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Spin-1/2 electrons are scattered through one or two diamond-like loops, made of quantum dots connected by
one-dimensional wires, and subject to both an Aharonov–Bohm flux and (Rashba and Dresselhaus) spin-orbit
interactions. With some symmetry between the two branches of each diamond, and with appropriate tuning of
the electric and magnetic fields (or of the diamond shapes), this device completely blocks electrons with one
polarization and allows only electrons with the opposite polarization to be transmitted. The directions of these
polarizations are tunable by these fields, and do not depend on the energy of the scattered electrons. For each
range of fields one can tune the site and bond energies of the device so that the transmission of the fully polarized
electrons is close to unity. Thus, these devices perform as ideal spin filters, and these electrons can be viewed
as mobile qubits; the device writes definite quantum information on the spinors of the outgoing electrons. The
device can also read the information written on incoming polarized electrons: The charge transmission through
the device contains full information on this polarization. The double-diamond device can also act as a realization
of the Datta–Das spin field-effect transistor.
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I. INTRODUCTION

Future device technology and quantum information pro-
cessing may be based on spintronics,1 where one manipulates
the electron’s spin (and not only its charge). Adding the spin
degree of freedom to conventional charge-based electronic
devices has the potential advantages of longer decoherence
times and lengths, increased data processing speed, lower
power consumption, and increased integration densities com-
pared with conventional semiconductor devices. Spins may
also be used as qubits in quantum computers.2 Quantum
information is stored in the two complex components of the
spinor which represents a spin-1/2 state. This information
is equivalently contained in the unit vector along which
the spin is polarized. Writing and reading information on a
spin qubit is thus equivalent to polarizing this spin along a
specific direction and later identifying this direction. Many
of the proposed experimental realizations of qubits consider
static qubits, e.g., an electron localized on a quantum dot.3–5

With static qubits, The quantum information is transferred
via the exchange interactions between the qubits, rather than
by the qubits themselves. Here we consider mobile qubits:6,7

The quantum information is carried by polarized spin-1/2
particles (e.g., electrons). Mobile qubits were implemented8

in a two dimensional electron gas (2DEG) using a surface
acoustic wave (SAW) that captures individual electrons along
its potential minima. Using one SAW, single electrons in
parallel quantum one-dimensional (1D) channels can be
dragged and used as synchronized inputs to a quantum gate.
Although presenting additional constraints for coherence and
synchronization, mobile qubits have many advantages over
static ones. With mobile qubits, manipulation is done by static
electric and magnetic fields rather than by expensive high-
frequency (scale of gigahertz) electromagnetic pulses.9 Also,

using a beam of many electrons enables ensemble averages
over the information carried by each of them, reducing the
errors.

Mesoscopic spin filters (or valves) are devices which
polarize the spins going through them along tunable directions,
or–equivalently–write quantum information on these mobile
qubits. Spin filters can also be used as spin analyzers,
which read this information by identifying the polarization
directions of incoming polarized beams. The present paper
discusses such devices. We start with a brief review of
alternative approaches. A priori, an elementary way to obtain
polarized electrons is to inject them from a ferromagnet,10 after
generating them, e.g., optically.11 Connecting ferromagnets
to semiconductiors is inefficient, due to a large impedance
mismatch between them.12 Optical generation is difficult to
integrate with electronic devices. Another method, which also
involves ferromagnets, uses a magnetic tunnel junction,13–16

with a different tunneling barrier height for each spin direction.
The main difficulty is again the impedance match problem
between the ferromagnetic junction and the semiconductor at
the output. Several proposed filters use quantum dots, in which
the filtering is based on either the Coulomb blockade and the
Pauli principle17–19 or on the Zeeman energy splitting.20,21

All the above filters usually generate only a partial spin
polarization. For writing useful quantum information, the
outgoing electrons must be fully polarized.

Here we follow an alternative early proposal of a spin
field-effect transistor (SFET), by Datta and Das,22 which takes
advantage of the spin-orbit interaction (SOI). In vacuum, the
SOI has the form23

HSO = �σ · [p × ∇V (r)], (1)
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where � = h̄/(2m0c)2 (m0 is the mass of a free electron, c

is the speed of light), p is the electron momentum, V (r) is
the potential, and the Pauli matrices σ indicate the electron
spin s = h̄σ/2. Here we concentrate on mesoscopic structures,
made of narrow gap semiconductor heterostructures, in which
electrons are confined to move in a plane (the xy plane below),
forming a 2DEG. In such semiconductors, the microscopic SOI
of Eq. (1) modifies the band structure, and often introduces
a spin splitting of bands.24 The final result can often be
written as an effective SOI Hamiltonian, of the general form
HSO = (h̄/m)(κSO · σ ), where κSO is a linear combination of
the electron momentum components px and py and m is the
effective mass, which is usually much smaller than m0. The
related energy scale can be larger than that of Eq. (1) by as
much as six orders of magnitude.

The literature has emphasized two special cases of the
effective SOI. A confining potential well which is asymmetric
under space inversion generates the Rashba SOI.25 For an
electric field E = −∇V in the z direction, this SOI is similar
to Eq. (1):

HR = h̄kR

m
(pyσx − pxσy). (2)

The coefficient kR typically depends on E, as indeed was
confirmed experimentally.26–29 When the bulk crystal unit cell
lacks inversion symmetry, one also has the Dresselhaus SOI,30

which is usually cubic in the momentum. For a 2DEG this SOI
is given by

HD = h̄kD

m
(pxσx − pyσy), (3)

where kD (which contains some average over the squared
momentum) usually depends on the crystal structure and only
weakly (if at all) on the external field. From the strictly
theoretical point of view, however, there is not much difference
between the linear Dresselhaus interaction and the Rashba
term, as they are connected by a unitary transformation.31 A
similar transformation can also switch the sign of the second
term in Eq. (3). For the purposes of the present paper we shall
keep the generic separation between HR and HD.

When a spin moves a distance L in the direction of the unit
vector ĝ then its spinor |χ〉 transforms into |χ〉 → U |χ〉, with
the unitary spin rotation matrix32

U = eiK·σ , K = αR(gy, − gx,0) + αD(gx, − gy,0), (4)

and the dimensionless coefficients αR,D = kR,DL. Below we
use the α’s to represent the SOIs (with L defined below). The
Datta–Das SFET used this effect to rotate the spins of electrons
which move in a quasi-1D semiconductor wire, connected to
two ferromagnets. Experimental realizations of this device are
still awaiting the solution of the impedance matching problem,
already mentioned above.12 From now on we discuss filters
which avoid ferromagnets. In a 2DEG with a SOI, an interface
between two regions with different SOIs causes a splitting of
each beam into two polarized beams with different velocities.
This was the basis for the refraction-reflection filter.33–35

Another SOI based filter uses mesoscopic T junctions, which
split the unpolarized electron beam into two polarized ones,
as in the Stern–Gerlach textbook experiment.36–39 These filters
are advantageous since they produce two polarized beams, thus

using all the electrons in the original beam, and since they do
not use magnetic fields. However, the outgoing polarization
depends on the electrons’ energy. In most of this paper we
calculate the transmission of electrons, moving from a left lead
to a right lead via a scattering device, the “filter”. However,
at the end we also mention the conductance between two
unpolarized reservoirs which are connected to these leads, and
then one may need to average the polarization of electrons with
different energies, e.g., at finite temperature and/or finite bias
voltage. It is thus advantageous to have energy-independent
polarizations.

