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The surface quantum Hall state, magnetoelectric phenomena, and their connection to axion electrodynamics
have been studied intensively for topological insulators. One of the obstacles for observing such effects comes
from nonzero conductivity of the bulk. To overcome this obstacle, we propose to use an external magnetic
field to suppress the conductivity of the bulk carriers. The magnetic field dependence of galvanomagnetic
and electromagnetic responses of the whole system shows anomalies due to broken time-reversal symmetry
of the surface quantum Hall state, which can be used for its detection. In particular, we find negative linear dc
magnetoresistivity and a quadratic field dependence of the Hall angle, shifted rf cyclotron resonance, nonanalytic
microwave transmission coefficient, and saturation of the Faraday rotation angle with increasing magnetic field
or wave frequency.
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I. INTRODUCTION

Unlike ordinary band insulators, semiconductors or
semimetals, a recently identified class of materials—
topological insulators (TIs) (Refs. 1–6)—exhibit unusual
conducting states on sample boundaries. On the surface of
a three-dimensional TI, such a state is characterized by a
nodal spectrum with a single Dirac cone (or, in general,
with odd number of Dirac cones). If time-reversal symme-
try (TRS) is broken, an energy gap � is induced at the
Dirac points, and the surface state exhibits the anomalous
quantum Hall (QH) effect.7–10 Although the generation of
a sizable Dirac gap requires an effort, the surface quantum
Hall state in TIs is of great interest because it gives rise
to rich magnetoelectric phenomena7–12 specific to axion
electrodynamics.13

There is however a serious obstacle for identifying
the surface-related magnetoelectric phenomena in three-
dimensional TIs. It stems from dissipative bulk conductivity
which generally cannot be ignored because of the complex
band structure of three-dimensional TI where the Fermi
level does not necessarily lie in the bulk band gap or
crosses both the surface and bulk states.14–17 For a TI film
with thickness d, bulk zero-field dc conductivity � and
surface QH conductivity σ

H
∼ e2/h, the contribution of the

surface with respect to the bulk is characterized by parameter
e2/hd�.10 It has been shown that the well-resolved surface
magnetoelectric effects, such as the Kerr or Faraday rotation,
require sufficiently large values of e2/hd�.7,10,11 If, however,
the bulk conductivity is much larger than the surface one, i.e.,
e2/hd� � 1, is it still possible to resolve surface magneto-
electric effects in TIs? In this paper, we demonstrate such a
possibility on several different examples of electrodynamic
phenomena.

We show that the surface contribution to the electrody-
namics of TIs becomes more pronounced when the bulk
conductivity is suppressed by an external magnetic field B
and by finite frequency ω of an applied ac electromagnetic
field. This can be seen from Boltzmann transport theory
expressions for the longitudinal �

L
and transverse (Hall) �

H

bulk conductivities (see, e.g., Refs. 18 and 19):

�
L

= �
1 − iωτ

[1 − iωτ ]2 + �2τ 2
, �

H
= �

�τ

[1 − iωτ ]2 + �2τ 2
,

(1)

where ω and the cyclotron frequency � = eB/mc are both
assumed much smaller than the frequency �/h̄ associated
with the surface Dirac gap �:

ω,� � �/h̄, (2)

m is the effective cyclotron mass and τ is the elastic scattering
time. Clearly, with increasing |�|τ and ωτ , the real parts
of conductivities �

L,H
can be made comparable with e2/hd,

even though for the zero-field dc case e2/hd� < 1. Under
these conditions, the TRS breaking on the TI surface leads to
anomalous galvanomagnetic and electromagnetic responses
of the whole system. In particular, we find (i) negative linear
dc magnetoresistivity and Hall angle quadratic with B, (ii) rf
cyclotron resonance at shifted frequency

ωres = d�

τ |σ
H
| + |�|, (3)

(iii) nonanalytic B-dependence of the microwave transmission
coefficient, and (iv) saturation of the Faraday rotation angle
with increasing magnetic field or wave frequency. Below we
explain in detail how these anomalies are related to the surface
QH state and how they can be used for its experimental
identification.

