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Helical antiferromagnetic ordering in the lowest Landau level of a semiconductor superlattice
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When subjected to a tilted magnetic field, the ground state of a semiconductor superlattice (SL) with two
identical quantum wells per unit cell is shown to exhibit different magnetic configurations that are dependent
on the strength and direction of the field and the SL characteristics. Intra- and interunit cell tunneling between
the wells, assumed to be infinitely attractive, generate an energy miniband structure of the lowest Landau level
that, in cooperation with the Zeeman splitting, creates, at certain points in the momentum space, an energy
difference between opposite-spin single-particle states that can be overcome by the Coulomb interaction. Within
the Hartree-Fock approximation, we show that the minimum free energy is reached in ground states with different
magnetic characteristics: ferromagnetic, helical antiferromagnetic (HAFM) or paramagnetic, depending on the
system parameters and the external field. The HAFM phase results from an antiferromagnetic coupling of opposite
electron spins that are rotated in respect to the ẑ axis by an angle that varies continuously within the Brillouin
zone between [0,π/2]. As a result, a finite polarization is registered in real space. The self-consistent equation
satisfied by the inclination angle is solved numerically at T = 0 K for an array of SL parameters. Its solutions
demonstrate that a continuous driven transition between ferromagnetic, HAFM, and paramagnetic states can be
realized by adjusting the parameters of the system.
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I. INTRODUCTION

The complex interplay that occurs in electronic systems of
reduced dimensionality between the Coulomb interaction and
spin effects has long been recognized as a most interesting
area of research.1 The fundamental premise for the formation
of a magnetically ordered state in a simple Fermi system is the
existence of a degeneracy between energy levels of opposite
spins.2–4 Under these circumstances, the minimum energy
of the interacting system in the presence of the exchange
component of the Coulomb interaction is reached when a long-
range order between electrons of opposite spins is realized.
The energy is minimized by allowing for the rotation of the
electron spins, such that the local spin polarization is a function
of the momentum in phase space. When this long-range order
is established between the electrons of same momentum,
the magnetic phase corresponds to canted antierromagnetism
(CAF), whereas when the electron momenta differ by the same
value Q, a spin-density-wave (SDW) state is realized. If in
metallic systems the required energetic degeneracy occurs only
in certain cases, semiconductor heterostructures, whose band
structure is engineered in the growth process, can present this
opportunity frequently.

The emergence of various magnetic phases in the presence
of opposite-spin energetic degeneracy is usually recognized
from the analysis of spin instabilities. Early on, it was
established that in a single GaAs quantum well system placed
in a tilted the magnetic field, a geometry which allows for the
Zeeman splitting to become comparable with the Landau-level
spacing, spin transitions that occur between |0, ↑〉 and |1, ↓〉
are leading, in the presence of the Coulomb interaction,
to an abrupt paramagnetic-ferromagnetic transition.5,6 In a
simple description, such an outcome can be understood as a

consequence of the independence of the Coulomb interaction
matrix element on the two-dimensional (2D) momentum k
that leads to single-particle energies of fixed values. Ulterior
experimental works supported this theoretical picture.7,8 Fur-
ther, the robustness of the ferromagnetic-paramagnetic phase
transition was explored in the case of high-density limit in
various other configurations.9,10

Extending the problem of spin instabilities in double-
quantum-well systems11,12 or multilayers13,14 was based on
the insight that the motion of the electrons in a direction
perpendicular to the layers modifies the energy spectrum and
enhances the many-body interactions. Experimental evidence
of such phenomena was already obtained in the case of the
double layer.15 In this paper we discuss the existence of
several magnetic phases in the case of a superlattice (SL)
with two identical quantum wells per unit cell placed in a
tilted magnetic field. In a simple description, this system
is obtained by periodic replication, along a given spatial
direction, of a double-quantum-well structure. Such a setup
exploits the periodicity along the SL axis that is responsible,
in the presence of tunneling between the wells, for the
formation of a miniband spectrum and the existence of a
Landau-level structure in the planes perpendicular on the SL
axis, as established experimentally.16 Ideally, the experimental
realization of the theory discussed below involves SL with high
mobility and thin barriers, to minimize disorder.