The filters discussed below take advantage of the in-
terference of electronic waves in quantum networks which
contain closed loops. The phases of these waves can include
the Aharonov–Bohm (AB) phase φ,40 which results from a
magnetic flux � penetrating each loop. When an electron
goes around a loop its wave function gains an AB phase
φ ≡ 2π�/�0, where �0 = hc/e is the unit flux (e is the
electron charge). This phase is a special example of the Berry
phase.41 Another example involves the Aharonov–Casher
effect,42 which is caused by the presence of an electric field
that generates the Rashba SOI and affects the spin degree of
freedom. When an electron goes around a loop along which it
is subject to the SOI, its spinor rotates by the transformation

u = exp[iω · σ ] ≡ cos ω + i sin ωm̂, (5)

where m̂ ≡ ω/ω, introducing an additional SOI-related phase
ω = |ω|. This phase gives the angle by which the spins rotate
after going around the loop. The matrix u is a product of
matrices of the kind given in Eq. (4), each coming from the
local SOI on a segment of the loop. As indicated by Eq. (4),
this matrix depends on the directions and lengths of the bonds
around the loop (unlike φ, which depends only on the area
of the loop). Indeed, many papers proposed a single circular
loop interferometer which would be sensitive to this phase
and/or to its competition with the AB phase.32,43–51 The loop
is connected to two leads, and the destructive interference of
the waves in the two paths can sometimes block electrons with
one polarization and fully transmit electrons with the opposite
polarization. Some papers also suggested connecting the loop
to three leads, as in a Stern–Gerlach experiment.52,53 However,
the calculated criteria for filtering in these papers were usually
energy dependent, and there was no systematic discussion
of these criteria and of the polarization of the transmitted
spins. An alternative geometry replaces the circular loop by a
diamond-shaped square, with a SOI on its four edges (which
determine ω) and with a penetrating AB flux; see Fig. 1.51,54

Indeed, these papers find criteria for full spin filtering, but
restrict their discussion to isolated values of the AB flux and
the SOI. Below we generalize these pioneering results in many
directions.

Interference becomes simpler in the Mach–Zehnder
mesoscopic interferometer, which imitates the two-slit
experiment.55–59 Reference 59 found an energy-independent
criterion (which relates the SOI strength and the AB flux) for
full spin polarization and an energy-independent polarization
direction, similar to those discussed below. Since the Mach–
Zehnder interferometer requires two beam splitters, which
may not be easy to realize, we consider mainly simple
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FIG. 1. The single diamond and the leads. The diamond is
penetrated by a magnetic flux �, and the bonds around it (of length L)
are subject to SOIs.

interferometers, based on one or two loops. Networks of
rings have also been considered, with SOI and (sometimes)
with an AB flux.29,60–64 In particular, an infinite chain of
diamond-shaped rings62,63 was found to give a wide range of
electric and magnetic fields with full polarization at the output.
Since infinite networks are difficult to realize, we discuss here
only the cases of one and two diamonds.

In this paper we avoid some of the problems listed above.
Using scattering theory, we calculate the spin-dependent
transmission through a single- and a double-diamond-like
loop (Figs. 1 and 2). We allow for general opening angles
of the diamond rhombi, {2βi}, which affect both the SOI,
via the lengths and orientations of the bonds, and the AB
flux, via the diamond area. We also include both the Rashba
and the Dresselhaus SOI, in addition to the AB flux. The
Dresselhaus SOI depends on the relative rotation of the
crystal axes and the diamond bonds; see Fig. 3. For a fixed
value of kD we find explicit and relatively simple relations
among φ, kR , and the β’s, at which the transmitted electrons
are fully polarized in tunable directions which we calculate.
These relations and the spin polarizations do not depend on
the energy of the electrons. The transmission coefficient of
these polarized electrons can be tuned to be very close to
unity. The transmission of electrons with other polarizations
is smaller, and can be used for “reading” their polarization.

Section II discusses the single-diamond case, Fig. 1. We
first present a general calculation of the transmission through
the diamond, valid for any internal structure of the two 1D
paths (Sec. II A), find the general conditions for full filtering
and for using the filter as an analyzer (Sec. II B), and then
find specific criteria for the Rashba-only SOI (Sec. II C) and
for both Rashba and Dresselhaus SOIs (Sec. II D). Section III
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FIG. 2. Schematic diagrams of the two-diamond filters.

FIG. 3. Schematic diagram of the rotated diamond, in the pres-
ence of the Dresselhaus SOI. The x and y axes are set at the crystal
axes of the material.

discusses two diamonds in series, as in Fig. 2 (Sec. III A) and
gives explicit expressions for special cases which can yield
full filtering with a transmission of unity for practically all
energies (Sec. III B). The results are discussed and summarized
in Sec. IV.

II. A SINGLE DIAMOND

A. Transmission of an arbitrary diamond

We start with the scattering of an electron by a diamond
with arbitrary SOI and AB flux. Consider an electron with
spin 1/2, moving on a general network of sites. The tight-
binding Schrödinger equation for the spinor |ψ(u)〉 at site u is
written as

(ε − εu)|ψ(u)〉 = −
∑

v

Ũuv|ψ(v)〉, (6)

where v runs over the nearest-neighbors of u, while Ũuv ≡
JuvUuv , Juv is a hopping energy and Uuv is a 2 × 2 unitary
matrix. For the diamond in Fig. 1, the matrices Uuv differ
from the 2 × 2 unit matrix 1 only for the four bonds forming
the diamond. At this stage we do not specify the details of
these four matrices, which contain the AB phase and the SOI
rotation, or of the corresponding four coefficients Juv .

