating of pitch d. The factors rm1,m2 and tn1,n2 describe the

field reflection and transmission coefficients. The z component
of the incident and transmitted wave vectors can be written as

km1,m2
z =

√
k2

0 +
(

kx + 2m1π

d

)2

+
(

ky + 2m2π

d

)2

,

(2a)

kn1,n2
z =

√
εsubk

2
0 +

(
kx + 2m1π

d

)2

+
(

ky + 2m2π

d

)2

,

(2b)

where c is the speed of light, k0 = ω/c is the wave number
of the incident light and εsub is the dielectric constant of
the substrate material (region 3). The factors Bs1,s2 and
Cs1,s2 describe the electric field amplitudes of the decaying
wave in the cavity and the reflected wave from the cavity
bottom, respectively, where the integer pair (s1,s2) define
the waveguide mode within the cavity. Though we explicitly
develop our formalism here based around square holes, it is
relatively straightforward to consider other waveguide shapes
with different explicit forms of ψ

s1,s2
2 . For square holes, the

propagation constant in the cavity is

qs1,s2
z =

√
εhk

2
0 −

( s1π

a

)2
−

( s2π

a

)2
, (3)

where εh is the dielectric constant of the material inside the
cavity.

We can obtain the z components of the electric field in the
three regions of space, and subsequently expressions for the
magnetic field H, through the free space Maxwell’s relations
∇ · E = 0 and ∇ × E = −μ0δH/δt . This gives the x and y

components of the electric and magnetic fields in all regions
in terms of the set of unknowns r,t,B, and C. To eliminate
some of the these unknowns, we can use the fact that both the
x and y components of the electric field must be continuous
at the vacuum-sample interfaces (i.e., z = 0 and z = h, where
h is the depth of the hole array) over the entire unit cell, while
the magnetic field components are continuous only at the hole
aperture. Matching the E fields in regions 1 and 2 at z = 0,
and in regions 2 and 3 at z = h, (i.e., multiplying by ψ∗

1 and
integrating over x and y from 0 to d), and taking into account
the orthogonality of the eigenmodes of the system, yields sets
of continuity equations of the form

(δm1,m2 + rm1,m2 )d2 =
∑
s1,s2

(Bs1,s2 − Cs1,s2 )Qm1,m2,s1,s2
1 ,

(4a)

tn1,n2d2 =
∑
s1,s2

(
Bs1,s2eiq

s1 ,s2
z h − Cs1,s2e−iq

s1 ,s2
z h

)
Q

n1,n2,s1,s2
1 ,

(4b)

where

Q
m1,m2,s1,s2
1 =

∫ a

0
sin

( s1πy

d

)
cos

( s2πx

d

)

× exp

[
−i

(
kx + 2m1π

d

)
x

]

× exp

[
−i

(
ky + 2m2π

d

)
y

]
dxdy, (4c)
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is the overlap integral between the diffracted order (m1,m2)
and the waveguide mode (s1,s2) and δm1,m2 represents the
Kronecker delta function δ(m1)δ(m2). We also obtain separate
expressions for the continuity of the y components of electric
field.

We can obtain a further set of equations by considering the
continuity of the H field over the holes at z = 0 and z = h,
respectively, that is, by multiplying H by ψ2, and integrating
from 0 to a for x and y. This gives a set of equations containing
a second overlap integral

Q
m1,m2,s1,s2
2 =

∫ a

0
sin

( s1πy

d

)
cos

( s2πx

d

)

× exp

[
+i

(
kx + 2m1π

d

)
x

]

× exp

[
+i

(
ky + 2m2π

d

)
y

]
dxdy. (4d)

These equations, relating the x and y components
of the electric and magnetic fields, define a complete
set of equations describing the components of the fields in
terms of the unknown sets rm1,m2 ,tn1,n2 ,Bs1,s2 , and Cs1,s2 .
The number of equations present in the set depends on the
number of diffracted orders and waveguide modes we include
in the calculation, but the system of equations is always
uniquely defined (i.e., the number of unknowns equals the
number of equations). For a rigorous solution to the system of
equations, we must include a high number of diffraction orders
and waveguide modes. It is then straightforward, if rather
laborious, to solve the continuity equations, eliminating the
coefficients Bs1,s2 and Cs1,s2 , to obtain the complex reflection
and transmission coefficients, rm1,m2 and tn1,n2 .

