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Signature of the Schwinger pair creation rate via radiation generated in graphene
by a strong electric current
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Electron-hole pairs are copiously created by an applied electric field near the Dirac point in graphene or similar
two-dimensional electronic systems. It was shown recently that for sufficiently large electric fields E and ballistic
times the I -V characteristics become strongly nonlinear due to Schwinger’s pair creation rate, proportional to
E3/2. Since there is no energy gap the radiation from the pairs’ annihilation is enhanced. The spectrum of radiation
is calculated and exhibits a maximum at ω = √

eEvg/h̄. The angular and polarization dependence of the emitted
photons with respect to the graphene sheet is quite distinctive. For very large currents the recombination rate
becomes so large that it leads to the second Ohmic regime due to radiation friction.
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I. INTRODUCTION

Electronic mobility in graphene, especially one suspended
on leads, is extremely large,1 so that a graphene sheet is
one of the purest electronic systems. The relaxation time
of charge carriers due to scattering off impurities, phonons,
ripplons, etc., in suspended graphene samples of sub-μm
length is so large that the transport is ballistic.2,3 The ballistic
flight time in these samples can be estimated as tbal = L/vg,

where vg � 106 m/s is the graphene velocity characterizing the
massless “ultrarelativistic” spectrum of graphene near Dirac
points, εk = vg |k|, and L is the length of the sample that
can exceed several μm.4,5 The extraordinary physics appears
right at the Dirac point at which the density of states vanishes.
In particular, at this point graphene exhibits a quasi-Ohmic
behavior, J = σE, even in the purely ballistic regime.

A physical picture of this “resistivity” without either charge
carriers or dissipation is as follows.6 The electric field creates
electron-hole excitations in the vicinity of the Dirac points
similar to the Landau-Zener tunneling effect in narrow-gap
semiconductors or electron-positron pair creation in quantum
electrodynamics first studied by Schwinger7 (later referred to
as LZS). Importantly, in graphene the energy gap is zero thus
the pair creation is possible at zero temperature and arbitrary
small E, even within linear response. Although the absolute
value of the quasiparticle velocity vg cannot be altered by the
electric field due to the ultrarelativistic dispersion relation, the
orientation of the velocity can be influenced by the applied
field.The electric current ev proportional to the projection of
the velocity v onto the direction of the electric field is increased
by the field. These two sources of current, namely creation of
moving charges by the electric field (polarization) and their
reorientation (acceleration), are responsible for the creation of
a stable current.

Agreement over the qualitative explanation notwithstand-
ing, determination of the value of the minimal dc conductivity
at the Dirac point in the limit of zero temperature had un-
dergone a period of experimental and theoretical uncertainty.
After the value in graphene on substrate was measured to be

about σ = 4e2/h,8 it was shown in experiments on suspended
samples2 that the zero-temperature limit was not achieved
and in fact that these early samples had too many charged
“puddles,” so that they represented an average around the
neutrality or the Dirac point. The value in early-on suspended
samples2 was half of that and most recently settled at the
“dynamical” σ2 = π

2
e2

h
in best samples at 2 K temperature.4

Theoretically several different values appeared. The value
σ1 = 4

π
e2

h
had been considered as the “standard” one for

several years9 and appeared as a zero disorder limit in many
calculations like the self-consistent harmonic approximation,
although different regularizations within the Kubo formalism
resulted in different values.10

