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Electronic properties of quantum dots formed by magnetic double barriers in quantum wires
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The transport through a quantum wire exposed to two magnetic spikes in series is modeled. We demonstrate
that quantum dots can be formed this way which couple to the leads via magnetic barriers. Conceptually, all
quantum dot states are accessible by transport experiments. The simulations show Breit-Wigner resonances in
the closed regime, while Fano resonances appear as soon as one open transmission channel is present. The
system allows one to tune the dot’s confinement potential from subparabolic to superparabolic by experimentally
accessible parameters.
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Quantum dots (QDs) are quasi-zero-dimensional semicon-
ducting systems in which the Fermi wavelength of the electrons
is comparable to the spatial extension of the confinement.1

Within the top-down approach, QDs are typically defined in a
two-dimensional electron gas (2DEG) residing in a semicon-
ductor heterostructure and can be tuned electrostatically by
nanopatterned gate electrodes.2 QD formation by magnetic
confinement has been suggested as a potential alternative
showing some fascinating and quite different phenomena.3–5

However, it has remained unclear how these systems can
be implemented experimentally. Magnetic dots have been
formed by using the fringe field of a ferromagnet on top of
a semiconductor heterostructure.6,7 This concept leads to open
dots such that Coulomb blockade is absent. This implies energy
levels of large width and a poorly defined electron number in
the dot. We are not aware of a scheme for strong, purely
magnetic confinement. Strong confinement can, however, be
achieved by combining electrostatic with magnetic fields, i.e.,
by exposing a quantum wire to a suitable magnetic field
profile in the longitudinal direction.8 Weakly bound states
have recently been observed on such a system,9 while the
strongly confined states have been conceptually inaccessible
by transport experiments due to the diamagnetic shifts in the
leads.

Here, we study theoretically QDs formed in a quantum
wire which is exposed to two magnetic spikes, referred
to as magnetic barriers, in series. We demonstrate that in
this system, strong magnetic confinement can be achieved
in a way that all states are experimentally accessible via
transport measurements. Resonant tunneling dominates the
transmission spectrum in the closed regime, while Fano
resonances are found in the open regime. Furthermore, by
changing the sample parameters, the shape of the confinement
potential can be tuned. The conductance of two magnetic
barriers in series which confine electrons in a quantum wire
has been calculated earlier,10–12 and these structures have also
been suggested as spin filters.13–16 However, in none of these
papers were the properties of the QD itself or the character of
the transmission resonances studied, while a comprehensive
semiclassical theory of this structure has been published
recently.17

Our model system is sketched in Fig. 1(a). It consists of a
parabolic quantum wire (QWR) oriented in the x direction with
the potential V (y) = 1

2m∗ω2
0y

2 with a confinement strength
ω0 = 1.6 × 1011 s−1 and the effective electron mass for GaAs
m∗ = 0.067me. The QWR width in the y direction depends on
the Fermi energy EF , which can be tuned by a voltage applied
to homogeneous gate electrode (not shown). The magnetic
barriers are assumed to originate from a ferromagnetic stripe
oriented across the QWR, i.e., in the y direction, which is
magnetized in the x direction to the magnetization μ0M by a
homogeneous, longitudinal external magnetic field Bext.9 The
perpendicular (z) component of the fringe field Bz(x) forms
two magnetic barriers in series of opposite polarity and with
a spacing L given by the width of the ferromagnetic stripe.18

This magnetic field profile can be written as19

Bz(x) = μ0M

4π
ln

(
A+

A−

)
, A± = (x ± L/2)2 + d2

(x ± L/2)2 + (d + h)2
,

(1)

where h denotes the thickness of ferromagnetic film and d

the distance of the QWR to the semiconductor surface. The
main effect on the QWR is provided by Bz(x), while the in-
plane components of B generate additional, small diamagnetic
shifts which we neglect. Magnetic barrier peak fields of
Bmax

x ≈ 0.57 T have been achieved experimentally this way.20

Furthermore, we assume h = 60 nm and d = 30 nm. The
effective g factor is set to zero and a spin degeneracy of 2
is assumed for all states.

Qualitatively, the QWR modes experience an x-dependent
diamagnetic shift, and we denote their energies by Ej (x), j =
1,2,..., given by21

Ej (x) =
(

j − 1

2

)
h̄

√
ω2

0 + ω2
c (x), (2)

with the local cyclotron frequency ωc(x) = eBz(x)/m∗. A
symmetric double barrier emerges as sketched for the first
mode in Fig. 1(a).