B. Dispersion relations

To satisfactorily separate the diffraction effects (photonic
band gap) from the dispersion of a spoof plasmon, it is

necessary to study effects far from the Brillouin zone boundary
at kx = π/d. In our experiments (see below) this is achieved
by studying surface modes in the (1,1) direction of the unit
cell. We therefore derive the dispersion relations of the surface
modes propagating in this direction (i.e., with kx = ky and
Ex = Ey) and restrict ourselves for now in discussing the
dispersion when both regions 1 and 3 are air (i.e., εsub = 1).
For such circumstances, the Fourier components of the fields
in regions 1 and 3 have components of mode wave vector in
the z direction which can be written as

km1,m2
z =

√
k2

0 +
(

k‖√
2

+ 2m1π

d

)2

+
(

k‖√
2

+ 2m2π

d

)2

,

(5)

where k‖ is the component of the wave vector parallel to the
surface.

Even while restricting ourselves to surface modes in the
(1,1) direction, a solution including large numbers of diffracted
orders and waveguide modes must be found numerically.
However, there are a number of simplifications commonly
applied in modal matching which can drastically reduce
the complexity of the problem and make an analytical
solution possible. We first introduce these simplifications and
then discuss their validity below. As the simplest solution,
we can limit ourselves to considering only the first order
waveguide mode (s1 = 1,s2 = 0) in the cavity and specular
reflection/transmission (m1 = m2 = n1 = n2 = 0). This is the
approximation used in Refs. 7 and 8 by Pendry et al. to drive
analytical dispersion relations for spoof surface plasmons on
dimpled conducting surfaces. The approximation is valid only
in the limit a � d � λ0, where λ0 is the vacuum wavelength.
Then, the summations in Eqs. (4a), (4b), and those in the
continuity equations for magnetic fields, are removed, and
one can easily solve the continuity equations, eliminating the
coefficients B1,0 and C1,0. The transmission coefficient found
is

t0,0 = −2q1,0
z k2

0

kz

a2

d2

Q
0,0,1,0
1 Q

0,0,1,0
2

exp
(
iq

1,0
z h

)(
F − a2q

1,0
z

2

)2 − exp
( − iq

1,0
z h

)(
F + a2q

1,0
z

2

)2
, (6a)

where

F = Q
0,0,1,0
1 Q

0,0,1,0
2

d2

(
k2

0

k
0,0
z

)
. (6b)

From this solution, one can also infer the dispersion of surface
modes, given by the poles in transmission

exp
(
iq1,0

z h
)(

F− a2q1,0
z

2

)2

−exp
(−iq1,0

z h
)(

F+ a2q1,0
z

2

)2

=0.

(6c)

One should note that on increasing the depth of the holes
to infinity (h → ∞) one recovers from Eq. (6c) the dispersion

relation F = a2q1,0
z

2 , precisely the dispersion relation found by
Pendry et al. for spoof plasmons in arrays with infinitely deep,
square holes.7,8

Near the cutoff frequency of the cavities, one can qualita-
tively argue that considering only the lowest order transverse
electric (TE) waveguide mode (i.e., s1 = 1,s2 = 0) is a
reasonable assumption: the higher order waveguide modes
with the correct symmetry are very strongly evanescent [i.e.,
in Eq. (3), qs,t

z is large and imaginary] and will therefore
have little effect on the surface mode dispersion. However,
numerical (using finite element,6 modal expansion,7 and finite
time domain)8 and analytical (modal matching)9 modeling
has shown that the hole period can be particularly critical
in determining the precise dispersion relation of the surface
mode supported. This is because diffracted evanescent waves
change the boundary conditions at the entrance and exit of the
cavities. It has been shown for dimpled surfaces9 that including
higher diffraction orders while describing the fields inside the
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cavities using only the first order waveguide mode provides
an accurate dispersion relation. For the holey metal layers

discussed here, this approximation gives the transmission
coefficient

tm1,m2 = −2q1,0
z k2

0

kz

a2

d2

Q
m1,m2,1,0
1 Q

0,0,1,0
2

exp
(
iq

1,0
z h

) ( ∑
m1,m2

Fm1,m2 − a2q
1,0
z

2

)2

− exp
(−iq

1,0
z h

) ( ∑
m1,m2

Fm1,m2 + a2q
1,0
z

2

)2 , (7a)

