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Variational quantum Monte Carlo study of charged excitons in fractional dimensional space
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In this article we study excitons and trions in fractional dimensional spaces using the model suggested by
C. Palmer [J. Phys. A: Math. Gen. 37, 6987 (2004)] through variational quantum Monte Carlo. We present a
direct approach for estimating the exciton binding energy and discuss the von Neumann rejection- and Metropolis
sampling methods. A simple variational estimate of trions is presented which shows good agreement with previous
calculations done within the fractional dimensional model presented by D. R. Herrick and F. H. Stillinger [Phys.
Rev. A 11, 42 (1975) and J. Math. Phys. 18, 1224 (1977)]. We explain the spatial physics of the positive
and negative trions by investigating angular and inter-atomic distances. We then examine the wave function and
explain the differences between the positive and negative trions with heavy holes. As applications of the fractional
dimensional model we study three systems: First we apply the model to estimate the energy of the hydrogen
molecular ion H+

2 . Then we estimate trion binding energies in GaAs-based quantum wells and we demonstrate
a good agreement with other theoretical work as well as experimentally observed binding energies. Finally, we
apply the results to carbon nanotubes. We find good agreement with recently observed binding energies of the
positively charged trion.
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I. INTRODUCTION

Excitons have proven to be of importance in the description
of photon absorption in a wide variety of semiconducting
nanostructures.3–11 In the description of excitons and biex-
citons in quasi 2D quantum wells a method widely used in
literature12–16 is based on interpolation between 1, 2, and 3
dimensions of the Laplacian and the integration measure using
a single parameter D referred to as the fractional dimension.
This has the great advantage that the geometrical confinement
now enters through the parameter D rather than through
complicated potential terms. The first study of excitons, where
the confinement was modelled through a positive real number
D, i.e. the fractional dimension, was done in 1991 by X. F. He8

using the fractional dimensional model originally proposed by
D. R. Herrick and F. H. Stillinger.17 The Herrick-Stillinger
model was suggested in 1975 in a study of the helium atom in
noninteger dimensions. Two years later, F. H. Stillinger gave
a more detailed description of the mathematical foundation of
the model.18

We have recently reported on the binding energy of charged
excitons (trions) in fractional D dimensional space19 using the
model proposed by Herrick and Stillinger. In the calculations
we approximated the Hamiltonian by first removing the center-
of-mass motion, expressing the Hamiltonian of relative motion
in Hylleraas coordinates and finally neglecting the angle
dependence of the kinetic operator. We found that the fractional
D dimensional model provided accurate predictions of the
trion binding energy on the surface of a cylinder.19,20 Other
authors have demonstrated that this model also predicts exciton
binding energies in quantum wells and carbon nanotubes very
accurately.12–16,21 Thus, the model is applicable to a wide
variety of systems.

While three-particle problems are numerically solvable
within the framework of Herrick and Stillinger, the general N

particle problem cannot be solved exactly within this model as
it only allows two coordinates per particle, thereby restricting
the maximum number of degrees of freedom. Various papers
have addressed this problem in the case of biexcitons (two
holes and two electrons) by assuming a square structure of
the biexciton by which the Hamiltonian reduces to a two
particle Hamiltonian. The resulting mathematical problem is
now equivalent to that of the exciton with a different reduced
mass.7,12,22 This approximation is only applicable for biexci-
tons, and cannot be used for the investigation of trions, charged
biexcitons, etc. Thus, in general it would be preferable to go
beyond this approximation by solving the full Schrödinger
equation. Recently, C. Palmer and P. N. Stavinou suggested a
more general model within which the Herrick-Stillinger model
is contained.23 Contrary to the Herrick-Stillinger model, the
Palmer model allows one to introduce M coordinates describ-
ing the position of each particle. Although the foundation for
solving N particle problems has been established with this
work, the model has only received very little attention,24–28

and moreover, it has not yet been applied to any three-particle
problems containing Coulomb interactions between all three
particles.

The quantum Monte Carlo (QMC) method has proven to
be a powerful tool to estimate as well as to find exact solutions
to excitonic problems.29–31 The simplest form of QMC is
variational quantum Monte Carlo (VQMC) which, to our
knowledge, has not yet been applied to fractional dimensional
systems neither using the Herrick-Stillinger model nor the
Palmer model. In VQMC one tries to sample a distribution
ρ(x) � 0, where x denotes all particle coordinates �r1 . . . �rN

for N particles, with an ensemble of walkers. Using the
sampled configurations one can estimate integrals of the
form 〈E〉 = ∫

ρ(x)EL(x)dx with a sum 〈E〉 ≈ ∑
i EL(xi)/P ,

where P is the number of sampling points. The most common
quantity estimated is the expectation value of the energy
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for which one defines the local energy as EL = �−1Ĥ�,
where � is a trial function and Ĥ is the Hamilton oper-
ator. It is important to gain a basic understanding of how
VQMC is carried out in fractional dimensional systems as
it provides the basis for more complicated approaches such
as Fokker-Planck VQMC and diffusion QMC. One obvious
complication though is the singularities occurring in the
integration measure. While the integration measure is finite
for one-particle systems whenever the dimension D � 1, the
problem complicates for more particles. In general for N

particles each living in a fractional D dimensional space,
the integration measure turns out to be singular whenever
D < N − 1, in cases where the center-of-mass motion can be
separated out.23 In a VQMC study, these singularities should
either be included in the local energy or in the probability
distribution which in itself constitutes a challenge as one
would like, on the one hand, the local energy EL to be slowly
varying and, on the other hand, still be able to evaluate the
fraction of the probability distribution at two distinct points32

ρ(x)/ρ(x ′).
In this article, we investigate excitons and trions us-

ing variational estimates based on VQMC in fractional
dimensional space using the Palmer model. This article
aims toward (1) explaining how to carry out VQMC for
fractional dimensional systems, and (2) demonstrating the
some applications of this model. In Sec. II, we present the
necessary integration measure. For excitons we present a
direct method for generating random numbers reproducing
the probability distributions of a family of trial functions
containing the exact solution. We suggest a variational
wave function for the trion which we use to estimate the
trion binding energies through VQMC. Using the estab-
lished theory we present binding energies of the fractional
dimensional excitons in Sec. III, which we compare with
the exact result. The trion binding energy is presented in
Sec. IV, where we compare the results with the results
in Ref. 19. We then investigate the energy dependence on
the collapse of the axes within the framework of Palmer
and study the trion wave functions and their dependence
on the dimension of the system. As an application of this
model we study three systems: (1) we estimate the hydrogen
molecular ion in two- and three dimensions, (2) we study
trions in GaAs-based quantum wells, and (3) we apply the
model to estimate the binding energy of positively charged
trions in carbon nanotubes (CNTs). The results are com-
pared with the recently measured trion binding energies in
Ref. 33.

