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Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer
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Optical response of an artificial composite nanodimer comprising a semiconductor quantum dot and a metal
nanosphere is analyzed theoretically. We show that internal degrees of freedom of the system can manifest
bistability and optical hysteresis as functions of the incident field intensity. We argue that these effects can be
observed for real-world systems, such as a CdSe quantum dot and an Au nanoparticle hybrid. These properties
can be revealed by measuring the optical hysteresis of Rayleigh scattering. We also show that the total dipole
moment of the system can be switched abruptly between its two stable states by small changes in the excitation
intensity. The latter promises various applications in the field of all-optical processing at the nanoscale, the most
basic of them being the volatile optical memory.
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I. INTRODUCTION

Arrays of metallic nanoparticles (MNPs; often referred to as
plasmonic arrays) are widely recognized as potential building
blocks for nanoscale optical circuitry1–9 (see also Ref. 10 for
an overview). Recently, a number of groups have reported
fascinating properties of artificial molecules comprised of a
semiconductor quantum dot (SQD) in the proximity of an
MNP.11–19 Nonlinear Fano resonances12,13 and bistability in
the absorption spectrum,13,14 control of exciton emission of the
SQD (inhibition or enhancement),15 and variable quenching of
SQD photoluminescence by proximate gold nanoparticles,11

as well as “metamolecular” resonances,16 inhibition of opti-
cal excitation and enhancement of Rabi flopping,17 tunable
nanoswitching,18 and gain without inversion,19 have been
predicted. The role of the multipole SQD-MNP interaction in
explaining the spectra of hybrid systems has been discussed in
detail in Ref. 20. All these effects depend on both geometrical
parameters and material properties of hybrid clusters, provid-
ing an excellent opportunity for more fine-grained control of
spectral and dynamical properties of nanoscale objects.

We consider the simplest hybrid nanocluster, comprising
an SQD and a spherical MNP—artificial hybrid diatomic
nanomolecule. When this system is excited optically, the
dipole moment of the optical transition in the SQD generates
an additional electric field at the MNP, which is superposed on
the external field. Similarly, the induced dipole moment of the
MNP generates an additional electric field in the SQD. Thus,
the presence of the MNP leads to a self-action (feedback) of
the SQD. Together with nonlinearity of the SQD itself, this can
give rise to a variety of new optical properties. In particular,
if the coupling between two nanoparticles is strong enough,
the self-action can result in optical bistability of the response.
Note that a dimer comprised of strongly coupled two-level
molecules cannot manifest bistability.21 Thus, a SQD-MNP
heterodimer is a fascinating nanoscopic system exhibiting this
feature.

To demonstrate the feasibility of the bistable optical
response of hybrid composites, we consider a closely spaced

CdSe (or CdSe/ZnSe) SQD and an Au nanosphere. We show
that for a range of geometrical parameters of the system
(SQD and MNP radii and center-to-center distance), optical
bistability and hysteresis can be observed in it. We also
argue that because of the axial symmetry of such an artificial
diatomic molecule, its state can be switched not only by
traditional change of the driving field amplitude, but also
by change of the incoming field polarization with respect to
the molecule axis, which offers an additional mechanism of
control. The fact that both the SQD and the MNP can sustain
high electric fields suggests such possible applications of
artificial molecules as all-optical switches and optical memory
cells at the nanoscale in the visible; the two stable states of
the systems have different total dipole moments, providing the
possibility to store information with this degree of freedom.

The paper is organized as follows. In the next section the
model and formalism are described. In Sec. III we present the
standard steady-state analysis of the bistable optical response,
which gives rise to the optical hysteresis addressed in Sec. IV.
We discuss possible applications of the predicted effects in
Sec. V, while Sec. VI summarizes the paper.