Except for the above four bonds, the nearest-neighbor
hopping energy along the leads is j , with no SOI, and the
site energies εu on the leads are zero. With a lattice constant a,
the states on the leads are combinations of e±inka , multiplying
n-independent spinors, and the corresponding energy is ε =
−2j cos(ka). The Schrödinger equations for the spinors at the
corners of the diamond are

(ε − ε0)|ψ(0)〉 = −(Ũ0b|ψ(b)〉 + Ũ0c|ψ(c)〉) − j |ψ(−1)〉,
(ε − ε1)|ψ(1)〉 = −(Ũ †

b1|ψ(b)〉 + Ũ
†
c1|ψ(c)〉) − j |ψ(2)〉,

(7)
(ε − εb)|ψ(b)〉 = −(Ũ †

0b|ψ(0)〉 + Ũb1|ψ(1)〉),
(ε − εc)|ψ(c)〉 = −(Ũ †

0c|ψ(0)〉 + Ũc1|ψ(1)〉).
Substituting the last two equations into the first two, one has

(ε − y0)|ψ(0)〉 = W|ψ(1)〉 − j |ψ(−1)〉,
(ε − y1)|ψ(1)〉 = W†|ψ(0)〉 − j |ψ(2)〉, (8)
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where

yu ≡ εu + γubu + γucu, γuvw ≡ JuvJvw/(ε − εv), (9)

W ≡ γ0b1U0bUb1 + γ0c1U0cUc1. (10)

Generally, W is not a unitary matrix (unlike the U ’s). Like any
2 × 2 matrix, W can always be written as

W = d + b · σ , (11)

where d and b are a complex number and a complex three-
component vector, respectively which are determined by the
details of the hopping matrices Uuv and energies γuvw.

A wave coming from the left has the form

|ψ(n)〉 = eikna|χin〉 + re−ikna|χr〉, n � 0,

|ψ(n)〉 = teik(n−1)a|χt 〉, n � 1, (12)

where |χin〉, |χr〉 and |χt 〉 are the incoming, reflected and
transmitted normalized spinors, respectively (with the corre-
sponding reflection and transmission complex amplitudes r

and t). Substituting Eqs. (12) into Eqs. (8) one finds

t |χt 〉 = T |χin〉, r|χr〉 = R|χin〉, (13)

with the 2 × 2 transmission and reflection amplitude matrices

T = 2ij sin(ka)W†(Y1 − WW†)−1,

R = −1 − 2ij sin(ka)X1(Y1 − WW†)−1. (14)

Here,

Y = X0X1, Xu = yu + je−ika. (15)

Both T and R involve the Hermitian matrix

WW† = A + B · σ , (16)

where [by Eq. (11)]

A = |d|2 + b · b∗,
B = 2Re[d∗b] + 2[Re(b) × Im(b)] ≡ |B|n̂. (17)

Defining the eigenstate of the spin component along a general
unit vector n̂ via n̂ · σ |n̂〉 = |n̂〉, the eigenvectors of WW† are
identified as | ± n̂〉,

WW†| ± n̂〉 = λ±| ± n̂〉, λ± = A ± |B|. (18)

Equation (10) presents an example of the general two-path
loop, for which one can write

W = γbUb + γcUc, (19)

with real coefficients γb and γc and with unitary matrices Ub

and Uc corresponding to the two paths. The same form of
Eq. (19) is found when each path contains a chain of many
bonds in series.63 This form yields

WW† = γ 2
b + γ 2

c + γbγc(u + u†), (20)

where u ≡ UbU
†
c is the unitary matrix representing hopping

from 0 back to 0 around the loop.51 As discussed in the intro-
duction, this matrix has the form u = e−iφ+iω·σ ; see Eq. (5)
and preceding discussion. Thus, u + u† = 2(cos ω cos φ +
sin ω sin φm̂ · σ ), and one identifies m̂ = n̂ and

A = γ 2
b + γ 2

c + 2γbγc cos ω cos φ,

B = 2γbγc sin ω sin φn̂. (21)

The eigenvalues λ± now become

λ± = A ± |B| = γ 2
b + γ 2

c + 2γbγc cos(φ ± ω). (22)

The corresponding eigenstates, | ± n̂〉, represent electrons
which are fully polarized along ±n̂ = ±B/|B|. The direction
of n̂ depends on the sign of sin ω sin φ, namely on the directions
of the magnetic field (determining the sign of φ) and of the
electric field (determining the sign of ω in the Rashba case).
Switching the sign of φ or of ω switches the direction of the
polarized spins associated with the two eigenvalues.

Equation (14) implies that an incoming spinor | ± n〉 will
generate an outgoing spinor

t |χout
± 〉 = T | ± n〉 = 2ij sin(ka)

Y − λ±
W†| ± n〉. (23)

Since the scalar product of W†| ± n〉 with itself equals λ±, it
follows that

|χout
± 〉 = W†| ± n〉/√λ±, (24)

and that the corresponding transmission amplitude is

t± = 2ij sin(ka)

Y − λ±

√
λ±, (25)

which is an eigenvalue of T .
Equation (24) also implies the relation W†W|χout

± 〉 =
λ±|χout

± 〉, showing that |χout
± 〉 is an eigenstate of

W†W = A + B′ · σ , (26)

where

B′ = 2Re[d∗b] − 2[Re(b) × Im(b)] ≡ |B|n̂′. (27)

Therefore, |χout
± 〉 corresponds to a spin direction n̂′, which

differs from n̂ in that the component along [Re(b) × Im(b)] is
reversed. One can thus identify 〈±n̂′| as the left eigenstates of
W†, namely

W† ≡ √
λ−| − n′〉〈−n| + √

λ+|n̂′〉〈n̂|. (28)

Similarly,

T ≡ t−| − n′〉〈−n| + t+|n̂′〉〈n̂|. (29)

Scattering from the right lead to the left leat is obtained by
replacing W† by W. It follows that an electron polarized along
n̂′ coming from the right-hand side (RHS) exits to the left-hand
side (LHS) polarized along n̂. It is now straightforward to
find the transmission and reflection matrices T ′ and R′ for
this reversed scattering: All one needs to do is interchange
W with W† and X0 with X1. Note that generally T ′ 	= T ;
these matrices are related to each other via the self-duality
of the scattering matrix.65 It is then straightforward to check
unitarity, e.g., T †T + R′†R′ = 1.
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B. Ideal filter and reader

Many earlier papers considered the polarization of the
moving electrons along a particular fixed direction, e.g., along
the z axis. Following, e.g., Ref. 51, we find it much better to
consider the polarization along a tilted direction, associated
with the eigenstates of the matrix WW† [or, equivalently, of
the matrix u + u†, Eq. (20)]. A general incoming spinor |χin〉
can be expanded in terms of these basis eigenvectors,

|χin〉 = c+|n̂〉 + c−| − n̂〉, (30)

with c± = 〈±n̂|χin〉, and then the outgoing spinor becomes

t |χt 〉 = c+t+|n̂′〉 + c−t−| − n̂′〉. (31)

The total charge transmission is therefore

T = |c+|2T+ + |c−|2T− , (32)

with T± ≡ |t±|2 being the eigenvalues of T T †. Given Eqs. (22)
and (25), T± is a function of φ ± ω.43 Note that t± and T± are
the eigenvalues of T and of T T †, respectively.

The single diamond described above can serve as a perfect
filter if one of the eigenvalues λ±, say λ−, vanishes. In
the following sections we show that there exist physical
parameters for which this can be achieved—independently
of the electron energy ε. Indeed, if λ− = 0 then one also has
t− = 0, and Eq. (31) reduces to t |χt 〉 = c+t+|n̂′〉. All outgoing
electrons are then polarized along n̂′, and the total transmission
strength, i.e., the fraction of the incoming current which exits
on the RHS, is given by T = T+|c+|2.