Fm1,m2 = Q
m1,m2,1,0
1 Q

m1,m2,1,0
2

d2

⎛
⎝k2

0 + ( k‖√
2

+ 2m1π
d

) ( 2m2π
d

− 2m1π
d

)
k

m1,m2
z

⎞
⎠ , (7b)

with surface mode dispersion given by

exp
(
iq1,0

z h
) ( ∑

m1,m2

Fm1,m2 − a2q1,0
z

2

)2

− exp
( − iq1,0

z h
) ( ∑

m1,m2

Fm1,m2 + a2q1,0
z

2

)2

= 0. (7c)

The summations over the integer diffracted orders are
typically carried out for m1 = −1,0,+1 and m2 = −1,0,+1
as in Ref. 9.

One should note that the modal matching solutions pre-
sented above are only strictly valid for frequencies well below
the cutoff frequency of the second order waveguide mode.

III. RESULTS AND DISCUSSION

A. Measurement of surface mode dispersion

To validate the dispersion relations derived in the previous
section, we have measured the surface modes supported
by open hole array structures in the microwave frequency
region. We use a close packed array of hollow, square-ended
brass tubes, with side length d = 9.25 mm, inner length
a = 6.96 mm and height h = 15 mm. The cutoff frequency
of the holes is defined as ωco = πc

a
√

εh
, where εh is the dielectric

constant of the material inside the tubes. As we are interested
in observing the surface modes unperturbed by effects due
to the Brillouin zone boundary, we require ωco to be far
below the diffraction edge associated with the sample: in
this case the diffraction edge in the (1,0) direction occurs at
17.7 GHz. To first minimize the effects of the proximity of
the Brillouin zone boundary the holes are filled with dielectric
material (εh = 2.29), giving a cutoff frequency of 14.4 GHz
for the cavities in our sample. Since this is close to the (1,0)
diffraction edge of our sample, one would expect the dispersion
of surface modes in the (1,0) direction to be strongly perturbed
by the band gap at the Brillouin zone boundary. In experiment,
we therefore measure in the diagonal of the unit cell (i.e.,
ky = kx): the diffraction edge in the (1,1) direction is 22.3 GHz,
significantly greater than the cutoff frequency of our holes,
thereby reducing the perturbation due to diffraction. This
perturbation is discussed in more depth in Sec. III B. Note that
due to the presence of open ended holes, the arrays considered
here exhibit very different electromagnetic behavior from the
structures considered in Refs. 9 and 15.

There are several methods by which one can investigate the
dispersion of surface modes. The so-called “prism coupling”
can be used, in which one uses the evanescent fields associated
with the total internal reflection at a high dielectric boundary
to couple to a surface wave, such as in the Kretchman
configuration.15,23 However, such techniques usually allow for
coupling only to antisymmetric surface waves (i.e., modes
where the fields do not exhibit mirror symmetry in the plane
of the sample). Coupling to a surface mode via a grating is also
possible,24,25 but typically leads to significant distortion of the
dispersion. To avoid these drawbacks, we have developed an
alternative method: Fig. 1(b) shows the experimental setup
used. In brief, we use a vector network analyzer (VNA)26

which operates in the microwave frequency range using
broadband coupling horns (10–50 GHz). At “i” in Fig. 1(b)
a horn is directed into a wedge waveguide with a 5-mm exit
aperture. At “ii,” a horn is directed toward a long thin metallic
rod positioned 3 mm above the sample surface. The height of
this rod can be varied to modify the coupling efficiency to each
of the surface modes of the sample.