II. FORMALISM

We assume that the SQD-MNP hybrid molecule is embed-
ded in a dielectric host with permeability εb and is driven
by a linearly polarized external electric field with amplitude
E0 and frequency ω. Figure 1 shows the schematics of
the system. The SQD is modeled as a two-level system
with transition frequency ω0 and optical transition dipole
moment μ. It is treated quantum mechanically within the
framework of the Maxwell-Bloch equations for the 2 × 2
density matrix ρmn (m,n = 0,1). The MNP is considered
classically; the response of the MNP is described by its
frequency-dependent scalar polarizability within the point
dipole approximation (this can easily be generalized for the
case of more complex shapes of the MNP by considering
an appropriate polarizability tensor). All sizes of the system
(the SQD and MNP radii and the SQD-MNP center-to-center
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FIG. 1. (Color online) Schematics of the hybrid SQD-MNP
system embedded in a homogeneous dielectric background with
permeability εb and subjected to an external field with amplitude
E0. The SQD optical transition dipole moment and the semiconductor
dielectric constant are denoted μ and εs , respectively, while α(ω) is the
MNP polarizability. The curved arrows symbolize the dipole-dipole
SQD-MNP interaction.

distance) are assumed to be small enough to neglect retardation
effects and to consider both particles as point dipoles. The
rotating-wave approximation is used throughout this paper, so
that all time-dependent quantities represent amplitudes of the
corresponding characteristics of the SQD, the set of equations
for which reads

Ż = −γ (Z + 1) − 1
2 [�R∗ + �∗R], (1a)

Ṙ = −(i � + 	) R + �Z, (1b)

where Z = ρ11 − ρ00 is the population difference between the
SQD excited and the SQD ground states, R is the amplitude
of the off-diagonal density matrix element defined through
ρ10 = −(i/2)R exp(−iωt), γ and 	 are the relaxation constant
of the population and the dipole dephasing, respectively, � =
ω0 − ω is the detuning of the driving field from the SQD
resonance, and � = μE/h̄ is the electric field (in frequency
units) acting inside the SQD. The field acting on the SQD is
equal to the sum of the external field E0 and the field produced
by the induced dipole moment PMNP of the MNP. The field E
inside the SQD is reduced by the factor ε′

s = (εs + 2εb)/(3εb),
where εs is the permeability of the SQD (see, e.g., Ref. 22 or
Ref. 23, chap. V, p. 138):

E = 1

ε′
s

(
E0 + Ŝ PMNP

εb d3

)
. (2)

Here, Ŝ = diag(−1,−1,2) is the angular part of the dipole field
Green’s tensor (the z axis being parallel to the system axis), d

is the SQD-MNP center-to-center distance, and PMNP is given
by

PMNP = εb α(ω)

(
E0 + Ŝ PSQD

εb d3

)
, (3)

where α(ω) = a3 γ (ω) is the classical frequency-dependent
polarizability of the MNP, a being its radius, γ (ω) = [εM (ω) −
εb]/[εM (ω) + 2εb], and εM (ω) is the dielectric function of
the metal. We do not take into account the corrections to
the polarizability due to the depolarization shift and radiative
damping,24 which are negligible for nanoparticle sizes of our
interest (�10 nm). The second term in parentheses in Eq. (3) is
the field produced by the SQD dipole moment PSQD = −iμ R

at the MNP.
The exciton radius in CdSe is about 5 nm,25 while the

typical radius of the considered SQD is about 1.5–2 nm, so the

wave functions involved in the optical transition are extended
over the whole dot. In deriving Eq. (3) we therefore used the
approximation of the homogeneous electric polarization of
the whole SQD volume. In this case the dipole field around the
SQD is screened by the bare background dielectric constant
only.22 Note that the dipole moment PSQD is calculated
quantum mechanically and accounts for the screening which
results from the SQD dielectric response (see below). Finally,
for the total electric field inside the SQD we obtain

E = 1

ε′
s

[
1 + γ (ω) a3

d3
Ŝ
]

E0 + γ (ω) a3

εb ε′
s d6

Ŝ 2 PSQD. (4)

As shown by Eq. (4), the presence of the MNP results in two
effects: the first term accounts for the renormalization of the
external field amplitude E0, while the second represents the
self-action of the SQD via the MNP; the field inside the SQD
depends on the dipole moment of the SQD itself.