From Eq. (22) it follows that λ± � 0, and that the equality
λ− = 0 can occur only if

γb = γc ≡ γ, cos(φ − ω) = −1. (33)

We remind the reader that φ is the AB phase, while ω is the SOI
phase, which is the angle by which the spins rotate when the
electron goes around the loop; see the discussions of Eqs. (5)
and (20). The γ ’s represent effective normalized hopping
matrix elements for the two branches of the loop; see Eq. (19).
The first relation in Eq. (33) implies a symmetry between the
two paths. For the specific diamond geometry of Fig. 1, one has
γv ≡ γ0v1 [see Eqs. (9) and (10)]. If one imposes the symmetric
relation J0bJb1 = J0cJc1, then this condition requires εb = εc.
Both the J ’s and the εu’s can be tuned via appropriate gate
voltages, so that the equality γb = γc can be achieved.66 The
second condition in Eq. (33), namely ω = φ + π , yields a
relation between the AB flux and the SOI strength (represented
by ω). Note that φ and ω depend only on the unitary matrices
Uuv , and not on the energy ε nor on the site energies εu.
Also, the vectors n̂ and n̂′ depend only on the parameters in
these matrices. Thus, for fixed diamond parameters which obey
the above conditions, the direction of the outgoing electrons’
polarization is independent of the energy and remains the same
even after summation over energies due to finite temperature
or bias voltage (see below).

Substituting ω = φ + π and γb = γc = γ into Eq. (22)
yields

λ+ = 4γ 2 sin2 φ. (34)

This result for λ+(ε) is universal, in the sense that it depends
on the parameters of the diamond only through the AB flux,
and not on the angle of opening β (Fig. 1) nor on the SOI
strengths kR and kD . Of course, these latter parameters still
need to be adjusted by Eq. (33) to achieve full polarization.
Having satisfied Eq. (33), the transmission becomes [Eq. (25)]

T+(ε) = 4j 2 sin2(ka)λ+
P + Q cos(ka) + R cos(2ka)

, (35)

where

P = (y0y1 − λ+)2 + (y0 + y1)2j 2 + j 4,

Q = 2j (y0y1 − λ+ + j 2)(y0 + y1),

R = 2j 2(y0y1 − λ+), (36)

and one can read the transmission from graphs of T+ as a
function of φ and ε [the y’s were defined in Eq. (9)]. When
sin φ = 0 both λ+ and λ− vanish when also ω = π , and all the
electrons are fully reflected. Therefore, one needs sin φ 	= 0,
i.e., a nonzero magnetic field. However, as we show below,
one can achieve good filtering even for small magnetic fields.

Although all these results are specific for the tight-binding
model, one would like to apply them for general leads, with
general dispersion relations. For this purpose, it is customary
to calculate the tight-binding transmission for energies near the
center of the band, ε = 0 or ka = π/2, where the density of
states is flat. Equation (34) shows that (for φ 	= 0) λ+ diverges
as γ 2 ∝ (ε − εb)−2 at the resonant energy ε = εb. This yields
a Fano-like zero of T+ for this energy. Since we prefer to have
a weak energy dependence around ε = 0, it is preferable to
have a nonzero (and large) site energy εb.

From now on we set Juv ≡ J , so that also γ0v0 = γ1v1 = γ

for v = b,c [see Eq. (9) and Fig. 1]. At the band center
(ε = 0 or ka = π/2), we also have γ → γ0 = −J 2/εb,
and the denominator in Eq. (35) becomes P − R = [(ε0 +
2γ0)(ε1 + 2γ0) − λ+ − j 2]2 + j 2(ε0 + ε1 + 4γ0)2, which is
minimal at ε0 = ε1 = −2γ0 ≡ 2J 2/εb. In this case one has
T+ = 4j 2λ+/(λ+ + j 2)2, and this has its maximal value of
1 at λ+ = j 2. For a specific filter one would usually decide
over what range of flux φ one would like to work. Fixing j

and Juv = J and denoting the middle of that range of φ by
φ0, one has T+ = 1 at φ = φ0 if one tunes the parameters
so that γ = γ0 = j/(2 sin φ0), and εb = −J 2/γ0,ε0 = ε1 =
−2γ0. For these choices, one ends up with

T+(ε = 0) = 4 sin2 φ sin2 φ0/(sin2 φ + sin2 φ0)2, (37)

depending only on φ0, as shown on the LHS of Fig. 4. T+(0)
has a reasonably flat maximum at φ = φ0 (and a width which
increases with φ0). The other panel in Fig. 4 shows T+ versus
ka for the flux fixed at φ = φ0, for the site energies chosen
above and for J = 4j . As expected, T+ is practically energy
independent and equal to unity in a range around the band
center ka = π/2. The width of these plateaus increases with
increasing J when |εb| = J 2/|γ0| � |ε|.

The total transmission through the loop is given by Eq. (32).
Once the parameters of the device have been appropriately
tuned, one achieves T− = 0, and only electrons which are
polarized along n0 can be transmitted. In this case, T (ε) =
|c+|2T+(ε). If the incoming electrons are polarized along
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FIG. 4. (Color online) The transmission of the polarized elec-
trons, T+(ε). LHS: in the band center (ε = 0) versus the AB flux φ (in
units of π ); RHS: versus ka [the electron energy is ε = −2j cos(ka)],
for hopping strengths around the diamond Juv = J = 4j and site
energies ε0 = ε1 = −j/ sin φ0,εb = εc = −2J 2 sin φ0/j . These site
energies are chosen so that T+ is maximal at φ = φ0. Small (large)
dashes correspond to maxima of T+(0) at φ0 = 0.1π (0.2π ).

an arbitrary direction n, namely |χin〉 ≡ |n̂〉, then one has
[Eq. (30)]

|c+|2 = |〈n̂|n̂0〉|2 = 1
2 (1 + n̂0 · n̂). (38)

When the incoming electrons are fully polarized along n̂0, one
has |c+|2 = 1, resulting in T (ε) = T+(ε). When the incoming
electrons are polarized along any other direction, then only a
fraction |c+|2 of them are transmitted, reflecting the projection
of their spinor |n〉 on the filtered spinor |n̂0〉. The actual
transmission is thus decreasing from T+(ε) to zero as the
direction of the incoming spins n rotates from being parallel
to n0 to being antiparallel to it. Unfortunately, the other
electrons are reflected and lost, thus reducing the transmission.
Equation (38) shows that, for a general direction n, T (ε) =
|c+|2T+(ε) is a linear combination of the components of
n̂0, with coefficients which depend on the components of
n. Measuring the transmission for three pretuned values of
n̂ can thus identify the components of n0. Once we know
these components for several sets of magnetic and electric
fields then we can repeat the measurements on some unknown
polarized beam, and extract n from the same linear equations.
This amounts to a reading of the polarization of the incoming
electrons, namely of the quantum information stored in these
mobile qubits. If the incoming electrons are not fully polarized,
the measured charge transmission will yield information on the
average over |c+|2. Specifically, for random polarizations one
has T = T+/2. An alternative way to test the polarization of
the outgoing spins is to send them through another filter; see
Sec. III B.