The dynamical approach to transport was applied to the
tight-binding model of graphene11 to resolve this “regular-
ization ambiguity.” It consists of considering the ballistic
evolution of the current density in time after a sudden or
gradual switching on of the electric field. The result within
linear response is that the current settles very fast, on the
microscopic time scale of tγ = h̄/γ � 0.24 fs (γ being the
hopping energy), on the value of J = σ2E. The value is
identical to the one obtained (at nonzero temperatures) for
the ac conductivity.12 The two contributions, polarization
and attenuation, are comparable in strength and combine to
produce a constant total current. However, a deeper analysis
of the “quasi-Ohmic” graphene system beyond the leading
order in perturbation theory in electric field revealed13 that on
the time scale

tnl =
√

h̄

eEvg

(1)

the linear response breaks down. For larger times the quasi-
Ohmic behavior no longer holds. This is in contrast to
dissipative systems, in which the linear-response limit can
be taken directly at infinite time. This perhaps is the origin
of the “regularization” ambiguities in graphene, since large
time and small field limits are different. The time scale
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on which nonlinear effects become dominant is not always
very large; for example, in experiments dedicated to the
breakdown of quantum Hall effect14 in which E = 104 V/m,
nonlinearity sets in at tnl = 0.3 ps, that is, of order ballistics
time for L = 0.3 μm. Graphene flakes under larger fields
of order 2 × 106 V/m have been studied very recently (at
room temperature) in specially designed high current density
experiments.5 In this case the nonlinear time is only 20 fs,
much lower than the ballistic time tbal = 2 ps for L = 2 μm.
Analytic and numerical solutions of the tight-binding model13

as well as of the Dirac model describing the physics near
the Dirac point demonstrated13,15 that at tnl the electron-hole
pairs’ creation becomes dominant and is well described by an
adaptation of the well-known (nonanalytic in E) Schwinger
electron-positron pair creation rate,

d

dt
Np = 33/4

29/2v
1/2
g

(
eE

h̄

)3/2

. (2)

The difference with the original derivation7 in the context of
particle physics is that the fermions are 2 + 1 dimensional
and “massless,” thus magnifying the effect. The polarization
current is J (t) = 2evgN (t) and therefore Schwinger’s creation
rate leads to a linear increase with time:13

J (t) = σ2

(√
3

2
E

)3/2(
evg

h̄

)1/2

t . (3)

The physics of pair creation is highly nonperturbative
and nonlinear in nature and therefore, instead of the linear
response, Schwinger found an exact formula using functional
methods. The rate can be intuitively understood using the much
simpler instanton approach originally proposed in the context
of particle physics16 (extended later to low dimensions17),
but is known in fact in condensed-matter physics as the
Landau-Zener tunneling probability.5,15,18 In particle physics
it is extremely difficult to observe Schwinger’s creation rate
and it would be interesting to establish experimentally this
dynamical phase in low dimensional condensed-matter physics
featuring the massless Dirac quasiparticle spectrum like
graphene or novel materials sharing with it the massless Dirac
spectrum like topological insulators or tuned semiconductor
heterojunctions.19 Of course transport phenomena at rather
large fields always have a background related to possible
influence of leads, disorder, and thermal effects like local
heating, etc.

In this paper we draw attention to a direct and unintrusive
signature of the dynamical phase of LZS pair creation in
a graphene sheet subject to an applied electric field. It is
demonstrated that the flux of photons radiating from the
surface of the sample is characterized by the creation rate since
the photons are emitted via electron-hole pair annihilation
and therefore proportional to E3/2, a hallmark of Schwinger’s
process. In addition, the frequency, direction, and polarization
characteristics of the radiation generated by the electric
field calculated here all bear footprints of the pair creation
dynamics.

II. ELECTRON-HOLE RECOMBINATION
RATE INTO PHOTONS

A. Amplitude for emission of a single photon

The electrons and their electromagnetic interaction with
photons are approximately described near a Dirac point by the
Weyl Hamiltonian:

H =
∫

d3r ψ†

[
vgσ · (−ih̄∇ + e

c
A

)
− h̄2

2m

(
∂z + i e

h̄c
Az

)2 + Vconf(z)

]
ψ. (4)

Here ψ is the two-component spinor second quantized field
and (A,Az) is the vector potential (bold letters describe vectors
in the graphene plane, while z is the perpendicular direction).
Electrons (charge −e) and holes (charge e) in the graphene
sheet are confined in this model to the z = 0 plane by a
potential Vconf (small shape changes can be neglected for our
purposes). The only requirement from this potential is that it
is strong enough to “freeze” the motion along the z direction.
In the single graphene sheet one has two left-handed chirality
Weyl fermions described by the above Hamiltonian in which σ

denotes the in-plane Pauli matrices and two right-handed Weyl
fermions represented by σ †. To include the topological insu-
lators case,19 we first concern ourselves with only one spinor.