We show that in the miniband regime, the lowest Landau
level can acquire an energetic configuration, largely controlled
by the inter- and intraunit cell tunneling and the Zeeman
interaction, which permits the realization of opposite-spin
energetic degeneracy. In this instance, for a certain range on
SL parameters, the free energy of the system is minimized
by a helical antiferromagnetic (HAFM) long-range order,
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characterized by pairing between electrons of equal momen-
tum and opposite spins. The total spin of the pair is inclined
versus the SL axis with an angle that varies continuously
within the first Brillouin zone between 0 and π/2. This
configuration represents a nontrivial spatial extension of the
CAF ground state discussed in the case of a double-quantum-
well system11,12,17 and coupled multilayer structures.14 The
CAF state is realized by pairing electrons with the same
momentum and opposite spins, whose total spin, however,
is inclined at a constant angle. Moreover, we show that by
adjusting the external parameters, the SL can be made to
exhibit a ferromagnetic, paramagnetic, or a HFAM state.
The transition into the HAFM from either paramagnetic or
ferromagnetic order is of first order and is driven by the external
magnetic field.

Below, we present in order a description of the system in
Sec. II, followed by the analysis of the many-body problem
in Sec. III. In Sec. IV the fundamental approximation and the
ensuing self-consistent equations that control the solutions to
the problem are presented, while in Sec. V we illustrate and
discuss the results.

II. SYSTEM DESCRIPTION

The basic SL system considered in this problem is repre-
sented by a sequence of unit cells equally distributed along the
ẑ axis at a distance b. In each unit cell there are two infinitely
attractive quantum wells, separated by a distance a (a < b),
whose potential has strength −λ. This choice is justified by
the fact that in this case there is only one significant bound
state in the well, of energy ε0 = −h̄2κ2/2m∗ and eigenstate
ν(z) = √

κe−κ|z|, where κ = 2m∗λ/h̄2 (m∗ is the effective
mass).

The intraunit cell tunneling creates two energy eigenstates

ϕα(z) = 1√
2

[ν(z − a) + αν(z + a)], (1)

indexed by α = 1 for the symmetric S state and α = −1 for
the antisymmetric A state. The corresponding energies are
εα = −α	SAS/2, where 	SAS = 4ε0e

−κa . We assume that
the SL parameters are chosen such that 	SAS is smaller than
the Landau energy. Within the tight-binding approximation,
the single-particle eigenstates are Bloch waves propagating
along the SL axis,

ζα(kz,z) = 1√
N

∑
l

eikzlbϕα(z − lb), (2)

normalized by

Nα = {1 + α(1 + 2κa)e−2κa + α[1 + κ(b − 2a)]

× e−κ(b−2a) cos kzb}. (3)

Equation (2) explicitly introduces the electron momentum
along the ẑ direction as a good quantum number, which
on account of periodic boundary conditions assumes a qua-
sicontinuum spectrum kz = 2π

Nb
j (j = −N

2 ,N
2 ). The single-

particle energies are calculated by considering that tunneling
is significant only between wells in adjacent cells. When

measured in respect with the minimum in the lowest miniband,
they are given by

ε̄α(kz) = α

[
−	SAS

2
+ 	

2
(1 − cos kzb)

]
, (4)

where the + sign corresponds to S, while − to A: 	 =
2mλ2

h̄2 e−κ(b−a).
In the presence of a magnetic field of magnitude B, inclined

in respect with the SL axis, the electrons with spin projection
σ = {+1, − 1} acquire γ ∗μBσB/2 Zeeman energy, where γ ∗
is the effective gyromagnetic factor, while their transverse
motion is quantized in Landau levels spaced by the cyclotron
energy eBz/m∗, dependent only on the component of the
field perpendicular on the x-y plane.18 In the following
considerations, all the electrons are considered to be in the
lowest Landau level (LLL) whose index will not be explicitly
declared henceforth.

The three-dimensional (3D) electronic eigenstate for an
electron of momentum ky,kz and spin σ in a state α is obtained
by multiplying Eq. (2) by the usual 2D wave function of the
LLL inside each well (x-y motion) and the spin function χσ ,

�α,ky,kz,σ (x,y,z) = ζα(z)
1√
L

eiky l
1√

2π1/2
e
− (x+l2ky )2

2l2 χσ . (5)

ky is subject to periodic boundary conditions determined by
L, the length of the sample in the y direction, its value being
an integer multiple of 2π/L. l = √

h̄c/eBz is the magnetic
length. The are NL = L2/(2πl2) states indexed by ky in each
Landau level.