C. Single diamond with Rashba SOI

For specific types of interaction one needs explicit forms for
the unitary hopping matrices Uuv . Consider a bond of length L

from ru to rv , with rv − ru ≡ Lĝuv . Placing the magnetic field
H along the z direction and choosing the gauge A = 1/2H × r,
we assign an AB phase φuv to Uuv:

φuv = πHL

�0
[ĝuv × ẑ] · ru. (39)

With the SOI, one has Uuv = exp[iφuv + iKuv · σ ], and
Kuv is given by Eq. (4) with ĝ → ĝuv . To demonstrate the
power of our formalism, we start here by considering only
the Rashba SOI. Generalizing Ref. 51, our diamond is a

rhombus with an opening angle of 2β. Choosing the x axis
along the leads, the four sites of the diamond are at r0 =
(0,0,0), rb = (L cos β,L sin β,0), rc = (L cos β, − L sin β,0)
and r1 = (2L cos β,0,0) (Fig. 1). The hopping matrices for the
four bonds then become

U0b = exp(iασ1), Ub1 = exp(−iφ/2 − iασ2),

U0c = exp(−iασ2), Uc1 = exp(iφ/2 + iασ1), (40)

where α = αR = kRL ≡ α1/ cos β, σ1 = sin βσx − cos βσy ,
σ2 = sin βσx + cos βσy , and φ/(2π ) = HL2 sin(2β)/�0 ≡
φ1 tan β is the number of flux units through the diamond. In
these expressions we have introduced

α1 = kRL0, φ1 = 2HL2
0/�0, (41)

where 2L0 is the distance between sites 0 and 1. These
parameters do not depend on β even when the sites b and c are
moved in order to vary β (see below). Substituting matrices
(40) into Eq. (10) one obtains Eq. (11), with

d = a+[c2 − s2 cos(2β)], bx = 0,

by = −2ia+cs cos β, bz = ia−s2 sin(2β), (42)

where c = cos α, s = sin α and

a± = γbe
−iφ/2 ± γce

iφ/2. (43)

Equations (17) now reproduce Eqs. (21), with the iden-
tification cos ω = 1 − 2s4 sin2(2β) and sin ω = 2s2 sin(2β)√

1 − s4 sin2(2β). For β = π/4 this value of ω was found
in Ref. 51. Also,

n̂ = sφ(2cs cos β,0,c2 − s2 cos(2β))/
√

1 − s4 sin2(2β),

(44)

where sφ = sign[sin φ]. Below we present results for sφ > 0.
Furthermore, Eq. (27) gives

n̂′ = (−n̂x,0,n̂z). (45)

Condition (33) now implies that

cos(φ/2) = ± sin2 α sin(2β). (46)

This equation corresponds to a line in the φ-α plane, which is
shown in Fig. 5 (for three values of β). If one varies both α and
φ along such a line, then the outgoing spins are fully polarized,
and the transmission is given by Eq. (35). One should note that
φ = 2πφ1 tan β and α = α1/ cos β, and these relations should
be taken into account when translating φ and α to the magnetic
and electric fields for different angles β.

When Eq. (46) is satisfied, the outgoing electrons are
polarized along n̂′. The variation of the components of this
polarization with α, when one moves along the lines in Fig. 5,
is shown in Fig. 6, which also shows the spin directions in the
xz plane for β = π/4. Changing the sign of φ interchanges |n̂〉
and | − n̂〉, and therefore changes the polarization associated
with the blocked spinor from −n̂ to n̂.

As Fig. 6 shows, at small α, namely a small electric field
(and correspondingly φ near π ; see Fig. 5), the outgoing spin
points along the z axis, parallel to the magnetic field. However,
this spin ordering is not due to the Zeeman interaction, which
is small (and neglected here), but rather due to the orbital
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FIG. 5. (Color online) The relation between the AB flux φ and
the Rashba SOI strength α at full filtering [Eq. (46)]. The full line
and the dashed lines with decreasing sized dashes correspond to
the rhombus’s opening angle β/π = 0.25, 0.15 and 0.05. Results are
the same under (π/4 − β) ↔ (β − π/4).

effect of the AB flux. As α increases, the spin rotates toward
the negative x direction. For β = π/4, the spin reaches this
direction as α → π/2, and then flips abruptly to the opposite
direction. Upon further increase of α, the outgoing spin rotates
back toward the positive z direction. When β 	= π/4, the
outgoing spin also rotates toward the positive direction, but
now the results depend on β: When β < π/4 (> π/4) the spin
continuously rotates toward the negative (positive) z direction
as α → π/2. These dips (peaks) in n′

z near α = π/2 become
sharper as β approaches π/4.

As mentioned in the previous subsection, there is no
filtering at exactly α = π/2 and β = π/4, namely at φ = 0.
However, the effect is most striking in the vicinity of β = π/4,
α = π/2 and φ = 0. In fact, if one wishes to flip the outgoing
spins by a small change in the electric field, which determines
α, then it would be best to use the filter for a small finite
flux φ and for β = π/4. Changing α from π/2 − φ

√
2/4 to

π/2 + φ
√

2/4 will cause a jump in n′
x from −1 to 1, i.e.

a flip of the polarization from the negative to the positive
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FIG. 6. (Color online) The outgoing spin components for rhom-
bus angles β = 0.25π, 0.23π and 0.27π (full line, small dashes and
large dashes, respectively) as a function of the Rashba SOI strength
α when the AB flux is given by Eq. (46). Changing φ to −φ switches
the direction of the polarized spins. The lower panel shows the actual
spin directions in the xz plane for β = π/4, as α increases from zero
to π (left to right).

x direction. Alternatively, two filters with β > π/4 and β <

π/4 would give opposite spin components near α = π/2 and
the appropriate value of φ as given by Eq. (46).

Since ny = 0, the procedure outlined after Eq. (38) yields
only the x and z components of the polarization of the
incoming electrons, n̂0. However, the third component can
always be deduced from |n̂0|2 = 1. As discussed below, this
issue is overcome when one adds the Dresselhous SOI.
Alternatively, we note that the vector n̂ is in the xz plane
only when the diamond is placed as in Fig. 1, with the sites 0
and 1 on the x axis. Placing these sites along the y axis will
place n̂ in the yz plane. Thus, splitting the incoming beam,
which contains many electrons in identical spin states, into
two beams, which go through two diamonds placed along the
two axes, will allow a simultaneous determination of all the
components of n̂0.67

So far, we applied Eq. (46) at fixed β and obtained full
filtering by varying both φ and α (namely the magnetic and
electric fields) simultaneously. An alternative, which may be
more attractive under some circumstances, is to vary β by
moving the dots b and c toward the x axis. As noted after
Eq. (40), such motion also affects the area of the diamond and
the length of each edge. Fixing the magnetic field fixes φ1
[Eq. (41)], and Eq. (46) becomes

α1 = ± cos β arccos [1 − 2 cos(φ1 tan β/2)/ sin(2β)]/2.