The paper is organized as follows. In Sec. II, we formulate
the main equations of electrodynamics of a TI film and
discuss approximations used throughout the paper. Then we
present the solutions of this electrodynamic problem for
different physical situations: galvanomagnetic phenomena
(Sec. III), cyclotron resonance (Sec. IV), and electromagnetic
transmission and Faraday rotation effects (Sec. V). Finally, in
Sec. VI, we summarize.
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FIG. 1. (Color online) (a) Schematic geometry of a galvanomag-
netic experiment with a TI film subject to perpendicular dc magnetic
field B and electric current I. Magnetic fields Bt,b at the outer top
and bottom surfaces are generated by the current (see, text). dc
longitudinal resistivity ρxx (b) and Hall angle ρyx/ρxx (c) versus
external magnetic field B and normalized bulk conductivity d�/σ

H
;

ρxx and B are in units of 1/� and mc/eτ , respectively. Gray regions
are dielectric media.

II. FORMULATION OF THE PROBLEM

TRS breaking on the surface of a TI can be achieved
by coating it with thin layers of a ferromagnetic (FM)
material,7,20,21 magnetized perpendicularly to the TI film plane
by an external dc magnetic field B [see, Fig. 1(a)]. The
FM magnetization acts on the electron spin, generating an
energy gap � at the Dirac point, which can be described by a
Hamiltonian H = (−1)svσp + �σz,9 where σ = (σx,σy,σz)
are the spin Pauli matrices, and v and p are the velocity and
momentum for top s = +1 (t) and bottom s = −1 (b) surfaces.
It is assumed that the Fermi level lies within the gap � such that
both surfaces of the TI have vanishing dissipative longitudinal
conductivities and nonzero quantized Hall conductivities:22

σ t,b
H

= e2νt,b/h, with half-integer filling factors νt,b.7,10 If
the variation of B is restricted by Eq. (2), the surface
states remain on the QH plateaus, and σ t,b

H
do not depend

on |B|.23

We also assume that the surface states respond to a time-
dependent electromagnetic (EM) field (∝ e−iωt ) adiabatically.
This is justified for low frequencies ω � �/h̄ which can, at the

same time, be much smaller than the plasma frequency (see be-
low). In particular, the surface states remain dissipationless,7,9

i.e., the surface current density induced by the electric field
E(r) can be written as

j
S
(r) =

[
σ t

H
δ

(
z − d

2

)
+ σb

H
δ

(
z + d

2

)]
ẑ × E(r), (4)

where ẑ is the unit vector perpendicular to the film. The use
of the delta functions in Eq. (4) is justified if the penetration
lengths of the surface states into the bulk is much smaller than
the film thickness d. Also, in this case, there is no magnetically
induced energy gap in the interior of the film. Therefore,
the bulk conductivity tensor contains both the dissipative
(longitudinal) �

L
and Hall �

H
components which are both

ω-dependent and given for a single (lightest) carrier group by
the Boltzmann transport theory expressions (1). The resulting
bulk current density is

j
B
(r) = �

L
E(r) + �

H
ẑ × E(r). (5)

To find the EM field inside the TI, we use the thin-film
approximation d � c/ω, which for the upper frequency
limit h̄ω = � = 10 meV implies d � ch̄/� ≈ 20 μm. In
addition, the film thickness, d, should be smaller than the
skin penetration depth, δ:

d � δ = Re

√
ic2

4πω

1 − iωτ

�
= c

ωp

Re

√
1 + i

ωτ
, (6)

where ωp = 4πne2υ
F
/p

F
is the plasma frequency of the bulk

carriers with density n, Fermi velocity υ
F
, and momentum

p
F
. For n = 1014 cm−3 and υ

F
= 0.5 × 106 m s−1, the plasma

frequency is ωp ≈ 1013 s−1, yielding the lower bound for the
skin depth ∼c/ωp = 0.3 μm [see Eq. (6)]. Note also that
the plasma frequency ωp ≈ 1013 s−1 is of the order of the
frequency �/h̄ ≈ 1.5 × 1013 s−1 related to the surface gap
� = 10 meV. Therefore, in addition to requirement ω � �/h̄,
we have ω � ωp.