We consider the emission of a photon with wave vector
(k,kz) and frequency ω = c

√
k2 + k2

z , described by a linearly
polarized plane wave,

Aph = 2E0

ω
e(λ) sin (k · r + kzz − ωt) , (5)

whereas the dc applied field is Aext = (0, − cEt). For regu-
larization we make use of a finite box L × L × Lz, so that
momenta are discrete and the single photon’s electric field is
E2

0 = h̄ω/(L2Lz). The unit vectors

e(1) = (− sin ϕ, cos ϕ); e(1)
z = 0;

(6)
e(2) = − cos θ (cos ϕ, sin ϕ); e(2)

z = sin θ

describe polarizations that are conveniently chosen similarly to
a recent calculation of electromagnetic emission due to thermal
fluctuations.20 The vectors e(1) and e(2) represent the “in-
plane” and the “out-of-plane” polarizations, respectively. The
electron and the hole wave functions are 1√

2L
eip·ru(p)ψn(z)

and 1√
2L

eip′ ·rv(p′)ψn(z′), with spinors defined by

u (p) =
(

1
−ieiφ

)
; v(p′) =

(
1

ieiφ′

)
, (7)

with p + e
h̄c

Aext = p(cos φ, sin φ). ψn(z) are wave functions
of the confinement. The interaction with a photon at time t

happens when the momentum is minimally shifted due to the
dc field. The golden rule photon emission rate [for an “initial”
electron with momentum p and a “final” hole p′ and a photon
of polarization λ and momentum (k,kz)] is

W
(λ)
nn′ (p,p′,k,kz,t) = 2π

h̄

∣∣F (λ)
nn′

∣∣2
Np(t)N−p′(t)

× δ[h̄vg(p + p′) − h̄ω]. (8)

In terms of Feynman diagrams of quantum electrodynamics21

it corresponds to the diagram in Fig. 1(a). Here Np(t) is the
density of electrons in a certain momentum range produced
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(a)

(b)

FIG. 1. Feynman diagrams representing the major electromag-
netic processes in graphene. (a) One-photon emission. (b) Two-
photon emission.

by the electric field E, and N−p′ (t) is the density of holes
(equal to that of the electrons at the opposite momentum due
to particle-hole symmetry). The density calculated using the
simple Landau-Zener creation rate expression for one of the
flavors is13,15,16

Np(t) = �(py)�

(
e

h̄
Et − py

)
exp

(
−πh̄vg

eE
p2

x

)
, (9)

where � are the Heaviside functions. The transition amplitude
is given by

F
(λ)
nn′ = i

E0

ω

evg

2L2
ei[vg (p+p′)−ω]F (λ)

p,p′

×
∫

dz eikzzψ∗
n (z)ψn′(z)δ(p + p′ − k), (10)

where matrix elements F (λ)
p,p′ ≡ v†(−p′)σ · e(λ)u (p) are∣∣F (1)

p,p′
∣∣2 = 2[1 − cos(2ϕ − φ − φ

′
)];

(11)∣∣F (2)
p,p′

∣∣2 = 2 cos2 θ [1 + cos(2ϕ − φ − φ
′
)].

B. Spectral emittance

For tight confinement to the z = 0 plane one should
consider only the ground state n = n′ = 0. Note that the per-
pendicular component of the wave vector kz is “free” from con-
servation that prohibits the process in fully relativistic QED.21

The phase space for annihilation is very limited due to vg � c,
see Appendix A, and leads to important simplifications.