The dispersion is obtained from phase measurements of a
propagating surface wave. The difference in phase between
two surface waves at a point in space (�φ) is related to
the difference in the in-plane wave vector component (�k‖)
through the simple relation

�k‖ = �φ

L
, (8)

where L is the propagation length from the source. In our
experiments, we use a propagation length of 30 cm. To obtain
the absolute magnitude of the in-plane wave vector component,
one needs a reference measurement. We therefore compare
the phase of the wave measured across our sample to that of a
planar metal sheet (which we assume to possess a surface mode
propagating at the speed of light in vacuum). Taking the phase
difference between these two measurements and dividing by
the propagation length gives �k‖ with respect to a free space
wave, represented by the light line in Figs. 2 through 4, and
therefore yields a dispersion curve. The dispersion curves for
our open ended hole array (i.e., εsub = 1) are shown in Fig. 2.
The circles are extracted from the measured phase information
as described above. We clearly observe two surface modes in
the frequency range of interest. However, one should note that
the measured dispersion for the higher frequency surface mode
(triangles) is obtained in a nonrigorous manner, by assuming
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(a)

(b)

FIG. 2. Experimentally determined spoof surface plasmon dis-
persion curves (circles and triangles) compared to the analytical
models (doted curved lines), for an array defined by d = 9.25 mm,
a = 6.96 mm, h = 15 mm, εh = 2.29). (a) For an open ended hole
array (i.e., εsub = 1), one observes both low frequency (symmetric)
and higher frequency (antisymmetric) modes. The arrows indicate
the electric field profiles calculated using the finite element method
(FEM) (Ref. 27). These show the direction of the electric fields inside
the hole for a particular phase (with the lighter color indicating a
strong electric field) highlighting the symmetric and antisymmetric
nature of the two surface modes. The dotted line in this figure shows
the analytical results for both modes when diffracted orders are not
taken into account. (b) For a dimpled surface array (i.e., εsub = i∞)
we observe only one surface mode, with an asymptomatic frequency
higher than the cutoff frequency of the holes (see text). In both (a) and
(b) the straight solid line represents the vacuum light line. Inset of
(a): comparison between analytical and numerical (FEM) (Ref. 27)
models.

the onset of this mode occurs at the lightline for frequencies
above the asymptotic frequency of the lower frequency mode.
Despite this assumption, both of these modes exhibit good
agreement with the analytical model from Eq. (7c) (solid
curved lines).

We have also conducted full numerical finite element
method (FEM) modeling of the surface eigenmodes carried by
our sample.27 The numerical modeling predicts surface mode
dispersions which correlate extremely closely to those from
our simple analytical model derived above [FEM modeling
is shown as the dashed line in the inset of Fig. 2(a), while
the analytical model is represented by the solid line]. We
can also obtain distributions associated with each surface
mode: the boxes above Fig. 2(a) show the electric fields
inside the hole region, with the direction of the electric field
represented at the same point in phase cycle. These show the
low frequency mode as having a symmetric electric field distri-
bution while the higher frequency mode has an antisymmetric
distribution.

The splitting of the surface mode into symmetric and
antisymmetric modes is very reminiscent of the behavior of
surface plasmons in thin metallic films at optical frequencies.28

However, such splitting is not observed for the surface
modes on dimpled surfaces (i.e., with closed holes, where
region 3 is a perfect metal with εsub = i∞) considered in
Refs. 8,9,12,14–16. The dispersion of the spoof plasmon
measured on a dimpled surface with the same dimension
as our hole array is shown in Fig. 2(b). Our measurements
are compared to the analytical modal matching solution for
a dimpled surface from Ref. 9. For both the measurement
and the analytical model we observe only one spoof plasmon
mode asymptotically diverging from the light line. This
behavior arises due to the boundary conditions between
regions 2 and 3, which, for closed holes, forces the transverse
component of the electric field to zero at this interface. For
open holes this restriction is lifted, and a node can appear
in the middle of the holes (z = h

2 ): this is the defining
feature of antisymmetric surface mode of the open hole
arrays.

In addition to the mode splitting, which appears for the
open holes and is absent from closed holes, there is a clear
difference in the asymptotic frequencies of the dispersions for
the two cases. We address this in the next section.