II. THEORY

We will use phrases such as “fractional dimensional space”
with “dimension” D. The “dimension” D should not be
confused with the mathematical dimension N of the space
RN . Likewise, the “fractional dimensional space” refers to
the interpolations applied to the Laplacian and the integration
measure rather than RN . In our case all calculations are
carried out in R3N , where N + 1 is the number of particles.
For completeness and to fix the notation, we provide a
brief review of the Palmer- and Herrick-Stillinger models in

Appendix A. We will use the result Eq. (A9)

∫
f (x)dx = σN (D − 1)

×
∫ ∞

0

∫ 2π

0
. . .

∫ ∞

0

∫ 2π

0
f (r1,θ1, . . . ,rN ,θN )

×
N∏
j

rD−1
j | sin θj |D−2drjdθj , (1)

to derive a direct method to calculate the exciton-binding
energy, but in general, our calculations will be based on the
Palmer model using Cartesian coordinates with the weighted
integration defined in Eq. (A5),

∫
f (x)dx = σN (α)σN (β)σN (γ )

∫ ∞

−∞
. . .

∫ ∞

−∞
f (�r1, . . . ,�rN )

×
N∏

i=1

|xi |α−1|yi |β−1|zi |γ−1dxidyidzi . (2)

The parameter D in Eq. (1) is defined as the sum D =
α + β + γ . It is worth noting that D, widely used in
literature,7,8,12,19,21,22 is not uniquely determined as, for in-
stance, α = 1, β = 1, γ = 0.5, and α = 0.75, β = 0.8, γ =
0.95 would yield the same D. This was also noted in Ref. 23,
and thus, a statement as19 “Carbon nanotubes are effectively
D ≈ 1.71 nanostructures” is in general not very precise as it
provides no information about which axes are collapsed and
which are not. In some special cases, however, one parameter
D is sufficient, as the problem becomes independent of the
choice of α, β, and γ . We will discuss this subject in Sec. IV.

A. Excitons

In the case of a single hole and a single electron, the D

dimensional Hamiltonian can be shown to give8

ĤX = − ∂2

∂r2
− D − 1

r

∂

∂r
+ l̂2

r2
− 2

r
, (3)

with

l̂2 = − 1

sinD−2 θ

∂

∂θ
sinD−2 θ

∂

∂θ
, (4)

after removal of the center-of-mass motion when distances are
expressed in effective Bohr radii a∗

B and energies in effective
Rydbergs Ry∗. These quantities are material-dependent pa-
rameters defined by the dielectric constant ε and the electron-
and hole masses me and mh through the reduced mass
μ = memh/(me + mh). By definition a∗

B = 0.529 Å · ε/μ and
Ry∗ = 13.6 eV · μ/ε2. In the following, we will study the
ground state of the Wannier equation and will therefore assume
that the wave function is independent of the angle θ . Using an
exponential trial function �(r) = e−ar the local energy is

EL(r) = −a2 + a
D − 1

r
− 2

r
, (5)
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for configurations distributed with the probability distribution
ρ(r) = Ae−2ar rD−1, with A being a normalization constant.
Using this distribution, the energy can be estimated as

EX ≈ 1

N

N∑
i=1

EL(ri), (6)

where the distance ri can be generated by

ri(pi) = Q−1(D,pi)

2a
, (7)

using random numbers pi distributed uniformly on the interval
[0,1]. Here Q−1(x,y) denotes the inverse regularized gamma
function defined as the inverse of the function

Q(a,z) = 1

�(a)

∫ ∞

z

ta−1e−t dt. (8)

This result is easily derived within the framework of Herrick
and Stillinger using the integration in Eq. (1). Obviously,
the local energy is constant when a = 2/(D − 1), which
demonstrates that the exact ground state is in the variational
function space. In the following, we define the exciton binding
energy as −EX, where EX is the ground state energy of the
Hamiltonian given in Eq. (3).

B. Trions

For trions the radial part of the Hamiltonian can be shown
to give,19

ĤT = − ∂2

∂r2
12

− ∂2

∂r2
13

− 2

σ + 1

∂2

∂r2
23

− σ

σ + 1

r2
12 + r2

13 − r2
23

r12r13

∂2

∂r13∂r12
− 2(D − 1)

r23(σ + 1)

∂

∂r23

− r2
12 + r2

23 − r2
13

(1 + σ )r12r23

∂2

∂r12∂r23
− (D − 1)

r12

∂

∂r12

− r2
13 + r2

23 − r2
12

(1 + σ )r13r23

∂2

∂r13∂r23
− (D − 1)

r13

∂

∂r13

− 2

r13
− 2

r12
+ 2

r23
, (9)

where σ = me/mh is the mass fraction between the electron-
and hole masses. Because the two electrons (two holes) must
obey the Fermi-Dirac statistics the total wave function must
be antisymmetric under exchange of the two particles. In
this work we will only be concerned with trions having
antisymmetry in the spin part, i.e. singlet trions. We will
therefore assume that the solution to Eq. (9) is symmetric in
the spatial part. In our previous work we found that variational
estimates of negative trions should be created from wave
functions that can model an exciton with a weakly bound
electron.19 This, unfortunately, indicates that the variational
estimates, which have proven great successes within the
helium atom, are not necessarily good estimates for trions
since the magnitude of the hole charge in trions is one-half
of the nuclear charge of helium. On the contrary, for the
positively charged hydrogen molecule H+

2 all particle charges
are of magnitude one and, thus, its properties are expected to
be much like those of the positive trion. Inspired by variational

estimates34 of H+
2 along with the conclusions from Ref. 19,

we chose a trial wave function of the form

�T (r12,r13,r23) = A�H (r12,r13)

× exp

(
σ + 1

D − 1

r23

1 + br23 + cr2
23

)
, (10)

with

�H (r12,r13) = exp

[−2a(r12 + ηr13)

D − 1

]

+ exp

[
−2a(ηr12 + r13)

D − 1

]
, (11)

being the Hylleraas-Eckart-Chandrasekhar trial function and
where A is a normalization constant.17,19 Here a,b,c ∈ R, and
η ∈ [0,1] are variational parameters. In the same manner as
with the exciton, the local energy EL was found35 for prob-
ability distributions ρ(�r12,�r13) which include the integration
weight of Eq. (2)

ρ = |�T |2|x12|α−1|y12|β−1|z12|γ−1|x13|α−1|y13|β−1|z13|γ−1.