Under condition (6), the electric field E inside the film
can be approximated by the average value 〈E〉 = ∫ d/2

−d/2
E dz/d. The equation for 〈E〉 is obtained by averaging the
Maxwell equation ∇ × B(r) + (iεω/c)E(r) = (4π/c)[j

B
(r) +

j
S
(r)] over the film thickness (ε is the dielectric constant):

d

(
�

L
− iεω

4π

)
〈E〉 + (d�

H
+ σ

H
)ẑ × 〈E〉

=
( c

4π

)
ẑ × (Bt − Bb), σ

H
=

(
e2

h

)
(νt + νb). (7)

The external EM perturbation enters via magnetic fields Bt,b

at the outer top and bottom surfaces of the TI. We specify Bt,b

in each concrete situation considered below.

III. GALVANOMAGNETIC PHENOMENA

We begin by considering dc galvanomagnetic phenomena
in the standard four-contact geometry [see, e.g., Ref. 15 and
Fig. 1(a)] in the presence of perpendicular magnetic field B
and electric current I. The current induces the jump of the
magnetic field across the film, ẑ × (Bt − Bb) = (4π/cw)I, so
that Eq. (7) determines the longitudinal and Hall electric fields
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in terms of given I : 〈Ex〉 = ρxx I/dw and 〈Ey〉 = ρyx I/dw,

where the longitudinal ρxx = �
L
/(�2

L
+ [�

H
+ σ

H
/d]2) and

Hall ρyx = −ρxx[�
H

+ σ
H
/d]/�

L
resistivities are given

by

ρxx = 1

�

[(
1 + σ

H

d�
�τ

)2

+
(

σ
H

d�

)2]−1

, (8)

〈Ey〉
〈Ex〉 = ρyx

ρxx

= −�τ − σ
H

d�
(�2τ 2 + 1). (9)

For σ
H

= 0, we recover the usual results of the magnetotrans-
port theory: ρxx = 1/� and 〈Ey〉/〈Ex〉 = −�τ . The details of
the method used in our calculations are very well described in
literature (see, e.g., Refs. 18 and 19). The B-field independent
resistivity ρxx = 1/� reflects strong cyclotron drift in the
direction of the current (x), induced by the crossed magnetic
B, and electric Hall Ey fields. Moreover, this conclusion
remains valid in the nonlinear electrodynamics where the
dependence of the bulk conductivity on the magnetic field
of the current (or of an external EM wave) is taken into
account.24

However, according to Eq. (9), the nonzero surface conduc-
tivity generates an additional Hall field ∝ σ

H
/d� that affects

the cyclotron drift in the direction of the current. For this
reason, ρxx Eq. (8) acquires the magnetic field dependence.
Moreover, since on the QH plateau, σ

H
does not change

with |B|, resistivity ρxx(B) exhibits linear behavior, whereas
the Hall angle Eq. (9) has the anomalous quadratic B term
[Figs. 1(b) and 1(c)]. We note that the anomalous terms in
ρxx and ρyx remain identifiable even if several bulk carrier
groups are taken into account, because in that case, the bulk
resistivities are still regular analytic functions of B which can
be subtracted from the total ρxx and ρyx .