Finally, with input from Eq. (4), the corresponding single-
particle energy is

εα,kz,σ = h̄ω

2
+ ε̄α,kz

+ 1

2
γ ∗μBBσ. (6)

The result describes a sequence of Landau minibands spin
split by the Zeeman interaction, a picture known to give
realistic, semiquantitative results.19 The interplay of the three
energies introduced by the problem, 	SAS , γ ∗μB , and 	,
determine the miniband structure of the system depicted in
Fig. 1 which, in the presence of the Coulomb interaction of
the order e2/εl (ε is the dielectric constant of the system)
can lead to a specific magnetic phase. We are, in particular,
targeting situations when a degeneracy between opposite-spin
states occurs. It is easy to see from Eq. (4) that this happens
at the edge of the Brillouin zone where the difference between
the opposite-spin states in minibands |A,kz, ↓〉 and |S,kz, ↑〉
is reduced by both the Zeeman splitting and the band widening
effect,

δ = (
EA,kz,↓ − ES,kz,↑

) |kz=π = 	SAS − 	 − γ ∗μBB. (7)

By appropriately adjusting the magnitude of the tunneling
probability that controls 	SAS and 	 and, independently, the
intensity of the magnetic field B, the difference can become
comparable with the Coulomb exchange energy interaction,
leading to the development of spin instabilities. This scenario
was explored in Refs. 11,12 and 17, where, in the case of a sin-
gle bilayer system, an incipient canted antiferromagnetic state
was diagnosed from the softness of the poles of the spin-density
response function. The extension of this problem to multilayer
systems, discussed in Ref. 14, uses as a basis functions with
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a layer index and considers a correlation parameter between
adjacent layers. Moreover, in the absence of a minibandwidth
to describe the energy spectrum, the relevant quantity in
analyzing the transition remains the Zeeman splitting, which is
always positive and needs to be greater or equal to a minimum
value imposed by the electron interaction. In turn, the latter
is dependent on the Zeeman splitting through the number
of up and down electrons involved. In our approach, which
follows the general outline of Ref. 13, the presence of kz as a
good quantum number imposed by the periodicity of the SL
structure and the introduction of the miniband structure permit
the realization of the single-state spin degeneracy through the
variation of a parameter that is independent of the magnetic
field. Thus, we obtain a continuous variation of the inclination
angle of the antiferromagnetic coupling between 0 and π/2
throughout the Brillouin zone, resulting in a HAFM order. In
this sense, our problem represents a nontrivial extension of the
double-quantum-well situation.

III. THE MANY-BODY HAMILTONIAN

The properties of the SL described above are now studied
within the context of a many-body interaction intermediated
by the Coulomb repulsion, for values of the system parameters
that favor the creation of spin instabilities. The Hamiltonian
involves particles within the lowest three minibands, with
electrons in |S,kz, ↓〉 playing only a passive role, that of
providing exchange interaction to electrons in |A,kz, ↓〉,
without being involved in the dynamics of the system. Their
status is left unchanged by the formation of a HAFM order.
The choice of electron operators and their dependence on
momentum is based on the insight provided by the Coulomb
interaction matrix element in 2D which was found to be
independent of the in-plane momentum.5,20 We anticipate that
the special effect that the Coulomb interaction exerts in the
case of the SL originates only in the coupling along the
ẑ axis. Consequently, the electron states are represented by
creation and destruction operators indexed after the miniband
kz and spin orientation c

†
α,kz,↑,cα,kz,↑ (α = A,S). Because of

translational symmetry along the SL axis, states whose kz

differ by an integer multiple of the reciprocal lattice constant
G = 2π/b are identical.

The kinetic (noninteracting) part of the total Hamiltonian
H0 is obtained by summing all the single-particle energies in
Eq. (6):

H0 =
∑
kz

εS,kz,↓ +
∑

kz,α=A,S

εα,kz,↑c
†
α,kz↑cα,kz↑. (8)

In writing H0, we recognized that the direct summation over
the in-plane components of the electron momentum is equal
to the degeneracy of the Landau level NL, a constant that
multiplies all the terms of the Hamiltonian, and consequently
will be dropped from the calculation.

The interaction part of the Hamiltonian is a sum over all
momenta of the electrons scattered by the Coulomb interaction
between initial states ψα,kz,ky ,σ ,ψβ,kz+Qz+qz,ky+Qy+qy ,σ ′ and
final states ψα,kz+qz,ky+qy ,σ ,ψβ,kz+Qz,ky+Qy,σ ′ , given in Eq. (5).
To focus the attention on the ẑ-direction scattering, the required
summations after ky (which generates NL as above), qy and Qy

are incorporated in the expression of the Coulomb interaction
matrix element. Thus, we write

Hint = 1

2

∑
α,β=A,S

∑
kz,qz,Qz

∑
σ,σ ′

vαβ(kz,qz,Qz)

× c
†
α,kz+qz,σ

c
†
β,kz+Qz,σ ′cβ,kz+Qz+qz,σ ′cα,kz,σ .