The inclusion of the integration weight is a necessity to ensure
that the local energy is varying sufficiently slowly. Here we
have omitted the dependence of ρ and �T on �r12 and �r13 for
brevity. Throughout this article we denote the trion energy with
ET , and moreover, we define the trion binding energy as the
quantity EX − ET , which is positive for stable trions. Also,
we will denote the trion states by S+

σ and S−
σ for the positive

and negative singlet trion with mass fraction σ , respectively.
Finally, the wave functions will be denoted |S+

σ 〉 and |S−
σ 〉.

III. EXCITON-BINDING ENERGY

In this section, we present results on fractional dimensional
exciton using three different methods: (I) using a Metropolis
algorithm, (II) using a von Neumann rejection algorithm, and,
(III) using the analytical expression in Eq. (7). For comparison
purposes we also give the exact expectation value for trial
functions of the form �(r) = e−ar ,

〈�|Ĥ |�〉
〈�|�〉 = a

(
a − 4

d − 1

)
. (12)

While the sampling process using the von Neumann rejection
algorithm and Eq. (7) produce uncorrelated data, the Metropo-
lis algorithm does not necessarily generate uncorrelated
sampling points. In order to avoid correlation between data
points 50 accept/reject cycles were performed in between
each sample. Moreover, to ensure that the samples were
uncorrelated we calculated the auto correlation function for
a single walker36

A(l) = 1

�2N

N−l∑
i=0

[EL(xi) − 〈E〉][EL(xi+l) − 〈E〉], (13)

where 〈E〉 is the mean value of {EL(xi)}, N is the number of
sampling points, xi is the i’th sampled configuration, �2 is the
variance with the standard deviation � defined as

� =
√√√√ 1

N

N∑
i=1

[EL(xi) − 〈E〉]2, (14)
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and l is the lag. In all cases examined we found no signs
of correlation of the sampled energies. For all calculations
presented in this paper we calculated the standard deviation
� of the sampling which is indicated in the figures with error
bars. The von Neumann rejection algorithm was carried out
by selecting random numbers in a “D dimensional box”, i.e.,
with a distribution ∝ |x|α−1|y|β−1|z|γ−1, with side lengths
L and then accepting the sampled configuration according
to the fraction |�(r)|2/c, where c = maxr∈R |�(r)|2. The
distribution of the D dimensional box can be sampled directly
by first calculating x, y, and z according to

x = sxLp
1
α
x ,y = syLp

1
β

y ,andz = szLp
1
γ

z , (15)

where px , py , and pz are uniformly distributed numbers on
the interval [0,1], sx , sy , and sz ∈ {−1,1} are random discrete
numbers and then calculating r =

√
x2 + y2 + z2 in R3. The

Metropolis algorithm was implemented in a straightforward
manner as explained in Ref. 32. All Metropolis calculations
were carried out with acceptance rates between 70% and 90%,
and all proposed walks were found using normally-distributed
random numbers.

(a)

(c)

(e)

(d)

(b)

(f)

FIG. 1. (Color online) Exciton binding energies calculated using
VQMC with � = e−ar for different a’s. In a, c, and e the bind-
ing energies 〈�|Ĥ |�〉/〈�|�〉 are calculated for a = 2/(D − 1),
a = 1/(D − 1) and a = 3/(D − 1), respectively. Four curves are
presented: Four curves are presented: (I) a Metropolis calculation, (II)
a von Neumann calculation, and, (III) a calculation based on Eq. (5)
and the distribution generated by Eq. (7), and the solid line (Exact)
is the exact analytical expression for the expectation value Eq. (12).
In b, d, and f the local energies and exact probability distributions
are given for the three cases: a = 2/(D − 1), a = 1/(D − 1)and
a = 3/(D − 1). Additionally in b, we have given the probability
distribution obtained from our Metropolis algorithm. The illustrations
as well as calculations in b, d, and f were made for D = 1.7.

As shown in Fig. 1(a) the agreement between the three
methods (I)-(III) and Eq. (12) is excellent. This is not surprising
as the local energy is constant in the case where a = 2/(D −
1). This means that one can not conclude that the algorithm has
been correctly implemented by just looking at the expectation
value of energy in this special case. Thus, to ensure that the
probability distribution was correctly sampled, we checked
the sampled probability distribution against the analytical one
(Fig. 1(b)) and found good agreement between the two.

To further test the implementation we also investigated
cases using wave functions different from the exact solution
by letting a = g/(D − 1), with g = 1 or g = 3 Figs. 1(c) and
1(e). Again we found good agreement between Eq. (12) and
the three different implementations (I)-(III). However, one
remarkable thing is the failure of the Metropolis algorithm
for D slightly larger than 2 in. Fig. 1(e) This failure is
caused by two issues. To understand the first issue we have
plotted the local energy along with the exact analytical
probability distribution ρ(x,y,z) = �2(r)|x|α−1|y|β−1|z|γ−1

for two cases of g, see Figs. 1(d) and 1(f). In the first case,
g = 1, the local energy remains nearly constant37 in the region
where r > 0.2a∗

B and the accumulated probability distribution
is small for r < 0.2a∗

B . This means that small inaccuracies
in the sampling process only will yield a small error, and
thus, we still get close to the exact result. In the second case,
g = 3, the local energy also remains constant for r > 0.2a∗

B

and varies rapidly for r below 0.2a∗
B . However, in this case the

accumulated probability distribution is large for r < 0.2a∗
B and

thus, small inaccuracies yield large errors. The second issue
is related to the sampling process in the Metropolis algorithm
and is caused by the singularity of the probability distribution
ρ(x,y,z). When an axis is collapsed the function ρ(x,y,z)
becomes more and more singular due to the integration weight
|z|γ−1. This means that when γ becomes small the walkers
must be moved with extremely small steps if one wants
the transition probability to be non-zero. This explains why
the error only occurs for the Metropolis algorithm, while
implementation II and III yield exact energies; they do not
depend on fractions involving walker positions. Thus, to cure
this problem one has to increase the number of sampling steps
and to decrease the mean variance of each proposed walk. We
have found that to prevent this issue from arising it is useful to
scale the mean variance of the random movement according
to the dimension of each of the axes, i.e., �x according to α,
�y according to β and �z according to γ .