B. Asymptotic frequencies and mode splitting

For the simplest modal matching solution, that is, consid-
ering only first order waveguide mode (s1 = 1,s2 = 0) in the
cavity and specular reflection/transmission (m1 = m2 = n1 =
n2 = 0), one obtains the dispersion relation from Eq. (6c).
From this simplified form of the dispersion relation, one can
easily obtain the asymptotic frequencies for dispersion of the
surface waves. The lowest frequency asymptote is given by the
cutoff frequency of the holes, ωco = πc

a
√

εh
. It should be noted

that, in contrast to the spoof surface plasmon of dimpled metal
surfaces,9 the asymptotic frequency of the lowest frequency
surface mode in these hole arrays is independent of hole depth.
This behavior can be seen in the low frequency dispersion of
a thicker hole array [h = 40 mm, solid curves in Fig. 3(a)],
which displays the same asymptotic frequency as our sample
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(a)

(b)

FIG. 3. (a) Surface mode dispersion for larger array thickness
h = 40 mm. The asymptotic frequency of the symmetric mode
remains relatively unchanged, while the asymptotic frequency of
the antisymmetric mode has reduced in frequency. In addition, one
observes the surface modes associated with the higher frequency
waveguide modes, marked with arrows. (b) The effect of introducing
a substrate (region 3) with nonunity dielectric constant, εsub = εh =
2.29 is to split the surface mode, with each mode following a different
light line associated with the material on each interface. The dashed
lines in both figures show the dispersion for the measured sample
(defined by d = 9.25 mm, a = 6.96 mm, h = 15 mm, εh = 2.29, and
εsub = 1).

[h = 15 mm, dashed curves in Fig. 3(a)]. However, for the
higher order antisymmetric mode (as thickness increases) the
asymptotic frequency decreases.

In addition to the two spoof surface plasmons, for structures
with larger h [Fig. 3(a)] we observe several higher order modes
which do not asymptote to the light line. Indeed, we actually
have a complete family of surface modes with asymptotic

frequencies derived from the condition tan(q1,0
z h) = 0, that is,

with asymptotic frequencies, ωas, given by

ωas = ωco,

√
ω2

co +
(

πc

h
√

εh

)2

,

√
ω2

co + 2

(
πc

h
√

εh

)2

, . . . .

(9)

Since kx > k0, all modes exhibit fields which are evanescent
in regions 1 and 3, above and below the hole array, and so can
be termed surface modes. However, the fields inside the holes
distinguish each of the modes: the lowest frequency mode,
defined by the asymptote at the cutoff frequency of the holes,
exhibits electric fields inside the hole which are hyperbolic
and symmetric in form (though not explicitly shown here, it is
straight forward to solve the continuity equations for the factors
B and C which determine the electric field profiles). The
second lowest frequency mode, with an asymptotic frequency
at

√
ω2

co + ( πc
h
√

εh
)2, exhibits a node in the electric field in the middle

of the hole [see inset of Fig. 2(a)]. The fields of this mode are
hyperbolic and antisymmetric in form for frequencies below
ωco. These two lowest order modes are reminiscent of the
symmetric and antisymmetric surface plasmons in thin metal
films,28 and are therefore labeled here as the “spoof plasmon”
modes of the hole array. Similar to the behavior of symmetric
and antisymmetric surface plasmons, both the symmetric and
antisymmetric spoof plasmon modes are asymptotic to the
light line.

The fields inside the hole for the higher order modes
are oscillatory in nature (labelled “oscillatory modes” here),
with field maxima at the hole entrance and exit plus two
or more nodes. The oscillatory fields inside the holes exist
only in the frequency domain ω > ωco, and are therefore not
asymptotic to the light line. When the depth of the holes is
increased [Fig. 3(a)] one observes a reduction in the asymptotic
frequencies of these modes. For infinitely deep holes, the
asymptotic frequencies of these modes converge onto that of
the symmetric spoof surface plasmon mode.