(9)

It is important to note that, because of the periodicity of the SL,
the momentum exchanged by two interacting electrons along
the ẑ direction is defined only up to an integer multiple of G =
2π/b when umklapp processes are being included. Since all the
other terms in the expression of the Hamiltonian are explicitly
periodic, it is useful to transform the interaction in a periodic
function by performing the change qz −→ qz + nG, where qz

is now strictly within the first Brillouin zone qz ∈ [−π/b,π/b].

FIG. 1. (Color online) The band structure of a superlattice with
two wells per unit cell in the presence of a tilted magnetic field that
spin splits each miniband by γ ∗μBB. The minimum energy between
the opposite spin minibands |S,kz, ↑〉 and |A,kz, ↓〉 is realized
at the edge of the Brillouin zone, where δ = 	SAS − 	 − γ ∗μBB

(measured in units of e2/εl). When the Zeeman splitting is much
smaller than the minibandwidth, the system parameters are chosen
such that δ = 0.382e2/εl describes a paramagnetic ground state.
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We define therefore the Coulomb interaction matrix element
to be

vαβ(kz,qz,Qz) =
∑

n

∑
qy ,Qy

∫
dr1

∫
dr2�

∗
α,ky+qy ,kz+qz+nG(r1)

×�∗
β,ky+Qy,kz+Qz

(r2)
e2

|r1 − r2|
×�β,ky+Qy+qy ,kz+Qz+qz+nG(r2)�α,ky,kz

(r1).

(10)

The computation of vαβ(kz,qz,Qz) starts by replacing the
Coulomb interaction with its 3D Fourier series e2/εr −→∑


q0
4πe2/εq2

0 , which makes possible the factorization of the

double 3D integral in Eq. (10) into a double integral along the
ẑ axis that defines the form factor Fαβ(kz,qz,Qz), and a double
integral in the 2D plane that corresponds to the x-y interaction
between two electrons in LLL.

Fαβ(kz,Qz,qz) results in the Coulomb interaction-mediated
superposition of the one-electron wave functions in Eq. (2),

Fαβ(kz,qz,Qz) =
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2ζ

∗
α,kz+qz

(z1)ζ ∗
β,kz+Qz

(z2)

× eiqz(z2−z1)ζβ,kz+Qz+qz
(z2)ζα,kz

(z1). (11)

Three different types of form factors are possible in our system,

FSS
AA(kz,qz,Qz) = cos2 qza ± 2e−2κa cos qza

[
cos qza − (1 + 2κa) + 2κ

sin qza

qz

]

±2e−2κ(b/2−a) cos qza cos

[(
kz − qz

2
+ Qz

2

)
b

]
cos

Qzb

2

×
{

cos(b/2 − a)qz − [1 + 2κ (b/2 − a)] cos
qzb

2
+ 2κ

sin qz

(
b
2 − a

)
qz

}
,

FAS(kz,qz,Qz) = cos2 qza + 2e−2κ(b/2−a) cos qza sin

[(
kz − qz

2
+ Qz

2

)
b

]
sin

Qzb

2

×
{

cos(b/2 − a)qz − [1 + 2κ (b/2 − a)] cos
qzb

2
+ 2κ

sin qz

(
b
2 − a

)
qz

}
, (12)

where the upper signs are assigned to the upper index.
After straightforward calculations, with input from (5) and

(12) in Eq. (10), we obtain

vαβ(kz,Qz,qz) = 4πe2

ε

∑
n

Fαβ(kz,qz + nG,Qz)

×
∑

Qy,qy ,q0x

e− l2

2 (q2
y+2iq0xQy+q2

0x )

q2
y + q2

0x + (qz + nG)2

= 2e2

ε

∫ ∞

0
dqe−q2l2/2

×
∑

n

Fαβ(kz,qz + nG,Qz)

q2 + (qz + nG)2

∑
Qy

J0(lQy),

(13)

where, in the second line, the summation over {qy,q0x} was
transformed into an integral in polar coordinates in the usual

fashion, with q =
√

q2
0x + q2

y and J0 the Bessel function of

zero order that results from the angular integration. This
matrix element reflects the intermediate 2D-to-3D character
of our system, a feature that permits the utilization of the
Hartree-Fock approximation in discussing the existence of a
spin-ordered state, as demonstrated in Refs. 2,3 and 21.

At this point, we anticipate that the most favorable choice
for the formation of a long-range magnetic order corresponds
to Qy,Qz = 0, since, as one can see in Fig. 1, the difference
between the opposite spin minibands |kz,S, ↑〉 and |kz,A, ↓〉
becomes small at the edge of the Brillouin zone. This selection
is formally justified in the next section.