Let us define the spectral emittance per volume of the k

space (and area of the graphene flake) as

M(λ)(k,kz,t) = 4h̄ω

L2

∑
p,p′

d

dkzdk
W (λ)(p,p′,k,kz,t)

= e2v2
g

(2π )4

∫
dp

∣∣F (λ)
p,k−p

∣∣2
NpNk−p

× δ(vg(p + |k − p|) − ω), (12)
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FIG. 2. (Color online) The spectral emittance in direction perpen-
dicular to the graphene plane, k = 0. Polarizations are summed over.
The emittance (in units of e2/tnl) for various frequencies (in units of
t−1
nl ) as function of ballistic time from 0.1tnl to 1.4tnl .

where the integration over p′ was performed using the δ

function expressing the conservation of momentum. We first
study the frequency dependence of the radiation in the direc-
tion perpendicular to the graphene flake, k = 0. Multiplying
by 4 for the spin and valley degeneracy, summing over the
polarizations (

∑
λ |F (λ)

p,p|2 = 4), and integrating over p one
obtains, using ω = ckz, the spectral emittance

M (k = 0,ω,t) = e2v2
gt

2
nl

π4

∫ 0

−t/tnl

dp � (tnlω/2 + p)

×exp
[−2π

(
t2
nlω

2
/

4 − p2)]
ω

(
t2
nlω

2
/

4 − p2)1/2 . (13)

The spectral emittance, presented in Fig. 2 for various
frequencies as a function of time, increases linearly for
t � ω−1, M (k = 0,ω,t) = 2e2t

π4t2
nl

e−πt2
nlω

2/2, then rises sharply

approaching a maximum at t = ωt2
nl/2 and stabilizes at

M (k = 0,ω,t � tnl) = e2

π3
ωe−πt2

nlω
2/4I0

(
πt2

nlω
2

4

)
, (14)

where I0 is the modified Bessel function. The asymptotic
value rises linearly with frequency, π−3ω, in the infrared,
reaches its maximum at ω = t−1

nl , and falls slightly to
√

2e2

π4tnl

in the ultraviolet. In Fig. 3 the emittance at various ballistic
times is given as function of frequency. For each ballistic
time the curve has two parts. The first follows the universal
dependence given by Eq. (14). Therefore the frequency
for observation of the Schwinger effect, not surprisingly,
should exceed ωmin = √

eEvg/h̄, which amounts to 3.6 THz
for E = 104 V/m, and 50 THz for E = 2 × 106 V/m. At a
higher frequency ωmax = 2t/t2

nl the emittance sharply drops.
Therefore the frequency does not exceed 2tbal/t2

nl .
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FIG. 3. (Color online) The emittance at various times (in units
of tnl) as function of frequency.

C. Angular and polarization distribution

Next we consider the angular and polarization dependence
of the radiated power per unit area defined as the spectral
intensity, Eq. (12), integrated over frequencies,

L(λ)(θ,ϕ,t) ≡
∫ ∞

0
dω

ω2

c3
M(λ)

(
k,

ω

c
,t

)
. (15)

Performing integrations and simplifying, utilizing the small
parameter v ≡ vg/c � 1/300 � 1, see Appendix B for de-
tails, one obtains

L(1)(ϕ,t) = e4v4E2

25/2π4ch̄2

(
t

4πtnl

cos2 ϕ + t3

3t3
nl

sin2 ϕ

)
; (16)

L(2) (θ,ϕ,t) = e4v4E2

25/2π4ch̄2 cos2 θ

×
(

t

4πtnl

sin2 ϕ + t3

3t3
nl

cos2 ϕ

)
. (17)

The radiant flux from a flake of a μm × μm size is 4.7 ×
10−21 W, for E = 104 V/m corresponding to the emission
rate of just 10 photons per second, yet for the high current
samples5 with E = 2 × 106 V/m of the same area one gets
a more significant output: the radiant flux is 1.3 × 10−17 W,
corresponding to the emission rate of 3 × 104 photons per
second.