We have discussed above the surface mode dispersion in
its very simplest form, by considering only specular reflection
and transmission. However, numerical (using finite element,6

modal expansion,7 and finite time domain)8 and analytical
(modal matching)9 modeling has shown that diffracted evanes-
cent waves can be crucial to obtain an accurate dispersion
relation.9 In Fig. 2(a) we compare the measured dispersion
(points) to the dispersion relations from Eqs. (6c) and (7c)
(excluding and including evanescent diffracted orders, respec-
tively). One can clearly see the important role that evanescent
diffracted fields play in determining surface mode dispersion.
These higher order Fourier components to the electromagnetic
fields not only perturb the frequency dependence of the
dispersion, but also lead to slightly higher asymptotic frequen-
cies than predicted by Eq. (9). This behavior has previously
been observed for spoof surface plasmons on dimpled metal
surfaces,9 and is related to a modification by the evanescent
diffracted fields of the boundary conditions at the entrance and
exit of the cavities (which, in turn, perturbs the quantization
of the field inside the holes).

In addition to the diffracted fields, surface mode dispersion
is also perturbed by the presence of a substrate. In Fig. 3(b),
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the dispersion for a structure with a dielectric substrate (εsub =
εh = 2.29 in region 3) is shown as a solid line. The presence
of a substrate results in a further splitting of the symmetric and
antisymmetric spoof surface plasmons. The lower frequency
mode asymptotes to the light line in a material of εsub, while
the higher frequency mode asymptotes to the vacuum light
line. This behavior is again reminiscent of surface plasmons
in thin metallic films on a dielectric substrate.28

IV. ROLE OF SURFACE MODES IN HOLE ARRAY
TRANSMISSION

A. Near field transmission

Discovered originally by Pendry,3 an interesting property
of surface plasmons is their ability to focus light to spots
smaller than the diffraction limit for light, an effect referred to
as superlensing. The simplest form of a superlens consists of a
simple metallic film which exhibits superlensing effects near
the surface plasmon resonance condition in the near ultraviolet
frequency region.4–6 At this frequency a near field source of
radiation couples to the symmetric surface plasmon of a thin
metal film. An important question to answer is therefore: Can a
symmetric spoof surface plasmon exhibit similar superlensing
properties?

The electromagnetic fields scattered by an object may be
represented by a Fourier sum. To form a perfect image from
the field scattered by an object, one must restore all Fourier
components of the field in an image plane. However, Fourier
components associated with the large lateral wave vectors
k‖ satisfying |k‖| > |k0| give rise to evanescent waves which
have imaginary values for kz. These near field components are
confined to the subwavelength vicinity of the object. Hence, in
a normal lens one can usually only capture wave vectors satis-
fying the condition |kparallel| < |k0|, limiting the resolution of
image formation to approximately the wavelength of light. In
the last decade it has, however, become clear that it is possible
to design superlenses which can restore at least some of these
near field components, allowing subwavelength resolution in
images.4 In this section, we consider the transmission of near
fields of our hole arrays within our analytical formalism from
Sec. II. We show below that spoof surface plasmons play
an important role in determining the near field transmission
characteristics of a hole array.

Ignoring the effects of diffraction for now, the field
transmission function of interest is given by Eq. (6a). In
general, the transmission function introduces some pertur-
bations of the fields which are dependent on k‖. However,
for frequencies near the surface mode resonances given by
Eq. (9), the conditions eiqzh ≈ 1 and e−iqzh ≈ 0 apply, and
Eq. (6a) simplifies to t0,0 → 1 for k‖ → ∞. This means that,
in the absence of diffraction, near fields defined by large lateral
wave vectors will be perfectly transmitted through a hole array.
This effect has recently been pointed out by Jung et al.,29 who
described hole array structures as “perfect endoscopes,” that
is, structures which are capable of perfectly transforming a
source of field from the input to output surfaces without losses,
while maintaining subwavelength resolution. This interesting
property occurs for an array of any hole depth (i.e., input fields

can be transferred to the output interface of a hole array over
an arbitrarily large distance).