Consequently, in Eq. (13),
∑

Qy
J0(lQy) = 1, while the

summation over n in the expression of the form factors
generates

F̃ SS
AA(kz,q) = v0

{
1

2

[
1 + sinh(b − 2a)q

sinh bq
+ sinh 2aq

sinh bq
cos qzb

]

×
[

1 ± 2e−2κa ± 2e−2κ(b/2−a) cos
(
kz − qz

2

)
b cos

qzb

2

]

−
[

sinh(b − a)q

sinh bq
+ sinh aq

sinh bq
cos qzb

]
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×
[
±2e−2κa(1 + 2κa) ± 2e−2κ(b/2−a)[1 + 2κ(b/2 − a)] cos

qzb

2
cos

(
kz − qz

2

)
b

]

± κ
2 sinh qa

q sinh qb
[sinh (b − a) q + sinh qa cos qzb]

×
[

2e−2κa − 2e−2κ(b/2−a) cos
qzb

2
cos

(
kz − qz

2

)
b

]

± e−2κ(b/2−a) sinh 2aq

sinh bq
sin qzb sin

qzb

2
cos

(
kz − qz

2

)
b

± 2κe−2κ(b/2−a) sin qzb

sin qzb

2

[
sinh2 bq

2

q sinh qb
+ sinh (b−a)q

2 sinh (b+a)q
2

q sinh qb
+ sinh2 qa

2

q sinh qb
cos qzb

]

× cos
(
kz − qz

2

)
b
}

, (14)

F̃AS(kz,q) = v0

2

[
1 + sinh(b − 2a)q

sinh bq
+ sinh 2aq

sinh bq
cos qzb

]
, (15)

where

v0 = b

2q

sinh qb

cosh qb − cos qzb
.

IV. HELICAL ANTIFERROMAGNETIC GROUND STATE

The formation of a HAFM ground state is inves-
tigated within the Hartree-Fock (HF) approximation, a
framework extensively used in studies of the proper-
ties of fully occupied Landau levels.5,17,20,22,23 The for-
mal justification of this approximation centers on the
fact that when e2/εl � h̄ωc, the electron excitations
out of filled Landau levels can be treated in a per-
turbative approach.4 The transformation of the inter-
action Hamiltonian Eq. (9) in the HF approximation
is well known,4 so here we will comment only on
the most relevant aspects. Thus, with 〈. . . , . . .〉 denot-
ing the average over the ground state, a characteristic
term of the interaction is factored into three different
contributions:

〈c†α,kz+qz+Qz,σ
c
†
β,kz,σ

′ cβ,kz+qz,σ
′ cα,kz+Qz,σ 〉

= 〈c†α,kz+qz+Qz,σ
cα,kz+Qz,σ 〉〈c†β,kz,σ ′cβ,kz+qz,σ

′ 〉
−〈c†α,kz+qz,σ

cβ,kz+qz,σ 〉〈c†β,kz,σ
cα,kz,σ 〉δQz,0δσ,σ

′

−〈c+
α,kz+qz+Qz,σ

cβ,kz+qz,σ
′ 〉〈c†

β,kz,σ
′ cα,kz+Qz,σ 〉. (16)

The first term on the right-hand side of Eq. (16) is the direct
interaction which is canceled by the positive background,
always present in the analysis of electron systems to assure
charge neutrality. The second is associated with normal
exchange and requires that Q = {Qy,Qz} be zero and σ = σ ′.
The third term describes a spin-dependent pairing order when
the pairing vector Qz is identical for all the opposite spin
pairs of electrons. It is nonzero only when, by intuition
born out of some physical consideration, the ground state
is a priori assumed to be described by a magnetic order-
ing different from the usual paramagnetic or ferromagnetic
configurations. Since in our problem single-particle energies
associated with opposite spins become equal in phase space

at the direct superposition points between |S,kz, ↓〉, and
|A,kz, ↑〉, we choose Q = 0 in this term also. Since Qz

ceases to be relevant, it will be dropped from the index
array.

Consequently, the average interaction energy on a ground
state that assumes 〈c†S,kz,↑cA,kz,↓〉 �= 0, estimated within the HF
approximation, is

〈Hint〉HF = −1

2

∑
α,β=A,S

∑
kz,qz,σ

vαβ(kz,qz)〈c†α,kz+qz,σ
cα,kz+qz,σ 〉

×〈c†β,kz,σ
cβ,kz,σ 〉δσ,σ ′ −1

2

∑
kz,qz

vAS(kz,qz)

×〈c†A,kz+qz,↓cS,kz+qz,↑〉〈c†S,kz,↑cA,kz,↓〉 . (17)

The terms that appear in Eq. (17) correspond, respectively,
to the exchange energy between the electrons in each one of
the minibands, as well as to the exchange between|S,kz, ↓〉
and |A,kz, ↓〉, and to the HAFM potential that is generated
by the interaction of the electrons on |S,kz, ↑〉 and those on
|A,kz, ↓〉.