Finally, a few points are worth noting: First of all, we
see that, while the variance increases as |g − 2| grows, the
agreement with the exact result is still extremely good.
Secondly, the variance increases with decreasing dimension
in general. This is easy to understand; the two particles are
more confined for low dimensions than for high dimensions
and thereby the Coulomb interaction becomes more significant
with decreasing D meaning that the singularity in the local
energy plays a more important role. It is also worth mentioning
that we have found that the Metropolis algorithm is much faster
than the von Neumann algorithm. The reason for this is that
the von Neumann guesses, inside a D dimensional box, in
general have a high rejection rate as these do not come close to
the exponential behavior of the wave function. However, the
method has the benefit that one gets rid of the singular behavior
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of the probability distribution, which makes it extremely easy
to implement. The Metropolis algorithm, however, is based on
fractions, in which both denominator and numerator may attain
the values 0 and ∞. Therefore one has to take care that the
actual implementation is done carefully such that these special
cases are handled correctly. In conclusion the von Neumann
rejection algorithm serves as a good algorithm for reproducing
and checking results obtained using the Metropolis algorithm,
but is not recommended for large calculations.

IV. TRION BINDING ENERGY

To obtain a minimal energy with respect to the variational
coefficients a damped steepest decent method was imple-
mented using the stochastic gradient approximation38,39

aj+1 = aj − 2ξj

N

[
N∑
i

� ′
T (xi)

�T (xi)
EL(xi) − 〈E〉

N∑
i

� ′
T (xi)

�T (xi)

]
,

where �T (x) is the trial function, � ′
T (x) is the derivative of

the trial function with respect to a, xi is the i’th configuration,
N is the number of sampling points, aj is the coefficient
at iteration j , aj+1 is the new coefficient at iteration j + 1,
ξj is a damping coefficient, and 〈EL〉 is the expectation
value of the energy in the overall sampling. The damping
coefficient was chosen as ξj = q/jp in accordance with the
considerations on the convergence in Ref. 38. Rather than
optimising the parameters for every calculation we used this
method to minimize the energy for selected points. In between
these points the parameters were estimated using appropriate
interpolations. For each optimisation we chose p ∈ [0.8,1]
and q ∈ [0.05,2], and every optimization was carried out
several times with different p and q. Many different starting
points were used for each set of coefficients to ensure that
the coefficients found were the best possible. Moreover, every
optimized point was thoroughly tested with different number
of sampling points to guarantee that the minimum found was
not caused by an insufficient set of sampling points.

We calculated trion binding energies with the Palmer
integration for the negative trion S−

0.0, the positive trion S+
0.0

and the trion S
+/−
1.0 , for which the energies of the negative and

positive trions coincide. In Fig. 2 it is seen that the agreement
between the results presented here and those in Ref. 19 is
extremely good. Thus, our simple trial function in Eq. (10)
resembles the properties of the S−

0.0 and S
+/−
1.0 trions with good

accuracy. It is seen that the variance of the integration becomes
much larger as the dimension is decreased as we also saw for
the exciton. Moreover, the S+

0.0 is in general much stronger
bound than the S

+/−
1.0 and S−

0.0. This means that in general we
would expect the S+

0.0 to be much more localized than both
S

+/−
1.0 and S−

0.0.
Also, the mass fraction dependence was compared with the

results in Ref. 19. As shown in Fig. 3 there is a very good
agreement with the approach presented here and the results
obtained in Ref. 19. Whereas the negative trion comes very
close to the result in Ref. 19, the positive trion is slightly more
inaccurate. However, the mass fraction spectrum demonstrates
that the variational estimate presented here covers a large class
of different physical systems varying from the H+

2 structure to

(a)

(b)

(c)

FIG. 2. (Color online) Trion binding energy for a) S±
1.0, b) S−

0.0

and c) S+
0.0 trion using VQMC and a basis expansion. The basis

expansion was carried out as done in Ref. 19 within the Herrick-
Stillinger framework. The VQMC binding energy was found using
the Palmer model23 with collapse of one axis at a time, first z and then
y. Inset: The lowest eigenvalues ET of the respective Hamiltonians.

the He atom with nuclear charge 1. In terms of the ground
state energy ET the general error of this estimate is less than
2.5%. Hence, essential properties of this wave function, such
as expectation values of the electron-hole and electron-electron
distances, are expected to be predicted with high accuracy.

With reference to the comments made in Sec. II the dimen-
sional parameters α, β, and γ are not uniquely determined
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(a)

(b)

FIG. 3. (Color online) Trion binding energies EX − ET for S+
σ

and S−
σ trions using VQMC for the wave function in Eq. (10) and the

basis expansion given in Ref. 19. In (a) we give the binding energies
for D = 1.7, and (b) for D = 2.

by the dimension D, and so there is no guarantee that the
energy is independent of the choice of these parameters for
a constant D = α + β + γ . In Fig. 4, we have plotted the
binding energy as a function dimension D for different ways
of collapsing of the axes: First we collapsed the axes one
by one starting with z by letting γ go from 1 to 0 and then
collapsing y, by letting β decrease from 1. We then collapsed
the axes simultaneously α = β = γ = D/3 for D ∈ [1.5,3],
and finally we kept one axis fixed α = 1 collapsing the two
remaining axes simultaneously β = γ = (D − 1)/2. At first
sight, one might be led to believe that there is a difference
between the different ways of collapsing the axes. But, this
can clearly not be the case for our system: First of all, it
is evident that for α = 1, β = 1 or γ = 1 the expectation
value is independent of choice of the remaining parameters
for any D = α + β + γ . This is a direct consequence of the
discussion in Appendix A meaning that for collapse order
1 and 3 the energy difference can be shown to be identical
mathematically. However, one would expect that the error
bars would overlap, which is clearly not the case. This can be
explained in terms of the singular behavior of the probability
distribution: When using collapse order 3 the singularities are
much more dominant as the distribution becomes singular in