(47)

The top panel in Fig. 7 shows this relation for four values of
φ1. All four lines show a smooth monotonic variation of α1
[i.e. the electric field responsible for kR , Eq. (41)] with β (i.e.
the electric field responsible for moving the dots b and c), over
ranges which become wider as φ1 increases. The other panels
in Fig. 7 show the two components of the polarized spin when
Eq. (47) is obeyed. Varying β rotates this polarization. Setting
the site energies so that the maximum of T+ is at φ0 = φ1, the
transmission given in Eq. (37) remains close to unity over a
range of β around π/4.

π
5

π
4

3π
10

β
0.2

0.3

0.4

α1

π

π
5

π
4

3π
10

β

0.8

0.6

nx

π
5

π
4

3π
10

β

0.4

0.4

0.8

nz

FIG. 7. (Color online) Top: The relation between the strength of
the Rashba SOI α1 = kRL0 and the diamond angle β for full filtering,
Eq. (47). Bottom: the two components of the outgoing polarized
spins versus β. Full line and increasing dashes correspond to φ1 =
0.05,0.1,0.15, and 0.2.
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D. Single diamond with both Rashba and Dresselhaus SOIs

Since the Dresselhaus SOI [Eq. (3)] depends on the
directions of the crystal axes, one needs to introduce the angles
between the diamond bonds and these axes, as in Fig. 3. Thus,
r0 = (0,0,0), r1 = 2L cos β(cos ν, sin ν,0), rb = L(cos(ν +
β), sin(ν + β),0), rc = L(cos(ν − β), sin(ν − β),0). We then
use the vector K from Eq. (4) and the AB phase from Eq. (39).
Denoting also

ζ 2 = α2
R + α2

D, tan θ = αD/αR, (48)

one recovers Eqs. (40), with the replacement of α by ζ and
with the new spin components σ1 ≡ sin ξ1σx − cos ξ2σy, σ2 ≡
sin ξ4σx + cos ξ3σy , where ξ1 ≡ β + ν + θ,ξ2 ≡ β + ν − θ,

ξ3 ≡ β − ν + θ, and ξ4 ≡ β − ν − θ .
Note that σ 2

1 = F 2
1 = 1 + sin(2ν + 2β) sin(2θ ), σ 2

2 =
F 2

2 = 1 + sin(2ν − 2β) sin(2θ ), and therefore eiζσn = cn +
isnσn, with cn ≡ cos(ζFn),sn ≡ sin(ζFn)/Fn. With these no-
tations, one has

eiζσ1e−iζσ2 = δ + iτ · σ , e−iζσ2eiζσ1 = δ + iτ ′ · σ ,

(49)

where

δ = c1c2 + s1s2(sin ξ1 sin ξ4 − cos ξ2 cos ξ3),

τx = τ ′
x = s1c2 sin ξ1 − c1s2 sin ξ4,

(50)
τy = τ ′

y = −s1c2 cos ξ2 − c1s2 cos ξ3,

τz = −τ ′
z = s1s2(sin ξ1 cos ξ3 + cos ξ2 sin ξ4),

and δ2 + |τ |2 = 1 from unitarity. It is now straightforward to
recover the matrix W [Eq. (11)], with

d = a+δ, bx = ia+τx, by = ia+τy, bz = ia−τz, (51)

and with a± as given in Eq. (43). Again, Eqs. (17) are used
to recover Eqs. (21), with the identifications cos ω = 1 − 2τ 2

z

and

n̂ = (−τy,τx,δ)/
√

1 − τ 2
z . (52)

The condition for full filtering, Eq. (33), now becomes

cos(φ/2) = ±τz = ±s1s2 sin(2β) cos(2θ ). (53)

This is the main result of this subsection. One immediately
notes the following; (a) This condition reduces to Eq. (46)
when αD = 0. (b) When αR = 0, this condition also reduces
to Eq. (46), with αD replacing αR . This is not surprising, since
the two types of SOI are related via a unitary transformation.
(c) When αD = ±αR then cos(2θ ) = 0, and therefore Eq. (53)
yields φ = π , i.e., sin φ = 0. As discussed following Eq. (34),
there is no filtering in this case, and all electrons are fully
reflected.

Except for these three special cases, arbitrary nonzero
values of αD and αR usually result in all three components of
n̂0 being nonzero, and therefore the procedure outlined after
Eq. (38) allows the determination of all the three components
of n̂0 by measuring the charge transmission for three values of
n̂. As mentioned, usually kD is fixed for a given material and
kR can be varied experimentally by tuning the electric field
in the z direction. At arbitrary values of kD , the values of φ

for full filtering, Eq. (53), are no longer periodic in αR . An

π
2 π 3π

2 2π
αR

π
2

π
φ

FIG. 8. (Color online) Same as Fig. 5, with β = π/4, ν = 0 (as
defined in Fig. 3) and with the Dresselhaus SOI strength αD = 0,π/4,
and π/2 (full line, medium, and long dashes respectively), Eq. (54).
The line with the smallest dashes shows the filtering condition for
β = ν = π/4 and αD = π/4, Eq. (55).

exception occurs for ν = 0 and β = π/4 (see Fig. 3), when
(53) reduces to

± cos(φ/2) = sin2 αR − sin2 αD. (54)

Figure 8 shows this special periodic result for three values of
αD (full and larger dashes). Interestingly, if αD = π/2 then
the curve for the pure Rashba SOI case just shifts to the left
by π/2, so that the interesting regime moves to small electric
and magnetic fields. However, other values of αD (e.g., π/4 in
the figure) give a much narrower range of φ.

For all other values of ν and β the flux φ for full filtering
is not periodic in αR , and one must use the full expression of
Eq. (53). This expression becomes simple for ν = β = π/4,

± cos(φ/2) = sin2 ζ cos(2θ ). (55)

Figure 8 also shows this function (smallest dashes) for αD =
π/4. As αR increases, this expression approaches the Rashba
condition, Eq. (46), whereas Eq. (54) remains periodic in αR .
As seen in the figure, working near αR = 3π/2 already brings
us close to the pure Rashba behavior. We trust that this value
can be achieved with reasonable electric fields. Presumably,
one can control the angle ν by rotating the crystal which forms
the filter.