The microscopic structure of an average of the type
〈c†Skz↑cAkz↓〉 in Eq. (17) is illuminated by performing a canon-
ical Bogoliubov-Valatin (BV) transformation, whose purpose
is, as in many other cases, to recast the system of interacting
electrons into a noninteracting system of quasiparticles. Two
new operators akz

and bkz
are introduced:

cSkz↑ = cos θkz
akz

+ sin θkz
bkz

,
(18)

cAkz↓ = − sin θkz
akz

+ cos θkz
bkz

,

where the angle θkz
is the variational parameter of the

transformation θkz
∈ [0,π/2]. Equations (18) describe two

independent quasiparticles whose spin projection changes
continuously as a function of its momentum, within the first
Brillouin zone. When written for electrons whose momentum
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differs by a finite vector, Eqs. (18) lead to a SDW arrangement,2

while when written for a constant angle θ describe the CAF
phase, discussed in Ref. 17. The magnetic ordering anticipated
in our problem is an extension of the CAF phase throughout
the Brillouin zone.

By substituting the electron operators from the Eqs. (18),
an expression for the ground-state energy is obtained which

depends on averages of the newly introduced operators
akz

and bkz
. In this representation, quasiparticle occupation

numbers correspond to f1kz
= 〈a†

kz
akz

〉 and f2kz
= 〈b†kz

bkz
〉,

while 〈a†
kz
bkz

〉 and〈b†kz
akz

〉 describe excitation processes of the
quasiparticles.

As we inspect the ground-state properties, the latter will be neglected. The ground-state energy becomes

〈H 〉HF =
∑
kz

[
εS,kz,↓ + εS,kz,↑

(
cos2 θkz

f1kz
+ sin2 θkz

f2kz

) + εA,kz,↓
(
sin2 θkf1kz

+ cos2 θkz
f2kz

)]

−1

2

∑
kz,kz

′

[
vSS(kz,k

′
z − kz,0)

(
cos2 θkz

f1kz
+ sin2 θkz

f2kz

) (
cos2 θk′

z
f1k′

z
+ sin2 θk′

z
f2k′

z

)

+ vAA(kz,k
′
z − kz,0)

(
sin2 θkz

f1kz
+ cos2 θkz

f2kz

) (
sin2 θk′

z
f1k′

z
+ cos2 θk′

z
f2k′

z

)
(19)

+ 2vAS(kz,k
′
z − kz,0)

(
sin2 θkz

f1kz
+ cos2 θkz

f2kz

)]
−1

4

∑
kz,kz

′
vAS(kz,k

′
z − kz,π/b) sin 2θkz

sin 2θk
′
z
(f1kz

− f2kz
)(f1k′

z
− f2k′

z
),

with k′
z = qz + kz. Equation (19) is quite general and can be

used to describe the system at all temperatures. At T = 0 K, the
ground state corresponds to f1kz

= 1, while f2kz
= 0. Under

these circumstances, a minimum of 〈H 〉HF as the function of θkz

(a) (b)

FIG. 2. (Color online) The inclination angle in the first Brillouin zone of a superlattice plotted as a function of the tunneling probability,
for the same value of γ ∗μBB = 0.1e2/εl in (a) and for γ ∗μBB = 0.05e2/εl in (b). t increases in the direction of the arrow.
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(a) (b)

FIG. 3. (Color online) The gap function, expressed in e2/εl, in the first Brillouin zone of a SL plotted as a function of the tunneling
probability, for the same value of γ ∗μBB fixed at 0.1 e2/εl in (a) and at 0.05 e2/εl in (b).

is reached when ∂〈H 〉HF/∂θkz
= 0. This condition generates

a self-consistent equation for the angle θkz
. We introduce

the single-particle energies in the HF approximation for the
electrons in the |S,kz, ↑〉 and |A,kz, ↓〉 minibands,

ε̃S,kz,↑ = εS,kz,↑ −
∑
k′
z

vSS(kz,k
′
z − kz) cos2 θk′

z
,

ε̃A,kz,↓ = εA,kz,↓

−
∑
k′
z

[
vAA(kz,k

′
z − kz) sin2 θk′

z
+vAS(kz,k

′
z−kz)