IV. CYCLOTRON RESONANCE

Let us consider now the bulk cyclotron resonance. It can be
realized in a contactless setup where the sample is placed
in the maximum of the electric field of an rf resonator
normal mode, which generates an antisymmetric magnetic
field across the sample, i.e., Bt = −Bb. At the rf frequencies,
the displacement current contribution εω/4π is usually smaller
than conductivity �

L
, so that Bt induces an average ac current

density 〈j〉 = c ẑ × Bt /2πd in a contactless way. The relevant
observable is the longitudinal ac resistivity which we find from
Eq. (7) as

ρxx(ω) = (1 − iωτ )/�(
1 + σ

H

d�
�τ

)2 + ( σ
H

d�

)2
(1 − iωτ )2

. (10)

For ωτ > 1, it has a resonance in both ω and B dependencies,
shown in Fig. 2. Note that the linear on-resonance relation
between ω and B is the hallmark of the cyclotron resonance.
However, the resonant frequency Eq. (3) is shifted with respect
to |�| because of the additional drift in the direction of
the current, induced by the surface contribution to the Hall
electric field ∝ σ

H
/d� in Eq. (9). For bulk Drude conductivity

� = ne2υ
F
τ/p

F
, the frequency shift depends on the bulk

FIG. 2. (Color online) Cyclotron resonance: real part of longitudi-
nal ac resistivity ρxx [see, Eq. (10)] versus frequency ω and magnetic
field B (in units of 1/�, 1/τ , and mc/eτ , respectively); d�/σ

H
= 10.

carrier density n, Fermi velocity υ
F
, and momentum

p
F

= h̄k
F

as

ωres = 2πndυ
F

|νt + νb|kF

+ |�|. (11)

For n = 1014 cm−3, d = 50 nm, υ
F

= 0.5 × 106 m s−1, and
|νt + νb| = 1, the resonance frequency shift is ωres − |�| ≈
1012 s−1, i.e., well below both �/h̄ ≈ 1.5 × 1013 s−1 and
ωp ≈ 1013 s−1.

V. ELECTROMAGNETIC TRANSMISSION
AND FARADAY ROTATION

We now turn to microwave spectroscopy which also allows
one to probe the surface states in TIs.16 We consider an EM
wave incident normally at the bottom surface of a TI and
will analyze both the transmission coefficient and the Faraday
rotation of the EM field plane in the transmitted wave [see, also
Fig. 3(a)]. This situation involves a new conductivity scale,
viz. the inverse impedance of the dielectric media surrounding
the TI, Z−1

0 = c(
√

εt + √
εb)/4π , where εt,b are the dielectric

constants of the top and bottom materials [shown in gray in
Fig. 3(a)]. The new conductivity scale Z−1

0 is important
because it is much larger than the surface QH conductivity
σ

H
: the product Z0|σH

| is a small parameter proportional to
the fine structure constant α = e2/ch̄:7,9,10

Z0|σH
| = 2α|νt + νb|

(
√

εt + √
εb)

� 1. (12)

Therefore, the response of the surface state to an EM wave
is generically rather weak. To proceed, we note that the
electric and magnetic fields on the outer surfaces of the TI
film are

Et ≈ 〈E〉, Bt = √
εt ẑ × Et , (13)

Eb = Ei + Er ≈ 〈E〉, Bb = √
εb ẑ × (Ei − Er ), (14)

where t refers to the transmitted wave on the top surface,
whereas i and r label the incident and reflected waves
on the bottom (b) surface. In the thin film approximation,
the electric field on each surface equals to the average
field. Eliminating the reflected field through Er ≈ 〈E〉 − Ei ,
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FIG. 3. (Color online) (a) Schematic geometry of EM transmis-
sion spectroscopy of a TI film (see also text). (b) Magnetic-field
dependent part of the transmission coefficient for σ

H

= 0 (solid

curves) and for σ
H

= 0 (dashed curves); ωτ = 1 and Z0d� = 1.
(c) Same for ωτ = 35 and Z0d� = 40. (d) Faraday angle in units of
α = e2/ch̄ versus magnetic field for zero and finite bulk conductivity
�; ωτ � 1. (e) Faraday angle versus frequency for zero and finite
bulk conductivity �; �τ = 10. B and ω are in units of mc/eτ

and 1/τ , respectively. All data for εt,b = 1 and thin film with
Z0dεω/4π ∼ dεω/c � 1.