Quantitatively, the system is described by the effective-
mass Hamiltonian H = H0 + V (y) where H0 is the kinetic
energy term. The magnetic field Bz(x) enters via the vector
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FIG. 1. (Color online) (a) Scheme of the system under study.
The parabolic quantum wire resides in a semiconductor, e.g., a
GaAs/AlxGa1−xAs, heterostructure. A ferromagnetic stripe on top,
magnetized in the x direction by an external magnetic field Bext,
generates an inhomogeneous, perpendicular magnetic fringe field
Bz(x) (blue solid line) composed of two magnetic barriers below
the edges of the ferromagnet. The red, dashed line indicates the
corresponding energy of the wire mode with the lowest energy, E1(x).
(b) Left: The LDOS as a function of EF and x. Also shown (yellow
full lines) are the mode energies Ej (x). The magnetic barriers reside
at x = ±200 nm. The corresponding two-terminal conductance is
shown to the right. (c) Fits of selected resonances of (b) to the Fano
formula.

potential as A = ( − Bz(x)y,0,0) and the Peierls substitution
in the momentum operator p → p + eA.

The resulting Schrödinger equation is solved numerically
on a discretized lattice with a lattice constants a = 2 nm in
the x direction and b(E) = w(E)/128 where w(E) denotes
the energy-dependent wire width. For all calculations, b

was � 5nm. The discrete spatial coordinates at a given
energy are thus x = ma (m = −500, − 499,...,500) and y =
nb (n = −64, − 63,...,64), respectively. The tight-binding
Hamiltonian of the system reads

H =
∑
m

{∑
n

ε0c
†
m,ncm,n − t{c†m,ncm,n+1

+ e−iqwc†m,ncm+1,n + H.c.}
}
, (3)

where ε0 is the site energy, t = h̄2/(2m∗a2) is the hopping
matrix element, and c

†
m,n(cm,n) denotes the creation (anni-

hilation) operators, respectively, at site (m,n). Furthermore,

the phase factor is given by q = e
h̄

∫ xi+1

xi
Bz(x ′)dx ′. For

transport calculations, the ends of the wire are connected
to ideal semi-infinite leads. The two-terminal conductance
G is calculated within the Landauer-Büttiker formalism and
reads21

G = 2e2

h

N∑
β,α=1

|tβα|2, (4)

where N is the number of propagating states in the leads,
and tβα is the transmission amplitude from incoming state
α in the left lead (at x < −500a) to outgoing state β at
x > 500a. It can be expressed in terms of the total Green’s
function G of the system as tβα = ih̄

√
vαvβG501,−501, where

G501,−501 denotes the matrix 〈501|G| − 501〉 with ±501
corresponding to the position of the left and right lead,
respectively, which takes into account the contributions of the
initial and final states in the leads. We calculate G501,−501

using the recursive Green’s function technique in the hybrid
space formulation.22,23 Afterward, we determine the surface
Green’s functions related to the left and right leads and the
Green’s function of the QWR separately and then link them
at their interfaces. The local density of states (LDOS) as a
function of the site r = (m,n) is related to the total Green’s
function in real space representation by21 LDOS(r; E) =
− 1

π
Im[G(r,r; E)], where Im denotes the imaginary

part.
We focus on a dot of length L = 400 nm in the low-energy

regime where at most the lowest three modes of the leads
are occupied. In Fig. 1(b), the LDOS as a function of x
and EF , integrated along the y direction, is shown for a
magnetization of the ferromagnetic stripe of μ0M = 2 T. As
expected from the simple picture sketched above, the diamag-
netic shifts of the mode energies form an effective double
barrier (yellow full lines) leading to quantized confinement.
In the single-mode regime (50 μeV < EF < 150 μeV), the
mode spacing increases with increasing energy, reflecting the
superparabolic confinement potential in longitudinal direction.
The conductance correlates with the dot spectrum and shows
resonant tunneling peaks; see the right part of Fig. 1(b). This
indicates that the resonances are related to the energy spectrum
of the dot and not to effects at the individual magnetic barriers
as reported in Ref. 24 (note that the resonances investigated
there have been obtained for hard wall wires and get suppressed
in softer confinement potentials). As the second QWR mode
becomes occupied, the character of the resonances switches
from transmissive to reflective. These resonances are not
necessarily symmetric and originate from interferences of the
propagating states of the first QWR modes with bound states
of the second or third QWR mode. They can thus be described
by the Fano line shape25