The two quantities L(1,2) and their sum are presented for
t = tnl in the spherical plots of Figs. 4(a)–4(c), respectively.
The radiated power is maximal in direction perpendicular to
the graphene plane. For directions close to the azimuth angles
ϕ = 0◦ and 180◦ (perpendicular to the electric field or current)
at small polar angles θ (perpendicular to the graphene plane)
the intensities of the two polarizations are of the same order,
while for θ ∼ 90◦ (close to the in-plane direction) the out
of plane polarization, λ = 2, dominates. On the other hand,
for 0◦ � ϕ � 180◦ the picture is the opposite. As expected,
the unpolarized intensity, Fig. 4(c), is less anisotropic; yet the
radiation is somewhat depressed in the direction perpendicular
to the current and close to the plane.

The two-photon processes, see Fig. 1(b), are suppressed
by the factor αQED = e2

ch̄
≈ 1

137 compared to the one-photon
process due to an additional vertex, while the phase space of
two diagrams is of the same order; see Appendix C for details.

III. DISCUSSION

Now we elaborate on a number of related issues and
comment on the experimental feasibility of exploring the
Schwinger phase physics. We start with a qualitative discus-
sion of the rather unusual physics arising at strong applied
fields, when the pair recombination becomes an important
relaxation channel.

A. Coulomb interaction and the formation of the neutral
electron-hole plasma

Even if the ballistic time and the relaxation time are
very large, Schwinger’s dynamical pair creation phase cannot
persist for a long time at large field since density of charges (or
both signs) becomes large. When the density of quasiparticles
reaches the order of ρp = 1011 cm−2 a neutral electron-hole
plasma is created22 (like in some semiconductor systems under
irradiation). In this state electrostatic interactions (despite
being screened at large distances) become dominant, as was
discussed extensively in connection with electron-positron
pairs creation in quantum electrodynamics.21 When electrons
and holes are close enough they strongly attract each other
effectively facilitating the recombination process. The rate
therefore far exceeds the one calculated within perturbation
theory in Sec. III. Let us first estimate when this state is
achieved at experimentally accessible situations.

Assuming the Schwinger pair creation rate, Eq. (2), the
density will approach ρp at times of order tp ∝ ρp/E3/2.
With a moderate field value of E = 104 V/m,14 the “plasma
time” tp = 140 ps � 400tnl exceeds the ballistic time of the
L = 1-μm-long sample (and probably also the relaxation
time in current experiments on graphene). Yet with higher
achievable fields E = 2 × 106 V/m,5 the plasma time is
reduced to tp = 40 fs � 2 tnl � tbal, so that the “radiation
friction” dissipation channel opens up: electron-hole pairs
annihilate emitting photons, which take energy out of the
graphene sheet and thus a different Ohmic behavior is reached.
This is roughly the ballistic time range for which the emission
was calculated in Sec. III. Of course, due to the Coulomb
attraction enhancement of the recombination the intensity
becomes grossly underestimated in the plasma regime. The
pair density will have to be recalculated via Boltzmann
equations; this will be done in a separate publication. One,
however, might expect qualitatively that this conductivity in
the “second” Ohmic regime certainly exceeds σ2 and is likely
to reach several times σ2. Data presented in Ref. 5 for clean
samples, see Figs. 3 and 12 therein, are consistent with the
linear (Ohmic) I -V curve at such conductivity value. However,
the experimental situation in the transport experiment is rather
complex, as discussed next.