III. TWO DIAMONDS

A. General formalism

Consider now two diamonds in series, connected at site 1
(Fig. 2, top). Eliminating the side sites (b,c,d, and e), we have

z0|ψ(0)〉 = WA|ψ(1)〉 − j |ψ(−1)〉,
Z1|ψ(1)〉 = W†

A|ψ(0)〉 + WB |ψ(2)〉, (56)

z2|ψ(2)〉 = W†
B |ψ(1)〉 − j |ψ(3)〉,

where z0 = ε − y0 [Eq. (9)], z2 = ε − ε2 − γ2d2 − γ2e2, Z1 =
ε − ε1 − γ1b1 − γ1c1 − γ1d1 − γ1e1, WA represents Eq. (10)
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for diamond A and WB is defined similarly, with d,e replacing
b,c. Eliminating site 1 then yields

(z0Z11 − WAW†
A)|ψ(0)〉 = WAWB |ψ(2)〉 − Z1j |ψ(−1)〉,

(Z1z21 − W†
BWB)|ψ(2)〉 = W†

BW†
A|ψ(0)〉 − Z1j |ψ(3)〉.

(57)

Using the analogs of Eqs. (12) for a wave coming from the
left, and utilizing the identity

W†[C1 + OW†]−1 ≡ [C1 + W†O]−1W†, (58)

whereO and W are arbitrary 2 × 2 matrices and C is a number,
yields for the transmission amplitude, from left to right,

T = 2ij sin(ka)W†
B[Z1X0X21 + X0WBW†

B

+X2W†
AWA]−1W†

A

= 2ij sin(ka)W†
B

×Z1X0X2 + X0AB + X2AA− (X0BB + X2B′
A) · σ

(Z1X0X2+ X0AB + X2AA)2− (X0BB + X2B′
A)2

W†
A,

(59)

where the second step uses Eqs. (16) and (26), with the
corresponding coefficients AA,B , BA,B and B′

A,B . Here, X0
was defined in Eq. (15), while similarly X2 = ε2 + γ2d2 +
γ2e2 + je−ika .

The factor W†
A on the RHS of (59) implies that if we

choose the parameters of A to produce full polarization then
all the electrons entering from the left become fully polarized
along n̂′

A, and the other factors in T can be used to tune the
unique polarization of the outgoing electrons, and perhaps the
amplitude of the net transmission. Similarly, the factor W†

B

on the LHS means that if we tune B to give full polarization
then the outgoing electrons will all be polarized along n̂′

B ,
irrespective of the polarization of the incoming electrons.

We next consider two diamonds with an additional bond
between them; see the lower panel in Fig. 2. The tight-binding
equations are similar to the above, but now we also introduce
a SOI on the bond between the sites 1 and 2, Ũ12 = J0U ,
where U is a unitary matrix to be specified. Straightforward
algebra, similar to that presented above, yields the left-to-right
transmission amplitude:

T = −2ij sin(ka)J0W†
BU †[�X0X31 + z1X0UWBW†

BU †

+z2X3W†
AWA + W†

AWAUWBW†
BU †]−1W†

A, (60)

with � = z1z2 − J 2
0 , z2 = ε − ε2 − γ2d2 − γ2e2, X0 from

Eq. (15) and X3 = ε3 + γ3d3 + γ3e3 + je−ika .
Interestingly, one again has W†

A on the RHS and W†
B on

the LHS. We expect this to be the case for any structure with
these two diamonds at the ends. However, the present case
differs from the previous one, since now WB appears only
in the combination W̃B = UWB . Therefore one can use the
unitary rotation of the spins U to modify the states which enter
the diamond B, as discussed below.

B. Ideal filtering

If both A and B are tuned to be full polarizers then one has

W†
A =

√
λA+|n̂′

A〉〈n̂A|, W†
B =

√
λB+|n̂′

B〉〈n̂B | (61)

and therefore Eq. (59) reduces to

T = 2ij sin(ka)〈n̂B |n̂′
A〉√λA+λB+

Z1X0X2 + X0λB+ + X2λA+
|n̂′

B〉〈n̂A|. (62)

More generally, we can choose only one of the diamonds
to fully polarize, and then we can tune the other one
for optimization of the transmission and/or for tuning the
polarization through the other diamond.

A particularly interesting possibility is to choose two
identical diamonds, with βA = βB,εb = εc = εd = εd , and
Juv ≡ J . The only free parameters are now the two φ’s and
the strengths of the SOIs. Consider the pure Rashba case,
and choose also φA = φB and π/2 − αA = αB − π/2, namely
sin(2αA) = − sin(2αB). With these choices one has AA = AB

and BA = B′
B [see Eqs. (44) and (45)]. In this case, the

transmission amplitude is

T = 2ij sin(ka)λ+
Z1X0X2 + (X0 + X2)λ+

|n̂A〉〈n̂A|. (63)

This device has the advantage that it fully transmits electrons
with polarization along n̂A and does not rotate them as the
single-diamond filter. Another important advantage involves
the transmission. When Z1 is very small (but nonzero) and if
also ε � 0 and ε0 + 2γb = ε2 + 2γd = 0 then the transmission
of this polarized spin is close to unity for almost all φ’s except
for a narrow range near φ = 0 or π (T still vanishes when
sin φ = 0). Moving away from the band center, the shape of the
transmission T (ε) depends on J and on εb. For large-enough
J , the γ ’s depend only weakly on ε, and the transmission
approaches the trivial value sin2(ka) (= 1 in the band center),
coming from the velocity of the electrons in the band. Thus,
this structure is an ideal polarizer for energies close to the
band center.

If we choose BA = −B′
B then all the electrons will be

blocked. For Rashba SOI, the latter condition implies the
relations n̂A,x = n̂B,x,n̂A,z = −n̂B,z, which can be realized
if both sin(2αA) = − sin(2αB) and φA = −φB [Eqs. (21),
(44)].68

Finally, consider the second double-diamond device, lower
panel in Fig. 2. Since U is unitary, the eigenvalues of W̃BW̃†

B

are the same as for WBW†
B , namely λB±. However, the

eigenstates are different: | ± n̂BU 〉 = U | ± n̂B〉. Using W†
A

from Eq. (61) and W̃†
B = √

λB+|n̂′
BU 〉〈n̂BU |, Eq, (60) becomes

T = t |n̂′
BU 〉〈n̂A|, with the transmission amplitude

t = −2ij sin(ka)J0〈n̂BU |n̂′
A〉√λA+λB+

�X0X3 + z1X0λB+ + z2X3λA+ + λA+λB+
. (64)

The choices ε0 = ε1 = 2J 2/εb = 2J 2/εc,ε2 = ε3 = 2J 2/εd =
2J 2/εe, n̂BU = n̂′

A and J0 = 4J 4 sin(φA0) sin(φB0)/(jεbεd )
yield a flat maximum of T = |t |2 at unity (similar to Fig. 4) for
energies near the band center and fluxes near φA0 and φB0. One
can now tune the outgoing polarization via WA,WB , and/or
U . Specifically, one has maximal transmission if one tunes the
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outgoing polarization to be along n̂A by requiring that U |n̂′
B〉 =

|n̂′
BU 〉 = |n̂A〉. In the Rashba case, the vectors n̂A,B and n̂′

A,B

are both in the xz plane, and therefore U = exp[iα12σy], where
2α12 = arcsin([n̂B × n̂′

A]y). This rotation can be generated by
an electric field in the z direction, and its magnitude α12
can also be changed by changing the length of the bond 12.
Since the two diamonds fully polarize the electrons, and the
intermediate bond can rotate their polarization, this device can
perform as the Datta–Das SFET.