FIG. 4. (Color online) Trion binding energy for S−
0.0 trion versus

the dimension D = α + β + γ for different collapse orders. Collapse
order 1, first we collapse the z-axis and then the y-axis. Collapse order
2, all collapse parameters were set to D/3. Collapse order 3, we kept
α = 1 and set β = γ = (D − 1)/2. The small deviation between the
different ways of collapsing the axes is ascribed to the sampling of
the singularities as illustrated in Fig. 1.

two coordinates per particle which leads to higher numerical
errors in the energy. As the singularities imply smaller steps, as
discussed earlier, the variance becomes smaller. In this context
it is important to stress that the variance does not include the
numerical inaccuracy arising from the singularities. Secondly,
the Hamiltonian in Eq. (9) depends only on D. This means that
the exact eigenfunctions as well as energies also only depend
on D. Therefore, for any trial function that can be expressed
as a linear combination of the eigenfunctions to the Hamilton
operator Eq. (9) the expectation value of the energy will only
depend on D rather than α, β, and γ . However, if one included
the angular dependence into the trial function and the Hamilton
operator Eq. (9) this would no longer be the case: One would
need two independent collapse parameters40 to describe the
dimension of the system Eq. (9). In conclusion, to get the most
reliable results one should choose a collapse order for which
the least singularities occur, i.e., collapsing one axis at a time.
Throughout the rest of this paper we collapse one axis at a
time starting with the z-axis and then the y-axis.

One of the major advantages of the approach presented in
this article is our simple wave function. Unlike the method
in Ref. 19, where the wave function consists of more than
180 terms, one can easily perform numerical integration of the
wave function presented here. We estimated the expectation
values 〈Sσ |r12|Sσ 〉, 〈Sσ |r13|Sσ 〉, 〈Sσ |r23|Sσ 〉, and 〈Sσ |θ23|Sσ 〉
to gain an insight into the structure of the wave function.

The results are shown in Fig. 5. Several interesting things
are seen: First of all, it is immediately seen that all distances on
average become smaller as the dimension is decreased. This
is also what we would intuitively expect, since an increased
confinement should yield smaller expectation values of the
distances. Secondly, the S

+/−
1.0 and the S−

0.0 are very similar
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(a)

(b)

(c)

FIG. 5. (Color online) Expectation values of r12, r13,r23, and θ23

as a function of dimension D for a) S
+/−
1.0 , b) S−

0.0, and c) S+
0.0.

with regards to energy (see Fig. 2 and Fig. 3) as well as
to the average distances and angles in Figs. 5(a) and 5(b)
meaning that the S−

0.0 wave function is expected to have very
similar properties to that of S

+/−
1.0 . On the contrary, the average

distances for S+
0.0 are much smaller than those of S−

0.0. In general
we would expect S+

0.0 to be more localized than S−
0.0 which

is good agreement with the higher binding energy for S+
0.0.

Another major difference is that for S+
0.0 the average distances

〈S+
0 |r12|S+

0 〉, 〈S+
0 |r13|S+

0 〉, and 〈S+
0 |r23|S+

0 〉 are almost equal.

This means that the two holes are closer to each other in
comparison with S−

0.0 thereby lowering the average angular
difference 〈S+

0.0|θ23|S+
0.0〉 which indeed is what is seen. Third,

it is seen that the distance expectation values to a large extent
exhibits a linear behavior on the interval D ∈ [2,3]. This is not
so surprising as a similar tendency is seen for the exciton: If
one scales the distances with 2/(D − 1) and the energy with
(D − 1)2/4 one finds the wave function and Hamiltonian17 to
be independent of D meaning that for excitons one finds that
the expectation value of 〈X|r12|X〉, 〈X|r13|X〉, and 〈X|r23|X〉
scales as D − 1.

Finally, the average angular difference41 〈Sσ |θ23|Sσ 〉 be-
tween the electron-hole directions for S−

0.0 and S
+/−
1.0 , varying

from 1.60 for D = 1.5 to 1.65 for D = 3 for σ = 0, are
slowly growing as D is increased. If one completely neglects
the correlation of the wave function, i.e., assume that it
would simply be a product of two excitonic orbitals, the
expectation value of the average angular difference can be
found to be π/2 on the interval42 D ∈ [1.5,3]. This angle
is slightly smaller then the true expectation value given in
Fig. 5 demonstrating that the average angular difference is
increased as a result of correlation effects. The correlation
effects are most pronounced for large D which is in agreement
with the conclusions in Ref. 19, where it was shown that
the fraction between correlation energy and the full energy
increases with increasing dimension. The S+

0.0 state is again
different in comparison with S−

0.0. For S+
0.0 the average angular

difference 〈S+
0.0|θ23|S+

0.0〉 varies from 1.38 at D = 1.5 to 1.05 at
D = 3. This means that one would expect that the probability
of finding the electron in between the two holes is lower
than finding the electron with a large distance to both holes
in agreement with what is seen for the ionised hydrogen
molecule.34 This is also the reason why all average distances
are equal.

We also investigated the probability distributions

ρr (r1,r2) =
∫ 2π

0

∫ 2π

0
|�T (r1,r2,θ1,θ2)|2

× rD−1
1 rD−1

2 | sin θ1|D−2| sin θ2|D−2dθ1dθ2, (16)

and

ρθ (θ1,θ2) =
∫ ∞

0

∫ ∞

0
|�T (r1,r2,θ1,θ2)|2

×rD−1
1 rD−1

2 | sin θ1|D−2| sin θ2|D−2dr1dr2. (17)

In the case of S−
0.0 (S+

0.0) the probability distribution Eq. (16)
gives the probability ρr (r1,r2)dr1dr2 of finding one electron
(hole) with distance between r1 and r1 + dr1 and the other
electron (hole) with distance between r2 and r2 + dr2. Like-
wise, Eq. (17) gives the probability ρθ (θ1,θ2)dθ1dθ2 of finding
an electron (hole) with an angle between θ1 and θ1 + dθ1 from
the x-axis, in the plane spanned by the trion, and finding the
other electron (hole) with angle between θ2 and θ2 + dθ2.