]
,

(20)

and write the inclination angle equation in its consecrated form

tan
(
2θkz

) = gkz

ε̃A,kz,↓ − ε̃S,kz,↑
. (21)

The gap function gkz
is defined by

gkz
=

∑
k′
z

vAS(kz,k
′
z − kz) sin 2θk′

z
. (22)

Equation (21) is a nonlocal, self-consistent expression, since
the solution is dependent on the values of the inclination
angle throughout the Brillouin zone. gkz

is a gap function
since it represents the difference between the energy of the
two quasiparticle states that exist in the HAFM phase, as

one can see by differentiating Eq. (19) with respect to the
corresponding occupation numbers f1kz

and f2kz
, respectively:

E1,2(kz) = 1
2

[
ε̃A,kz,↓ + ε̃S,kz,↑ ∓

√(
ε̃A,kz,↓ − ε̃S,kz,↑

)2 + g2
kz

]
.

(23)

When the single-particle energies, written in the HF approx-
imation, in the opposite spin minibands become degenerate,
ε̃A,kz,↓ = ε̃S,kz,↑, the two quasiparticle energies differ by gkz

.
The stability condition for the SDW phase is ∂2〈H 〉HF /∂θ2

kz
0,

which is always realized when a solution to the gap equation
is found since

∂2〈H 〉HF

∂θ2
kz

=
√(

ε̃A,kz+Qz,↓ − ε̃S,kz,↑
)2 + g2

kz
. (24)

When the expression of the Coulomb interaction is considered
from Eqs. (13), along with the form factors from Eq. (15), the
energies involved in the gap equation, Eq. (21), are

gkz
= e2

b

∫ π

−π

d(k′
zb)

2π

∫ ∞

0
d(qb)e− (ql)2

2 sin 2θ (k′
za)

×FAS(kz,k
′
z − kz), (25)
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FIG. 4. (Color online) The inclination angle in the first Brillouin
zone for as a function of a/b for the same value of the tunneling
probability e−κb = 0.1. The ratio a/b increases in the direction of the
arrow.

ε̃S,kz,↑ = εS,kz,↑ − e2

b

∫ π

−π

d(k′
zb)

2π

∫ ∞

0
d(qb)e− (ql)2

2

× cos2 θ (k′
zb)F̃SS(kz,k

′
z − kz), (26)

ε̃A,kz,↓ = εA,kz,↓ − e2

b

∫ π

−π

d(k′
zb)

2π

∫ ∞

0
d(qb)e− (ql)2

2

× sin2 θ (k′
zb)F̃AA(kz,k

′
z − kz,0)

−e2

b

∫ π

−π

d(k′
zb)

2π

∫ ∞

0
d(qb)e− (ql)2

2 F̃AS(kz,k
′
z−kz,0),

(27)

V. RESULTS AND DISCUSSION

Equation (22) is solved self-consistently, for each value
of kz within the first Brillouin zone (−π

b
, π

b
), as a function

of interunit cell tunneling probability t = e−κb for different
values of the independent system parameters 	, a/b, and
magnetic field present both in the definition of δ in Eq. (7)
and the magnetic length l. The latter is fixed by its ratio to the
SL constant, such that l/b = 10−2.

FIG. 5. (Color online) The inclination angle in the first Brillouin
zone of a SL plotted for different values of δ (measured in units of
e2/εl). δ = 0.382e2/εl generates a paramagnetic ground state. The
arrow shows the increase in δ.

We present numerical results for a GaAs-type SL, whose
parameters are chosen such that we can illustrate the first-
order phase transitions from ferromagnetic into HAFM into
paramagnetic order.

In Fig. 2 we plot the spin coupling angle within the first
Brillouin zone as a function of the tunneling probability
t = e−κb that determines the bandwidths 	SAS and 	 for a
ratio a/b = 0.4. The Zeeman splitting between the minibands
is fixed at 0.1e2/εl in Fig. 2(a) and at 0.05e2/εl in Fig. 2(b).
At extremely low values of the tunneling, the system is
found in a ferromagnetic ground state that corresponds to
|kz,S, ↓〉 and |kz,A, ↓〉 being occupied. This behavior mirrors
the phenomenology exhibited by a single double layer12,17 and
a multilayer system in the approach of Ref. 14. As the tun-
neling increases, the widening of the bandwidth compensates
the Zeeman splitting between the opposite spin minibands,
allowing for the coupling potential g to increase. The result
is the formation of a HAFM phase, whereby the coupling
angle between the opposite spins that interact decreases from
π/2 and assumes a variable behavior within the first Brillouin
zone. The decrease in the angle value is sharper in the center
of the Brillouin zone since in that region the difference
between the S and A minibands is maximum. By increasing the
tunneling even further, the minibandwidth spread overcomes
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the Zeeman splitting and paramagnetic order, which corre-
sponds to θ ∼ 0 minimizes the energy of the system, as the
system assumes a band structure similar to the one depicted in
Fig. 1.