B. Experimental evidence of the pair creation in samples
of mesoscopic size

In this subsection we use the above radiation-friction
scenario to discuss whether there is a clear and unambiguous
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FIG. 4. (Color online) (a) The angle dependence of the intensity as function of the photon spherical angles ϕ,θ (half of the whole solid
angle). Time is fixed at t = tnl . In-plane polarization. (b) Out-of-plane polarization. (c) Unpolarized light.

signature of the Schwinger’s pair creation phase in transport
experiments. In a series of remarkable experiments the
nonlinear I -V were measured at high electric fields of the
order 2 × 106 V/m at room temperature.5 The samples were
treated in such a way that, despite being nonsuspended,
the typical charge asymmetry did not appear and the Dirac
point was accessed convincingly at zero gate voltage (this
demonstrates high quality and is in variance with most samples
on substrate). The I -V curves were studied in various high and
low mobility samples [up to μ = 7000 cm2/ (Vs)] and effects
of disorder were partially controlled by irradiating the samples.

The samples were L = 1–2 μm long and rather narrow
(W = 0.5 μm) and the four-probe technique was applied.
Although a nonlinear I -V dependence I ∝ V α with exponent
α = 1.3–1.5 was observed at the Dirac point, surprisingly
the nonlinearity disappeared in the highest mobility samples.
In these experiments the ballistic time tbal = 2 ps is much
larger than tnl = 20 fs at the highest applied voltage of 4 V.
Unfortunately the crossover voltages, namely when tnl (V ) =
tbal or

Vnl = h̄vg

eL
= 0.32 mV, (18)
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were not probed since at room temperature kBT = 25 meV. As
argued in the previous subsection the radiation friction causes
a second Ohmic regime and the I -V curve in the clean samples
is expected to be linear. It is disorder that might have caused
the observed nonlinearity in irradiated samples. This requires
an additional theoretical study that includes the effect of pair
recombination. As argued above it becomes as important as
the Landau-Zener-Schwinger pair creation process at such
currents.

IV. CONCLUSIONS

To summarize, electron-hole pairs are copiously created
via the Landau-Zener-Schwinger mechanism near the Dirac
points in graphene or similar 2D electronic systems by an
applied electric field, provided the available ballistic time
exceeds tnl , Eq. (1). The recombination into photons produces
a characteristic signal proportional to E3/2 at frequencies
of order t−1

nl , which enables unintrusive and unambiguous
experimental observation of the Schwinger phenomenon.
The angular and polarization dependence of the emitted
photons with respect to the graphene sheet was calculated.
At very high currents and sufficiently long ballistic times
the recombination process becomes greatly enhanced by the
electron-hole attraction and the radiation becomes an effective
channel of dissipation, the radiation friction.

The calculation can be trivially extended to any system with
a Dirac-point-like spectrum as double layer graphene and the
recently synthesized family of materials called “topological
insulators”19 in which surface excitations are similar to
those in graphene with the notable exception of chirality.
Schwinger’s mechanism is also expected in these materials
since the mechanism does not involve chirality (left and right
movers contribute equally to the emission rate of graphene).
These materials have an advantage of not being strictly two
dimensional, although ballistic times might be shorter at
present. The driving current should not necessarily be dc; a
sufficient condition is ωext � t−1

nl . Detectors of light (photon
counters) in the microwave infrared that are sensitive enough
have recently been developed.23 Hopefully Schwinger’s pair
creation rate formula can be directly tested using condensed-
matter materials endowed with relativistic fermion spectra.
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APPENDIX A: PHASE SPACE OF THE
ONE-PHOTON PROCESS

Planar electrons and holes are described by their momenta
p and p′ in the x-y plane [see Sec. II A for notations], while
the momentum of the photon k is three dimensional. The

conservation of the in-plane momentum and the conservation
of energy read

p + p′=k; vg(p + p′) = ck. (A1)

The momentum in the z direction is not conserved; it is
balanced by the elasticity of the graphene flake. Since k =√

k2
z + |k|2 � |k|, in terms of p and p′ one has the inequality

v2(p + p′)2 − |p + p′|2 � 0, (A2)

or, in the polar coordinates,

(1 − v2)(p2 + p′2) + 2[cos(φ − φ′) − v2]pp′ � 0. (A3)

With the above constraint the condition that p′ has real
solutions leads to

cos(φ − φ′) � −1 + 2v2. (A4)

As v � 1, it is obvious that φ′ − φ is very close to π.