we express the magnetic field difference as Bt − Bb ≈ ẑ ×
[(

√
εt + √

εb)〈E〉 − 2
√

εb Ei], insert this into Eq. (7), and
solve it for 〈E〉. Since the incident electric field Ei can be
regarded real, we present the solution for the real part of the
transmitted wave:

Re Et ≈ Re 〈E〉 = T (Ei cos θ + Ei × ẑ sin θ ), (15)

T = 2

1 + √
εt/εb

√
a2

L
+ a2

H
, θ = arctan

a
H

a
L

, (16)

where T is the transmission coefficient, θ is the rotation angle
of the EM field plane with respect to the incident wave (Faraday
angle), and a

L
(ω,B) and a

H
(ω,B) are real functions given by

a
L

= Re
1 + Z0d(�

L
− iεω/4π )

[1 + Z0d(�
L

− iεω/4π )]2 + Z2
0[d�

H
+ σ

H
]2

,

(17)

a
H

= Re
Z0(d�

H
+ σ

H
)

[1 + Z0d(�
L

− iεω/4π )]2 + Z2
0[d�

H
+ σ

H
]2

.

(18)

Similar to resistivity Eq. (8), the TRS breaking leads to a non-
analytic linear B dependence of the transmission coefficient

Eq. (16). To illustrate this, we extract the large zero-field value
T (0) from T (B) and plot in Figs. 3(b) and 3(c), the difference
T (B) − T (0) for σ

H

= 0 (solid curves) and for σ

H
= 0 (dashed

curves). The magnetic field range in which T (B) − T (0) ∝ |B|
can be tuned by varying parameters ωτ and Z0d�. This should
help in finding the optimal regime for observation of the
predicted anomalous magnetic-field dependence of T .

Figure 3(d) shows the low-frequency Faraday angle θ

Eq. (16) in units of the fine structure constant α as a
function of the magnetic field B for zero and finite bulk
conductivity �. For � = 0, the Faraday angle contains only
the surface contribution θ ≈ Z0σH

= 2α(νt + νb)/(
√

εt +√
εb) ∝ sgn(B).7,9,10 For � 
= 0, the bulk contribution makes

the dependence θ (B) nonmonotonic with the following
asymptotics:

θ ≈ Z0σH

1 + Z0d�
, �τ � 1, θ ≈ Z0σH

, �τ � 1. (19)

The low-field limit (�τ � 1) agrees with the result of
Ref. 10 which found θ smaller than the surface contribution
Z0σH

for nonzero bulk conductivity �, e.g., θ ≈ σ
H
/d� �

Z0σH
for Z0d� � 1. However, for strong fields �τ � 1,

we find saturation of θ (B) precisely at the surface value
Z0σH

because of the suppression of the bulk conductivity
via classical cyclotron motion. This way of extracting the
topological surface contribution may have an advantage over
the previously proposed low-field detection scheme7 because
the magnetization of the FMs in strong fields leads to a more
robust surface Dirac gap �. As seen from Fig. 3(e), the
frequency dependence of the Faraday angle θ (ω) also saturates
at the surface value Z0σH

, which can be used for its detection
as well.

VI. SUMMARY

In summary, we have investigated galvanomagnetic and
electromagnetic properties of topological insulators in which
time-reversal symmetry is broken due to the surface quantum
Hall effect. Our model includes both the dissipationless
quantum Hall conductivity on the surface and the classical
magnetoconductivity in the bulk of the system. Although
the zero-field dc bulk conductivity may significantly exceed
the surface one, the surface contribution can still be de-
tected through anomalous magnetic field dependencies of
electrodynamic responses, revealing the underlying broken
time-reversal symmetry. With appropriate modifications, our
findings can be extended to HgTe quantum wells which
also support single-valley Dirac fermions25–29 and show a
pronounced Faraday effect.30
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H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C.
Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).

26G. Tkachov, C. Thienel, V. Pinneker, B. Büttner, C. Brüne,
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