The effect of the self-action on the dynamics of the SQD-
MNP hybrid nanomolecule can be revealed after substituting
Eq. (4) into Eq. (1b) and representing � in the form

� = �̃0 − iGR, (5)

with �̃0 and G given by

�̃0 = 1

ε′
s

[
1 + a3γ (ω)

d3

μŜE0

h̄�0

]
�0, (6a)

G = γ (ω) a3

εbε′
sh̄d6

μŜ
2
μ, (6b)

where �0 = μE0/h̄ is the Rabi frequency of the bare external
field, �̃0 is the renormalized Rabi frequency, and G is
the feedback parameter. The latter absorbs all information
governing the SQD self-action, such as the material constants,
geometry of the system, and details of the interaction (e.g.,
contributions of higher multipoles).20

In a number of recent publications dealing with the same
system, a different formula for the constant G was used in
which the factor ε′

s appears squared in the denominator of the
G.12–20 The second factor, ε′

s, is supposed to take into account
the screening of the dipole field by the SQD dielectric response.
We note, however, that it is the product GR that determines
the latter field, and as shown by Eq. (8b), R ∝ �̃0 ∝ �0/ε

′
s,

so the dipole field GR is already additionally screened.
The feedback G is the most important parameter of the

theory; once it is calculated it determines the nonlinear
properties of the SQD response. Using Eq. (5), Eq. (1b) can
be rewritten in the form

Ṙ = −[(	 − GIZ) + i (� + GRZ)]R + �̃0Z, (7)

with GR = Re(G) and GI = Im(G). From Eq. (7) two con-
sequences of the SQD self-action become apparent: (i) the
renormalization of the SQD resonance frequency ω0 �→ ω0 +
GRZ and (ii) the renormalization of the dipole dephasing
rate 	 �→ 	 − GIZ. Both renormalized quantities depend
on the population difference Z. Similar renormalizations
originate from the local field correction in the nonlinear optical
response of dense gaseous assemblies of two-level systems,26

optically dense thin films,27 and linear molecular aggregates.28

The population dependencies of the SQD resonance frequency
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FIG. 2. Two possible types of SQD excitation. Left: The ex-
citation frequency ω lies below the renormalized SQD transition
frequency ω0 − GR (� > GR); as Z increases with the excitation,
the system is driven farther out of resonance. Right: ω > ω0 − GR

(� < GR); the excitation drives the system into resonance, which
favors the occurrence of bistability.

and the dipole dephasing rate provide a feedback mechanism,
which results in a number of fascinating effects.

Let us assume that both GR > 0 and GI > 0, which is
the case for a CdSe SQD conjugated with a golden MNP.
Then the renormalized resonance frequency increases with
the excitation intensity, ranging from ω0 − GR (Z = −1 in the
ground state) to ω0 + GR (Z = 1 in the excited state). In this
case the response of the system depends on the relative position
of the excitation frequency ω with respect to the renormalized
SQD transition frequency ω0 − GR. Thus, if ω < ω0 − GR or,
equivalently, � > GR (see Fig. 2, left) then the excitation
is driving the SQD out of resonance, so that the SQD is
becoming less absorptive. On the contrary, if ω > ω0 − GR

or � < GR (see Fig. 2, right), the SQD is being driven into
self-sustaining resonance by the incoming field. This is the
case of positive loopback. In this case, apart from the usual
linear “weak-field” solution, the second kind of stable state
can occur, which results from the above-mentioned positive
feedback mechanism. We show below that the latter has a
threshold character, giving rise to bistability and hysteresis of
the system response characteristics.

III. STEADY-STATE ANALYSIS

First, we analyze Eqs. (1a) and (1b) under steady-state
conditions (Ż = Ṙ = 0) to obtain stationary states of the
system. The corresponding solutions read

|�̃0|2
γ 	

= −Z + 1

Z

|(	 − GIZ) + i(� + GRZ)|2
	2

, (8a)

R = Z�̃0

(	 − GIZ) + i (� + GRZ)
. (8b)

Equation (8a) is of the third order in Z and therefore may
have three real solutions, depending on the values of �, 	,
GR, and GI. The same applies to the SQD dipole moment
amplitude R.

Hereafter, we consider a CdSe SQD in the vicinity of an Au
MNP and use the following set of parameters: the transition
energy h̄ω0 = 2.36 eV (which corresponds to the optical
transition in a 3.3-nm SQD), the SQD dielectric constant
εs = 6.2, the SQD transition dipole moment μ = 0.65 e·nm,12

the MNP radius a = 10 nm, the SQD-MNP center-to-center
distance d = 17 nm, the host dielectric constant εb = 1, and
the relaxation constants γ and 	 are defined through 1/γ =

0.8 ns and 1/	 = 0.3 ns.13 To calculate the polarizability γ (ω)
of the MNP, we used the tabulated data for the permittivity of
gold from Ref. 29. For these parameters G = GR + i GI =
(25.4 + 10.6i)	. Note that the frequency domain of our
interest is a narrow region in the vicinity of the SQD resonance,
with a width of about several units of 	 (see below), which is
much smaller than the width of the MNP plasmonic resonance.
We therefore neglected the frequency dependence of the MNP
polarizability when calculating the feedback parameter G and
used γ (ω) ≈ γ (ω0).