By defining �φ = π − (φ′ − φ), one sees that the above
condition simplifies to

−2v � �φ � 2v. (A5)

Substituting the above result back into Eq. (A3) it can be seen
that p′ is very close to p. By introducing �r = 1 − p′/p , the
condition becomes

�r2 + �φ2 � 4v2. (A6)

Therefore the allowed region is a disk of radius 2v.

APPENDIX B: DERIVATION OF THE AMPLITUDE
AND SPECTRAL EMITTANCE

The golden rule photon emission rate [for an “initial”
electron with momentum p, a “final” hole p′ and a photon
of polarization λ and momentum (k,kz)] is given by Eq. (8).
Correspondingly the rate defined in Eq. (12) is

M(λ)

(
θ,ϕ,

ω

c
,t

)

= e2v2
g

(2π )4

∫
dp

∣∣F (λ)
p,k−p

∣∣2
NpNk−pδ[vg(p + |k − p|) − ω]

= e2v2
g

(2π )4

∫
p (φ) dφ

∣∣F (λ)
p,k−p

∣∣2
NpNk−p · J (φ). (B1)

Because of the δ function, the integration over p imposes
the condition of energy conservation. As a result, the squares
of the matrix elements, Eq. (11) simplify:

∣∣F (1)
p,p′

∣∣2 = 4[cos(φ − ϕ) − v sin θ ]2

[1 − 2v sin θ cos(φ − ϕ) + v2 sin2 θ ]
;

(B2)∣∣F (2)
p,p′

∣∣2 = 4 cos2 θ sin2(φ − ϕ)

[1 − 2v sin θ cos(φ − ϕ) + v2 sin2 θ ]
.

Moreover, there is an additional factor from the δ function:

J (φ) = [1 − 2v sin θ cos(φ − ϕ) + v2 sin2 θ ]

2vg[1 − 2v sin θ cos(φ − ϕ)]2
. (B3)

The Jacobian of the transition to polar coordinates is

p(φ) = ω(1 − v2 sin2 θ )

2vg[1 − 2v sin θ cos(φ − ϕ)]
. (B4)
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In view of the step functions for the LZS density, Eq. (9), the
following possibilities occur.

Into the forward direction (positive projection on the
electric field) 0 < ϕ < π. The conditions imposed by the
step functions are 0 < −py and 0 < eE

h̄
t + py − ky . In terms

of the polar coordinates in the momentum space, the following
apply:

(i) for 0 < 2t

ωt2
nl

< 1 + v sin θ sin ϕ, the allowed regions are

�+ − φ0 < φ < 0 or −π < φ < −π + φ0 − �+, with

φ0 = arcsin

(
2t

ωt2
nl

)
,

�+ = v sin θ tan φ0 [cos (ϕ + φ0) + 2 sin ϕ csc φ0] . (B5)

(ii) for 1 + v sin θ sin ϕ < 2t

ωt2
nl

, the allowed region for φ is

−π < φ < 0.

Into the backward direction (negative projection on the
electric field) −π < ϕ < 0. The conditions imposed by the
step functions now become 0 < −py + ky and 0 < eE

h̄
t + py .

In terms of the polar coordinates in the momentum space, the
following apply:

(i) for −2v sin θ sin ϕ < 2t

ωt2
nl

< 1 − v sin θ sin ϕ, the al-

lowed regions are − (φ0 − �−) < φ < 2v sin θ sin ϕ or −π −
2v sin θ sin ϕ < φ < −π + φ0 − �−, where

�− = v sin θ tan φ0 cos(ϕ + φ0). (B6)

(ii) for 1 − v sin θ sin ϕ < 2t

ωt2
nl

, the allowed region for φ is

−π − 2v sin θ sin ϕ < φ < −2v sin θ sin ϕ.