G(EF ) = 2e2

h

1

1 + q2

[q ± ε/2�]2

1 + [ε/2�]2
. (5)

Here, � denotes the coupling of the bound state to the
leads, ε = EF − Eres is the detuning from the resonance center
Eres, and q is the Fano parameter which is a measure of
the phase difference between the two transmission channels
the electron waves collect as they traverse the dot; i.e.,
q = − cot (α − δ)/2 where α (δ) denotes the phase the wave
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FIG. 2. (Color online) The LDOS of the bound states at the
energies of selected resonances. The labels of the states refer to
Fig. 1(b).

acquires while traversing the dot via the bound (free) state.
For q = 0, a symmetric dip is obtained. As |q| increases,
the line shape becomes more asymmetric, and in the limit
|q| → ∞, Eq. (5) reduces to a Breit-Wigner resonance. For
q > 0 (q < 0), the dip appears to the low (high) energy side of a
peak.

Figure 1(c) depicts the fits of some resonances to Eq. (5).
We find both positive and negative Fano parameters in
the range |q| < 0.5, while the coupling of the states to
the leads varies by up to a factor of 50. This behavior
resembles that observed by Gores et al.26 on an open,
electrostatically defined QD, where, however, the Fano res-
onances showed larger asymmetries and a more homogeneous
coupling.

The character of the bound states can be visualized with
the help of spatially resolved LDOS plots at resonant energies;
see Fig. 2. States belonging to the first wire mode have no
node in the y direction, and the level index is given by the
number of nodes in the x direction. State 6 (11) is the lowest
energy state belonging to the second (third) wire mode. While
sharp resonances originate from states well localized close
to the center of the dot, transmission via more extended
states, e.g., state 8, causes broad and almost symmetric
resonances.

One potentially relevant feature of this system is the
possibility to tune the confinement potential shape by ex-
perimentally controllable parameters, such as L, Bmax

z , or d.
In general, the less the two magnetic barriers overlap, the
steeper the effective confinement potential becomes. While
changing L requires fabrication of several samples and d

can be tuned parametrically by no more than about 25 nm,27

Bmax
z can be varied over wide ranges by changing μ0M .

In Fig. 3, the energies of the bound states in the closed
regime are plotted as a function of the level index 	 for
various magnetizations. For μ0M < 5 T, the level spacing
increases with 	 indicating superparabolic confinement, while
for μ0M > 5 T, the confinement is subparabolic. For the
sample parameters chosen here, a magnetization of 5 T
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FIG. 3. (Color online) Parametric tuning of the confinement
potential shape. Main figure: Energies of the quantum dot states in
the closed regime as a function of the level index for various MB
amplitudes. Inset: LDOS (EF ,x) and E1(x) for a magnetization of
20 T, showing a subparabolic confinement effective potential.

represents an approximately parabolic confinement [the case
μ0M = 2 T is plotted in Fig. 1(b)]. The LDOS as a function
of EF and x for the strongest magnetization is shown in
the inset of Fig. 3, where the subparabolicity is directly
visible.

To summarize, we have shown that by exposing a quantum
wire to two magnetic barriers in series, tunable quantum dots
can be formed in which all discrete states are conceptually
accessible by transport experiments. Such quantum dots may
provide an alternative to conventional quantum dots defined
by purely electrostatic confinement. They reveal the full
variety of the possible forms of Fano resonances and show
a large variation of the coupling of the dot states to the
leads. Furthermore, the shape of the confinement potential
can be changed continuously between subparabolic and super-
parabolic by experimentally accessible parameters. Quantum
effects at magnetic double barriers in quantum wires have not
been tested experimentally yet to the best of our knowledge.
This is somewhat surprising, in particular considering that
the necessary technology is essentially established. Several
experiments on magnetic double barriers with submicron
spacing have been performed in wide 2DEGs,18,28–30 with
the minimum 2DEG width of 1 μm, reported in Ref. 28,
which is probably too broad for detecting quantized states.
The experimentally available magnetization is limited to about
3.75 T, such that the subparabolic potential regime lies outside
experimental reach for the parameters we chose, but it should
be possible to scale the system accordingly by a careful choice
of the sample parameters. Alternatively, nonplanar 2DEGs
may be used.31 Furthermore, magnetic confinement concepts
have attained increased attention recently due to their potential
application to graphene,32,33 where electrostatic confinement
is inhibited due to Klein tunneling.34 It will be interesting to
see whether the concept discussed here can be transferred to
graphene nanoribbons.
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