We have plotted four different radial probability distri-
butions for S−

0.0 in Fig. 6 with σ = 0 and a) D = 3.0, b)
D = 2.5, c) D = 2.0, and d) D = 1.7. First we notice that
the probability distributions contract as the dimension D

decreases, in agreement with the results in Fig. 5. The shapes
of the wave functions are more or less the same independent
of D. Again this can be explained by examining the exciton: If
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(a) (b)

(c) (d)

FIG. 6. (Color online) Radial probability distribution ρr (Eq.
(16)) for the S−

0.0 state for different dimensions D: a) D = 3.0, b)
D = 2.5, c) D = 2.0, and d) D = 1.7.

one scales distances and energies of the exciton, as explained in
previous paragraphs, the wave function becomes independent
of D. Hence, the shapes of the exciton wave functions are
exactly the same for any dimension D. In general, the S−

0.0
wave function has the shape of a butterfly wing with high

(a) (b)

(c) (d)

FIG. 7. (Color online) Radial probability distribution for the
positively charged heavy hole trion S+

0.0 for a) D = 3.0, b) D = 2.5,
c) D = 2.0, and d) D = 1.7. In comparison with Fig. 7 these
distributions are much more localized. One very interesting feature is
the local maximum along the line r2 = r1 + k where k ≈ 1a∗

B . This
shows that the electron with high probability can be found near one
of the two holes.

(a) (b)

(c) (d)

FIG. 8. (Color online) Probability distribution ρθ for S−
0.0 as

function of angles θ12 and θ13 for a) D = 3.0, b) D = 2.5, c) D = 2.0,
and d) D = 1.7. The definition of ρθ is given in Eq. (17). Notice the
pattern along the line θ13 = θ12 as well as the local minimum. This
is a result of electron-electron repulsion and it is responsible for the
expectation value 〈S−

0.0|θ23|S−
0.0〉 being slightly larger than π/2.

probabilities of finding one electron close to the hole whenever
the other electron is far away from the hole. This clearly
demonstrates that the wave function is a superposition of two
excitons, formed by the first and second electron bound to
the hole, respectively, each weakly bound to the remaining
electron. We have plotted the radial probability distribution
in Fig. 7 for S+

0.0. It is seen that the S+
0.0 state is, in general,

more localized than the S−
0.0 and that the shape of the wave

function is very different. One very interesting feature is the
two maxima near the lines r2 = r1 ± k, where k ≈ 1a∗

B for
D = 3. This suggests that with high probability one will find
the electron near one hole-site and that the probability of
finding the electron in between the two holes is much smaller,
which is in good agreement with our previous conclusions.

Next, we investigated the angular distribution in Eq. (17)
which has been shown for the case of σ = 0 in Fig. 8. We
immediately notice the pattern stretching the wave function
along the direction θ13 = θ12. This effect arises from the
correlation and is simply a consequence of the electron-
electron repulsion: It is clearly seen that the angular differences
θ23 near π are favored over angular differences near 0, though
this effect is subtle. This means that the probability of finding
the two electrons close to each other, in general, will be smaller
than the probability of finding them separated by an angle of
π in agreement with our former discussion of the expectation
value of θ23. Finally we plotted the angular distribution for S+

0.0,
(Fig. 9). Again a pattern is seen along θ13 = θ12 as a result of the
electron-electron repulsion. However, in this case this pattern
is much more pronounced, and moreover, the distributions are
in general much more located near the line θ13 = θ12 which
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(a) (b)

(c) (d)

FIG. 9. (Color online) Probability distribution ρθ for the S+
0.0 trion

and θ13 for a) D = 3.0, b) D = 2.5, c) D = 2.0, and d) D = 1.7. In
comparison with Fig. 8 these distributions are much more localized
near the line θ13 = θ12.

serves to lower the average angle difference 〈S+
0.0|θ23|S+

0.0〉 as
is also seen in Fig. 5.

The binding energies presented up until this point are all
expressed in universal units, i.e., in units of effective Rydberg
Ry∗ and effective Bohr radii a∗

B . This means that they can be
applied to any system for which the dielectric constant and
the effective electron- and hole masses are known. Examples
of such systems are, amongst others, quantum wells12–16 and
nanotubes.19 To guide experimentalists to the actual trion
energies ET for different systems we here give curve fits for
S−

0.0, S+
0.2, S+

0.0, and S
+/−
1.0 . The trion binding energies can be

approximated by

E+/−
σ (D) = c0 +

4∑
i=1

ciD
−ie−D, (18)

with the coefficients given in Table I.
It is worth noting that the general concept of trions covers

a very large variety of particles. These results would be
applicable in the description of, for instance, impurity bound
excitons43 D−, along with other applications as we will see in
the next section.

TABLE I. Fitting coefficients – all in units of Ry∗ – for the ground
state energy of trions in Eq. (18) for S−

0.0, S+
0.0 and S

+/−
1.0 .

c0 c1 c2 c3 c4

E−
0.0 −0.765 368 −2390 4920 −3650

E+
0.0 −0.751 262 −1680 3320 −2560

E+
0.2 −0.563 212 −1570 3440 −2780

E
+/−
1.0 −0.420 158 −1330 3113 −2640

V. APPLICATIONS

To demonstrate how this model can be applied to real
physical systems, and to stress the wide applicability of the
results given above we study three systems in the following.
First, we apply the method to the hydrogen molecular ion,
which essentially is a S+

0.0 trion. Then we turn our attention to
trions in GaAs-based quantum wells and finally, we study the
trions in CNTs.

A. Hydrogen molecular ion

For the hydrogen molecular ion the effective Rydberg is
Ry∗ = 1

2 Ha and the effective Bohr radius a∗
B = 1aB with Ha

and aB being the Hartree and the Bohr radius, respectively,
defined as Ha = h̄2/(mea

2
B) and aB = 4πε0h̄

2/(m0e
2) in terms

of the permittivity of free space ε0, Planck’s constant h̄, the
speed of light in vacuum c, and the free-electron mass m0.