Since v ≡ vg/c � 1/300 � 1, one can neglect higher-
order correction in v. The conditions for case (i) simplify
into 0 < 2t

ωt2
nl

< 1 and −φ0 < φ < 0 or −π < φ < −π + φ0.

Therefore

M(1)

(
θ,ϕ,

ω

c
,t

)

= e2ω

8π4

∫ φ0

0
dφ(cos2 φ cos2 ϕ + sin2 φ sin2 ϕ)

× exp

[
−π

2
ω2t2

nl cos2 φ

]
;

M(2)

(
θ,ϕ,

ω

c
,t

)

= e2 cos2 θ

8π4

∫ φ0

0
dφ(cos2 φ sin2 ϕ + sin2 φ cos2 ϕ)

× exp

[
−π

2
ω2t2

nl cos2 φ

]
. (B7)

Similarly, the conditions for case (ii) simplify: 2t

ωt2
nl

> 1

and −π < φ < 0. Thus

M(1)

(
θ,ϕ,

ω

c
,t

)

= e2

16π4
ω

∫ 0

−π

dφ cos2 (φ − ϕ) exp

[
−π

2
t2
nlω

2 cos2 φ

]

= e2

32π3
ωe−πt2

nlω
2/4

[
I0

(
πt2

nlω
2

4

)
− cos 2ϕI1

(
πt2

nlω
2

4

)]
;

M(2)

(
θ,ϕ,

ω

c
,t

)

= e2

16π4
ω cos2 θ

∫ 0

−π

dφ sin2 (φ − ϕ) exp

[
−π

2
t2
nlω

2 cos2 φ

]

= e2

32π3
ωe−πt2

nlω
2/4 cos2 θ

[
I0

(
πt2

nlω
2

4

)

+ cos 2ϕI1

(
πt2

nlω
2

4

)]
. (B8)

These expressions lead to the final results for the spectral
emittance Eqs. (13) and (14).

Next we consider the angular and polarization dependence
of the radiated power per unit area defined as the spectral
intensity L(λ) (θ,ϕ,t), Eq. (15). In the above formulas one can
first integrate over ω in the range 0 < ω < 2t

t2
nl

csc φ, and then

integrate over φ in the region [0, π
2 ]. This leads to Eqs. (16)

and (17) for the luminosity integrated over frequencies.

APPENDIX C: PHASE SPACE OF THE
TWO-PHOTON PROCESS

As in QED,21 the two-photon diagram, Fig. 1(b), gives rise
to the following S-matrix element

F
(λ,λ′)
2 (p,p′,k,k′)

= ie2

4
√

ωω′εε′F
(λ,λ′)
2 (2π )4δ[vg(p + p′) − c(k + k′)],

(C1)

where

F (λ,λ′)
2 = v†(−p′)�(λ,λ′)u(p) (C2)

and

�(λ,λ′) =
(vσ · e′(λ′))i

(k − p′) − σ ·(k − p′)
v[(k − p′)2 − (k − p′)2]

(vσ · e(λ))

+ (vσ · e(λ))i
(p − k) − σ ·(p − k)

v[(p − k)2 − (p − k)2]
(vσ · e′(λ′)).

The outcome of the integral in Eq. (12) is dictated by the size
of the phase space and by the powers of the small parameters
v = vg/c and αQED = e2/ (h̄c). The power of v is the same
as in the one-photon case, see Eq. (10). Yet there appears an
additional power of αQED.

Let us estimate the phase space. The conservation of
momentum and energy for the two-photon process imply that

p + p′= k + k′; vg(p + p′) = c(k + k′). (C3)

Since (k + k′)2 � (kx + k′
x)2 + (ky + k′

y)2 one still has the
inequality v2(p + p′)2 − |p + p′|2 � 0. Just like in the one-
photon case (Appendix A), utilizing v � 1 leads to the
constraints φ − φ′ ≈ π and p′ ≈ p. The phase space of the
two-photon case is thus roughly of the same order as that of
the one-photon process. Therefore this two-photon process can
be neglected.
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