IV. SUMMARY AND DISCUSSION

We have demonstrated that single- and double-diamond
devices, made of materials with strong SOIs, can act as both
a spin filter and a spin analyzer. Our calculations include the
following specific achievements:

(1) Full filtering through a general single-loop interferom-
eter requires a symmetry between the two branches (γb = γc)
and a relation between the AB phase and the SOI phase (φ =
ω + π ). For the diamonds in Figs. 1 and 3 these conditions
and the direction of the filtered polarization n̂′ are independent
of the electron’s energy.

(2) The site energies and the hopping strengths around
the diamond can be chosen so that the transmission T of
the polarized electrons is close to unity over a wide range
of energies and AB flux (Fig. 4).

(3) The charge transmission of polarized spins through the
interferometer measures the angle between the direction of
this incoming polarization n̂0 and that characterizing the full
transmission by the filter, Eq. (38), rendering a reading of
the former polarization. Unfortunately, only electrons with
polarization along n̂0 are transmitted, and the others are
reflected and lost.

(4) For the Rashba SOI, one can work at small magnetic
fluxes, and generate a flipping of the transmitted polarization
by a small change in the electric field (Fig. 6). One can also
tune the transmitted polarization by keeping the magnetic field
fixed and varying the shape of the diamond (Fig. 7).

(5) Adding the Dresselhaus SOI usually breaks the period-
icity in the Rashba SOI strength kR of the filtering criterion and
complicates the various expressions. However, the polarization
of the outgoing electrons now moves out of the xz plane,
simplifying the “reading” procedure. Increasing kR brings the
various expressions back to the pure Rashba ones.

(6) Although most of the detailed calculations were pre-
sented for diamonds, the formalism in Sec. II is general, and
Eq. (19) applies to any two-path interferometer. This includes
larger polygons, or even continuous quasi-1D wires, as long
as one maintains the symmetry between the two paths. The
diamond structure is the simplest polygon which allows this
symmetry.

(7) The two-diamond device can be tuned to be symmetric,
so that the polarization of the electrons exiting the two-
diamond device is equal to that of the incoming ones (from
either side), with a transmission close to unity. These may be
considered as advantages of this device, compared with the
single-diamond one.

(8) Adding a bond with a SOI between the two diamonds
allows tuning of the polarization of the spins. This adds
much flexibility in the choice of the two diamonds. Since

each diamond acts as a full filter, this double-diamond
device achieves the aims of the Datta–Das SFET without
ferromagnetic leads.

Are there materials for which one can reach values
of αR or order π/2, as required here? A Shubnikov–
de Haas experiment69 on an Al0.25In0.75As barrier layer
gave a value for the Rashba coefficient (in different units)
of α = 3 × 10−11 eV/m. With the effective mass m∗ =
0.023 m0, this gives kR = m∗α/h̄2 = 9 × 106 m−1. Weak an-
tilocalization measurements in a quaternary InGaAsP/InGaAs
heterointerface70 yielded α = 10.4 × 10−12 eV/m. With an
effective mass m∗ = 0.0408 m0, this gives kR = 5.55 ×
106 m−1. Thus, L = 300 nm would imply αR ∼ 1.6 − 2.7,
allowing for αR = π/2.

As in most of our references, we calculated only the
transmission from left to right (or from right to left). Indeed, the
results for the transmission describe the outcome of scattering
experiments, when one has a beam of electrons coming in
only from one side of the device. In many experiments, one
would like to measure the conductance between these two
sides, which involves the difference between a current coming
from the left and a current coming from the right, as originally
discussed by Landauer.71 A generalization of this approach for
our case has the form72

I j =
∫

dε

2π
[fL(ε) − fR(ε)]Tr[T T †σj ], (65)

where fL,R(ε) = 1/[1 + e(ε−μL,R )/kBT ] is the Fermi distribu-
tion function in the left L or right R reservoir, T is the
temperature, and μL,R are the chemical potentials on the
electronic reservoirs connected to the leads). Denoting σ0 = 1,
I 0 gives the net charge current in units of e/h. Denoting the
Pauli matrices by σj ,j = 1,2,3, the corresponding vector I ≡
(I 1,I 2,I 3) gives the net spin current in the leads. In all of our
examples, the Hermitian matrix T T † can be written as T T † =
T+|n̂′〉〈n̂′| + T−| − n̂′〉〈−n̂′|, where n̂′ denotes the polarization
of the outgoing electrons [see Eq. (29)]. Therefore, at linear
response and at zero temperature the charge conductance
is given by (e2/h)(T+ + T−), and the spin conductance is
I = (T+ − T−)n̂′. When T− = 0, both currents are associated
with T+, and the current is fully polarized even at linear
response. When φ ± ω = π/2 then T+ = T− = T0, and the
current is not polarized at all. In this latter case the linear
charge conductance is 2e2T0/h, which could reach the full
quantum value of 2e2/h.

Finite temperatures or bias voltages eV = μL − μR require
summing of T+(ε) over energies. As noted, such sums do
not affect the condition for full filtering or the direction of
outgoing polarization. Furthermore, a flat energy dependence,
as in Fig. 4, maintains a large conductance even after the
summation is carried over. This generalized Landauer formula
still gives only the currents between the two electron reservoirs,
which have unpolarized electrons. Therefore, the results are
not sensitive to the polarization of the incoming electrons,
and a device based on connecting two unpolarized reservoirs
cannot function as a spin analyzer. The situation changes for
polarized reservoirs, but this requires more research.

Our calculations were restricted to 1D bonds between the
quantum dots. Real quantum wires may have a finite width.
Although one still has only a few relevant channels (the
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other channels are blocked by electron localization due to the
disorder in the semiconductor),73 their effect requires more
analysis. In any case, the number of channels can also be
tuned by the gate voltages.74

A major question, relevant to all filters, concerns the
experimental verification that the outgoing spins are indeed
fully polarized. One way to test this is to use the double-
diamond device, as discussed in Sec. III. Switching from
full transmission to no transmission by switching the sign
of the magnetic field on the second diamond will supply a
proof that the electrons have been polarized. An alternative
way is to introduce a quantum dot with a strong Coulomb
interaction on or near the outgoing lead.18,19 Starting with no
occupation on this dot, and then increasing the gate voltage on
it to capture one electron from the polarized flow, will block

the current due to Pauli’s principle. This spin blocking was
further demonstrated recently, confirming the spin filtering of
a quantum point contact which contains the SOI.75 Yet another
method detects the polarized current in quantum-point contacts
via transverse electron focusing.76
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M. Varela, J. Fontcuberta, and A. Fert, Phys. Rev. B 72, 020406(R)
(2005).
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