In three dimensional space the energy of the S+
0.0 trion is

found to be E ≈ 1.15Ry∗ = 0.575 Ha using Eq. (18). The
expectation value 〈S+

0.0|r23|S+
0.0〉 is 〈S+

0.0|r23|S+
0.0〉 ≈ 1.87a∗

B =
1.87aB (Fig. 5). This should be compared with the exact energy
0.6Ha and proton-separation distance 2.0aB in Ref. 44 which
clearly demonstrates a good agreement.

The hydrogen molecular ion has also been studied in two
dimensions in Ref. 44. If one takes D = 2 and redoes the
above calculation it is found that E ≈ 5.37Ry∗ = 2.68 Ha and
〈S+

0.0|r23|S+
0.0〉 = 0.62aB , and again we see a decent agreement

with the exact values 2.823 Ha and 0.511aB reported in Ref. 44.
In conclusion, this model predicts the energy and proton-

separation distance with good precision. Clearly the inaccu-
racies could be overcome by extending the method presented
here using either diffusion Monte Carlo or by using a basis
expansion as done in Ref. 19.

B. Trions in GaAs quantum wells

Intuitively, a quantum well resembles a fractional di-
mensional system where particles are free to move in the
(x,y)-plane while being confined in the z-direction. To account
for the confinement in the z-direction it has been suggested that
the dimension can be determined by considering the envelope
functions of the electron and the hole. For infinite quantum
wells it has been demonstrated that the effective dimension of
the well can be estimated as45

D = 3 − e−β. (19)

The parameter β = L/d is the ratio between the width
of the well L, and the characteristic relative electron-hole
separation.45 If one considers the solutions to the infinite quan-
tum well, β can be determined analytically. However, it is clear
that with well barriers of typically a few hundred meV, GaAs
quantum wells are far from being infinite barrier structures. For
excitons a characteristic electron-hole separation of d = 2a∗

B

has shown to be quite accurate in comparison with other
theoretical works.45 For trions, however, d must be expected
to be slightly larger due to the trion nature as an exciton with a
weakly-bound electron. By fitting d to the theoretical works in
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Ref. 46, we found that d = 2.15a∗
B produces accurate results

for trions. Thus, the parameters β(L) are given by

βX(L) = L

2
and βT (L) = L

2.15
, (20)

for the exciton and the trion, respectively. Excitons in quantum
wells now can be modelled by the expression45

EX(L) = − 4

(2 − e−βX )2
, (21)

whereas trions in general follow

E+/−
σ (L) = c0 +

4∑
i=1

ci

(
3 − e−βT

)−i
exp

(
3 − e−βT

)
, (22)

with the coefficients given in Table I.
For GaAs the dielectric constant, and the effective electron-

and hole masses are46 ε = 12.58, me = 0.067, and mh = 0.34,
respectively. This gives a mass fraction of σ ≈ 0.2, an effective
exciton Rydberg of Ry∗ = 4.8 meV and an effective Bohr
radius of a∗

B = 119 Å. Using these parameters, we first studied
the negative trion in GaAs quantum wells. One can assume
that the energies of S−

σ can be approximated by the energy of
the S−

0.0 trion. This can be justified by investigating the mass
fraction spectrum for various dimensions from which one will
discover that this approximation will at most yield an error
of 7%. Thus, one would expect that S−

σ trions in quantum
wells are well described by E−

0.0(L) given by Eq. (22). We
have plotted this result in Fig. 10 along with the theoretical
results reported in Ref. 46. Although it is seen that there is
a good overall agreement between the two models the slope
of the curves are somewhat different. This, however, is not so
surprising as (1) the results in Ref. 46 are based upon a model
with a finite well height, and (2) the mapping between the
dimension and well-width Eq. (19) may be inaccurate.

Similarly for σ ≈ 0.2, using Eq. (22) the S+
0.2 trion binding

energy was estimated for various well widths which is given
in Fig. 10. We have also provided the experimentally observed

FIG. 10. (Color online) Trion binding energy in GaAs-based
quantum wells for the positive and negative trion.

values from Ref. 47. As seen there is a reasonable agreement
between values reported in Ref. 47 and our estimates. One
should keep in mind, though, that our variational estimate
underestimates the energy for the S+

0.2 (Fig. 3), which explains
why the experimentally found energies are slightly larger.
Overall, the fractional dimensional theory models GaAs-based
quantum wells to a satisfactory accuracy given the inherent
limitations.

C. Trions in carbon nanotubes

Excitonic complexes in CNTs have been studied using
many different approaches.19,20,48–56 In Ref. 19 it was demon-
strated that the fractional dimensional model predicts the
trion binding energy in CNTs with very high accuracy and
therefore we use this as an example. For CNTs the mass
fraction is near20,52 σ ≈1. Along the same lines as Refs. 19
and 20, we first found the CNT effective Rydberg Ry∗ =
13.6 eV · μ/ε2, where μ = memh/(me + mh) is the reduced
electron-hole mass in units of the free-electron mass m0,
and me and mh are the effective electron and hole masses,
respectively. Using a nearest neighbor tight-binding model57

with a hopping integral19 of t = 2.89 eV and an overlap
integral of s = 0.1, the reduced electron and hole masses
could be estimated from the CNT band structure. These
parameters are considered reasonable as they predict the Fermi
velocity in graphene to vF = 9.6 × 105 which is within 5.7%
of the average experimental value.58 As the band structures
of CNTs are derived from that of graphene the errors of the
estimated effective CNT masses are found within a similar
error. The dielectric screening ε is determined partly by the
CNTs themselves and partly by the surrounding material. By
considering the contributions from each, one can argue20 that
the main contribution to the dielectric constant arises from the
surrounding material and moreover, that the value of ε should
be taken to be somewhere between20,53,54 2.0 and 5.0.