The sequence described above is closely reproduced by the
behavior of the gap function gkz

, given in Eq. (22), which
is plotted inside the first Brillouin zone as a function of t

in Fig. 3 for the same SL parameters. The gap function is
almost zero for both ends of the tunneling probability range
of values, signaling the presence of the ferromagnetic (at low
tunneling) and paramagnetic ordering (at high tunneling). The
gap opens up for those values of the tunneling probability
where the difference between the minibandwidth and the
Zeeman splitting is of the order of magnitude of the Coulomb
interaction. Thus, it is the latter that stabilizes the HAFM
phase, where the gap distinguishes among the two types of
quasiparticles that can be created.

The same behavior is observed if the tunneling probability
between the wells, and consequently the bandwidth, are
modified by changing the ratio of the two characteristic lengths
of the SL, a/b. Stronger intraunit cell tunneling realized for
smaller values of a is leading to an increase in 	SAS that drives
the system from its ferromagnetic configuration into a HAFM
ordering, into a paramagnetic state, as shown in Fig. 4.

Next, in Fig. 5 we present the variation of the coupling
angle θ within the first Brillouin zone as a function of the
energy difference δ. We consider a system whose bandwidth
is large enough such that in the presence of a Zeeman splitting
the lowest two occupied minibands are, as depicted in Fig. 1,
|kz,S, ↓〉 and |kz,S, ↑〉. Numerically, this situation is described
by δ = 0.382e2/εl and a/b = 0.4. As the value of δ decreases,
the inclination angle starts to increase, signaling the presence
of spin-flip transitions performed on account of the Coulomb
interaction contribution. This trend continues monotonically
with the decrease in δ. For small but positive values of δ,
the Coulomb interaction stabilizes the spin-flip transitions
into a long-range magnetic order that corresponds to an
antiferromagnetic coupling of the electron spins, rotated from
the ẑ direction by an angle θ that varies continuously within
the first Brillouin zone, between [0,π/2]. As the value of δ

decreases further, the system continuously transitions into a
ferromagnetic order that corresponds to a constant value of
the inclination angle of π/2.

For the same system parameters, the variation of the gap
function within the first Brillouin zone is plotted as a function
of δ in Fig. 6(a). As δ decreases, the gap increases from
a very small value, which can be explained on account
of the canted antiferromagnetism that exists in the unit

(a) (b)

FIG. 6. (Color online) The gap function inside the first Brillouin zone for different values of δ in (a). The most significant values are
highlighted. The gap at the center of the Brillouin zone as a function of δ in (b). Both q and δ are expressed in e2/εl units.
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FIG. 7. (Color online) Fractional polarization as a function of δ

(expressed in e2/εl).

cell,17 to a value that remains relatively constant, while the
magnetization of the system corresponds to a HAFM coupling
of the electrons. We represent the variation of g with δ

is presented more clearly in Fig. 6(b). We remark that the
decrease in δ generates a substantial increase in g, followed
by a plateau corresponding to the HAFM phase and a subse-
quent diminishment that is associated with the ferromagnetic
order.

As a measure of the magnetization of the ground state, we
consider the fractional polarization, defined as

P =
∑
kz

〈c†kz↑ckz↑ − c
†
kz↓ckz↓〉0 =

∑
kz

sin 2θkz
. (28)

As depicted in Fig. 7, the fractional polarization peaks
within the interval of values of δ for which the HAFM
is established and becomes zero at either end, which
correspond to ferromagnetic or paramagnetic ordering,
respectively.

In conclusion, we have obtained numerical solutions to
the gap equation of a superlattice in the presence of a
tilted magnetic field at T = 0 K that exhibits long-range
magnetic ordering characterized by an antiferromagnetic
coupling between electrons whose spins are rotated from the
ẑ axis by a continuously variable angle θ . The existence
of a stable HAFM phase is realized when the difference
between the opposite spin minibands |S,kz, ↑〉 and |A,kz, ↓〉
is of the order of magnitude of the Coulomb interaction
between particles. Given the considerable liberty in choosing
the system parameters that favor such a behavior in the
case of the superlattice, we believe that this problem can
serve as an experimental test case of the manifest action of
the long-range Coulomb interaction in determining magnetic
characteristics.
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