In practice, perfect transmission will not be achieved due
to the effects of diffraction. Including diffracted orders, the
relevant transmission is given by Eq. (7a). For frequencies near
to ωco (i.e., where the condition q1,0

z h ≈ 0 applies), Eq. (7a)
simplifies to t0,0 ≈ F 0,0/

∑
m1,m2F

m1,m2 . This results in
perfect transmission only for |F 0,0| 
 |Fm1,m2 | (i.e., when
|k0,0

z | � |km1,m2
z |). Hence, the Brillouin zone boundary sets

a limit for transmission of evanescent fields to those with
|k‖| < 2π

d
[see Eq. (5)]. This is in agreement with the numerical

modeling of Jung et al.,29 who found that resolution of their
hole array endoscope is limited by the periodicity of the array.

However, it should be noted that a “perfect endoscope”
is not the same as a “perfect lens”.3 For a plasmonic metal
film at the surface plasmon frequency, it is straightforward
to show that the thin film transmission t → exp(−ikzh) for
k‖ → ∞ (Ref. 3). Therefore, for evanescent field components
with imaginary kz, the fields are effectively amplified on
transmission of the metallic film. This highlights one of the
fundamental differences between a surface plasmon and a
spoof surface plasmon: while surface plasmons in metallic
films can give rise to lensing effects for evanescent fields,
spoof surface plasmons in hole arrays cannot give rise to
such effects. This difference is due to the nature of the
fields inside the materials: at their asymptotic frequency,
surface plasmons exhibit fields inside the metal which are
evanescent in nature. At the asymptotic cutoff frequency of
a symmetric spoof surface plasmon, meanwhile, the fields
inside the cavities lose their evanescent character. Hence,
no amplification of near fields is possible for spoof surface
plasmons. Since spoof surface plasmons have very different
near field characteristics to surface plasmons, the term “spoof
surface plasmon” may be something of a misnomer. However,
we note that superfocussing at microwave and THz frequencies
may still be possible with semiconductor surface plasmons.30

B. Far field transmission

Recent interest in the enhanced optical transmission
through arrays of subwavelength holes in metal films was
sparked by the seminal work of Ebbesen et al.,2 who
observed peaks in transmission at wavelengths close to the
lattice periodicity. Since this visible-frequency observation of
enhanced optical transmission through hole arrays, similar
effects have been observed at infrared,31 Terahertz,32–36 and
microwave frequencies,37,38 with applications suggested in
designing filters,39 optical sensors,40 microwave devices,41 and
THz optical components.42

Since the first experimental observations, consensus has
been gradually developing that surface modes (surface plas-
mons at optical frequencies) play a crucial role in enhanced
optical transmission. In this respect, perhaps the most phys-
ically insightful model applied to hole arrays has been the
“Fano-type” mechanism.18,43 In this picture, transmission is
interpreted in terms of the interference between two trans-
mission channels: one nonresonant (direct) channel describes
transmission through individual, uncoupled holes while the
resonant channel describes light which transverses the grating
through adjacent holes via diffractive coupling to surface
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modes. Within this model, one can understand the origin
of peaks in the transmission spectra of the hole arrays in
terms of constructive interference conditions, reached when
the wavelength of the light is approximately equal to the
spacing of the hole-array lattice. In this section we highlight
the role that spoof surface plasmons play in this process. The
effects we discuss below are entirely scalable with wavelength
and array size. We therefore choose to normalize all length
scales by the period of the array d and normalize frequency and
wave vector by the grating frequency and vector, respectively,

ωdiff = 2πc

d
, kdiff = 2π

d
. (10)

For simplicity, we restrict ourselves to the discussion of
surface waves propagating in the (1,0) direction of the unit
cell. We note that the evanescent surface modes, which strictly
exist only in the region described by kx > k0, do not contribute
to transmission in the far field. However, the influence of
surface modes in the region kx < k0 can be considered by
employing a reduced zone representation of surface modes.
Briefly, one finds the surface mode dispersions without any
diffraction effects. Then, periodicity is introduced by adding
and subtracting grating vector components of magnitude kdiff