For example, we consider the (7,5) CNTs. In lack of a more
precise value, we found ε by fitting the trion binding energies
for CNTs where 2n + m = 20 to experimental observed trion
binding energies. We found that ε = 3.4 give precise results
for these CNT species and will therefore use this value in the
following. The effective electron and hole masses for (7,5)
CNTs are then found as me = 0.081m0 and mh = 0.087m0,
giving a reduced mass μ = 0.042m0. Using this the effective
Rydberg is Ry∗ ≈ 49 meV. The dimension of CNTs has been
shown to be21 D ≈ 1.71, for which the trion binding energy
is EX − ET = 1.27Ry∗ ≈ 63 meV. For tube diameters near
0.8 nm the exciton singlet-triplet splitting59 is ≈110 meV and
if this is taken into account the measured trion binding energy
in Ref. 33 is found to be 170 meV − 110 meV = 60 meV
giving an error of 5%. We did this calculation for a wide
variety of CNTs with diameters ranging from 0.5nm to 1.5nm.
The result can be seen in Fig. 11. We have also plotted the
experimentally observed values, where we have subtracted
the exciton singlet-triplet splitting as explained in Ref. 33.
In general, we find an extremely good agreement between
the experimentally observed trion binding energies and the
calculation done here for chiral indicies where 2n + m < 22.
However, for nanotubes where 2n + m is greater than 22,
the agreement is not as convincing. This can be ascribed to
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FIG. 11. (Color online) Comparison between calculated trion
binding energies (black squares) and experimentally observed values
(red circles). The energies were calculated by assuming that CNTs
effectively are 1.71 dimensional nano structures19 and assuming that20

E+
σ ≈ E

+/−
1.0 . The effective energies were then converted into physical

energies by calculating the effective Ry∗, as explained in the text,
using a nearest neighbor tight binding model.

several factors. First of all, the singlet-triplet splitting33,59 has
been found experimentally and fitted to 70 meV × nm2/d2

for nano tubes with diameter d given in nm. It is clear that
such a fit might contain inaccuracies because of statistical
uncertainty of the experimental measurements. Secondly, it
should be stressed that the parameter ε = 3.4 is used as a
fitting parameter because no precise value of ε is known for
the species in Ref. 33. Within the model presented here ε has
two effects on spectrum: (1) it shifts the binding energy toward
zero as ε is increased, and (2) the broadening of the Kataura
plot becomes more significant as ε is decreased. In a more
accurate model, however, it is very likely that ε will differ
for different CNTs and samples. Consequently, this might
shift the trion energy significantly for the individual chiralities
since Ry∗ ∝ ε−2. Third, we use a fixed effective dimension of
D = 1.71 which is an approximation. However, these results
do confirm that it is very likely that results reported in Ref. 33
indeed do arise from trions.

VI. CONCLUSIONS

In this work we have investigated excitons and trions in
fractional dimensional spaces. We have applied the Palmer
model to obtain result equivalent to chose reported using
the Herrick-Stillinger model. Because the interpolation be-
tween dimensions our results are valid for a wide range of
geometries. We have explained the difficulties that occur when
implementing VQMC in fractional dimensional spaces and
suggested solutions to these problems. Also, we have shown
that the general physics of the trion can be well estimated
by a fairly simple trial function. We have brought additional
information on the binding energy of the positive trion and
explained the major differences of the positive and negative

trion. Finally, we have applied this model to three systems
which has demonstrated a good agreement with experimental-
and theoretical works by other groups.
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APPENDIX A: PALMER- AND HERRICK-
STILLINGER MODELS

In this section we review the Palmer model, and using the
results in Refs. 23 and 24 we establish an expression for
the integration measure used in this paper. We also explain
the relation between the Palmer- and Herrick-Stillinger model,
and demonstrate that the Herrick-Stillinger model is contained
within the Palmer model. In the Palmer model, the integration
measure is given by23

dx =
3N∏
i=1

dαi xi, dαi xi = σ (α)|xi |αi−1dxi, (A1)

σ (α) = πα/2

�
(

α
2

) , (A2)

where x ∈ R3N denotes the position in the fractional dimen-
sional space, xi denotes the component along the i’th axis and
αi ∈ [0,1] is a parameter used to control the “collapse” of the
axis. It is easily demonstrated that

lim
αi→1

dαi xi = lim
αi→1

|xi |αi−1dxi = dxi, (A3)

and

lim
αi→0

dαi xi = lim
αi→0

1
2αi |xi |αi−1dxi = δ(xi)dxi, (A4)

which provides us with an immediate understanding of the
limiting cases: In the first case αi → 1 integration along the
i’th axis corresponds to integration over the set of reals R.
In the latter case αi → 0, the integration weight becomes a
Dirac delta function, and so, the integration corresponds to
evaluating the function in xi = 0. This is also what we would
expect as it is the only intuitive way of performing a “collapse”
of an axis. The infinitesimal D dimensional volume element
in Eq. (A1) directly gives∫

f (x)dx = σN (α)σN (β)σN (γ )
∫ ∞

−∞
. . .

∫ ∞

−∞
f (�r1, . . . ,�rN )

×
N∏

i=1

|xi |α−1|yi |β−1|zi |γ−1dxidyidzi, (A5)

where x is an element in R3N , �ri = 〈xi,yi,zi〉in R3 denotes
the position of the i’th particle, and we have introduced α,
β, and γ to control the collapse of the x-, y-, and z-axes,
respectively. We define the dimension D as the sum of the
individual collapse parameters D = α + β + γ .

The relation between the integration in Eq. (2) and the
one developed by Herrick and Stillinger, can be found by
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introducing radial coordinates24

x1 = r1 cos θ1,

y1 = r1 sin θ1 cos φ1,

z1 = r1 sin θ1 sin φ1,

x2 = r2 cos θ2,

...

zN = rN sin θN sin φN, (A6)

along with calculating the corresponding Jacobian23

J3N = r2
1 sin θ1r

2
2 sin θ2 . . . r2

N sin θN, (A7)

to show that the integral of f (x) in fractional dimensional
space for N particles can be expressed as∫

f (x)dx = σN (α)σN (β)σN (γ )

×
∫

. . .

∫
f (r1,θ1,φ1,r2, . . . ,φN )

×
N∏
j

r
α+β+γ−1
j | cos θj |α−1| sin θj |β+γ−1

×| cos φj |β−1| sin φj |γ−1drjdθjdφj . (A8)

If one now takes23 α = 1, defines D = 1 + β + γ , and
assumes that f (x) is independent of φ one arrives at the
Herrick-Stillinger integration∫

f (x)dx = σN (D − 1)

×
∫ ∞

0

∫ 2π

0
. . .

∫ ∞

0

∫ 2π

0
f (r1,θ1, . . . ,rN ,θN )

×
N∏
j

rD−1
j | sin θj |D−2drjdθj . (A9)

The Laplacian derived from the Palmer model can
also be shown to be similar to that of Herrick and
Stillinger.23
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