through k′
x = kx ± m1kdiff ± m2kdiff . A similar approach is

commonly employed to analyze the effects of surface plasmons
in optical gratings.44 Note that we neglect the opening of
band gaps near the Brillouin zone boundary, and so this
approach should only be treated as approximate. In Figs. 4(a)
and (b), black lines represent mode wave vectors, kx , in the
absence of diffraction [from Eq. (6c)], while grey dashed lines
represent k′

x under first order diffraction (i.e., m1 = 1,m2 = 0).
In this reduced zone representation, for hole arrays defined by
ωco < ωdiff [Fig. 4(a)], a number of modes appear in the region
kx < k0. One can therefore expect multimodal features in
transmission. The two lowest frequency transmission features
arise from diffractive coupling to the spoof plasmon surface
modes, while the higher frequency features arise from coupling
to the oscillatory modes of the cavity. Transmission spectra of
these large hole structures can therefore be very complex, since
one can expect many peaks associated with each diffraction
order. For hole arrays with ωco > ωdiff (Fig. 4), one observes
only the two lowest frequency modes below ωdiff . This is
because only symmetric and antisymmetric surface plasmon
modes are asymptotic to the light line (as discussed in
Sec. III B). For such a structure one expects bimodal features
in transmission.

Multimodal and bimodal behavior can be observed in
Figs. 4(c) and (d), respectively. The transmission, calculated
using Eq. (7a) is plotted as a function of hole height h for a
large hole array with a = 0,8d, and a small hole array with
a = 0.4d. For the array with large holes, the transmission
typically contains several convoluted peaks, each associated
with diffractive coupling to a different surface mode. As h

decreases, higher order modes extend toward the light line
and converge at ω/ωdiff = 1. The transmission resonances
associated with these modes can become very narrow as
dephasing decreases.18 For the array with small holes, on
the other hand, transmission is mediated only by diffractive

FIG. 4. (a) Spoof surface mode dispersion relations in the reduced
zone representation. For hole arrays defined by ωco < ωdiff , a number
of modes associated with each grating vector are observable in the first
Brillouin zone. For hole arrays with ωco > ωdiff (b) only the first two
(surface plasmon) modes are defined below cutoff. (c) Transmission
as a function of hole height h for an array with dimensions a = 0.8d .
One can clearly observe the multimodal transmission, with several
peaks in the frequency region between the cut-off frequency (marked
by a solid arrow) and ω = ωdiff . (d) Transmission as a function of
hole height h for an array with dimensions a = 0.4d , showing the
transmission mediated by the symmetric and antisymmetric surface
plasmon modes. The lower panels show transmission spectra at
heights indicated by dotted arrows. All calculations are for εh = 1.

coupling to the symmetric and antisymmetric surface plasmon
modes. By tuning the hole size so that ωco lies above or
below ωdiff , one can therefore easily change from bimodal
to multimodal transmission regimes. This behavior illustrates
why hole array structures make excellent tunable filters, as they
can be specifically designed as either narrowband or broadband
transmission filters with a relatively small change to structural
dimensions.

V. CONCLUSION

Phase sensitive microwave experiments have been con-
ducted to measure the dispersion of surface modes for a
structure consisting of an array of holes in a highly conducting
sheet. Two separate surface modes were observed and shown
to have field distributions analogous to the symmetric and
antisymmetric surface plasmon modes found in thin metal
films. To analyze our measurements, we have developed
explicit analytical expressions for the transmission function
of our hole arrays using a modal matching method. The
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dispersion relations found from this approach have shown very
close agreement to the measurements. Using our analytical
functions, we show that spoof surface modes play an important
role in enhanced optical transmission, and elucidate the hole
and depth behavior in the transmission of such structures. In
the near field transmission, we discuss the role these surface
modes play in endoscopic transmission (the transfer of a field
profile from the incident to output interfaces), and show that the
theoretical limit for near field spatial resolution is the period of
the hole array. However, we show that superfocussing effects
which are present for surface plasmons in metallic films are
absent for hole arrays (i.e., no amplification of near fields

is possible for spoof surface plasmons). While many of the
apparent properties of spoof surface plasmons resemble those
of surface plasmons in thin metallic films, the analogy breaks
down in the high frequency limit.
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