Figure 3 shows the solution of Eqs. (8a) and (8b) for the set
of parameters specified above and different detunings �. As
shown in the plots, within a window of −3.3	 � � � 13.8	,
the field dependence of Z and R have three allowed values
for a given intensity |�0|2/(γ	). The upper limit of the
window, � = 13.8	, corresponds to the excitation frequency
ω = ω0 − 13.8	, which lies above the renormalized SQD
resonance frequency ω0 − GR = ω0 − 25.4	 (the positive
loopback case). The lower limit of the window, � = −3.3	,
is negative and the corresponding frequency lies above the
bare resonance. Nevertheless, the SQD can still be driven
into self-sustaining resonance by the external field. At larger
ω (larger negative �), resonance between the excitation and
the SQD cannot be attained because it requires a significant
positive population difference Z that is unreachable under
stationary conditions: due to the saturation effect, the upper
limit for the population difference is Z = 0 in the steady
state. Because of this, the bistability effect disappears for large
negative detunings.
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FIG. 3. (Color online) Stationary solutions to Eqs. (8a) and (8b)
for a hybrid nanomolecule comprising a 3.3-nm CdSe SQD and
a 20-nm Au sphere separated by a center-to-center distance of
17 nm (other parameters are described in the text). Solutions are
calculated for different detuning � as functions of the normalized
external field intensity �0/

√
γ	. The upper two panels show the

population difference Z = ρ11 − ρ00 (left) and the SQD dipole
moment amplitude |R| (right). The lower-left panel displays the
absorptive part of the dipole amplitude, Im(R); the lower-right panel,
its dispersive part, Re(R).
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Optical bistability can therefore be observed within a
window of detunings in the vicinity of the SQD transition
frequency. The width of this window is typically of the order
of several units or tens of 	. In small SQDs the dipole
dephasing time is usually strongly temperature dependent and
can change from nanoseconds at low temperatures to less than
a picosecond at room temperature.30 The bistability exists only
if the feedback parameter G exceeds some threshold value. If
GI = 0, the condition for bistability to occur is GR � 4	,26

while if GR = 0, the condition is GI � 8	.31 The value of
G is determined by the geometry and material properties and
cannot be increased arbitrarily. Therefore, these criteria can be
used to choose suitable materials and system configuration.

We note that only the population difference Z manifests the
standard S-shaped curves, while all the quantities related to the
SQD dipole amplitude R exhibit more exotic coiled curves. As
we show below, the latter leads to completely different types
of hysteresis loops for these quantities.

IV. OPTICAL HYSTERESIS

We performed time-domain calculations with the external
field intensity |�0|2/(γ	) being adiabatically swept back and
forth across the bistability region (sweeping speeds are given
in figure captions), monitoring the evolution of the system to
determine which steady-state branches are stable. The results
are shown in Fig. 4. For the population difference Z and the
absorptive part of the SQD dipole moment Im(R), we find
the standard behavior. Upon increasing the applied intensity,
the system follows the lower (stable) branch until the intensity
reaches the critical value at which the system switches to
the upper branch (which is also stable). Upon sweeping the
intensity back, the system stays on the upper branch and then
switches back down to the lower one at the other critical
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FIG. 4. (Color online) Optical hysteresis loops of the population
difference Z = ρ11 − ρ00 and the SQD dipole moment amplitude
R obtained by solving Eqs. (1a) and (1b) with the external field
intensity |�0|2/

√
γ	 being adiabatically swept back and forth across

the bistability region (the sweeping speed of the renormalized Rabi
frequency �̃0/

√
γ	 is 2.1 × 10−3	) The detuning from the resonance

is � = 1.5	. All other parameters are as in Fig. 3.

intensity, completing the hysteresis loop. The intermediate
branch cannot be revealed by the adiabatic sweeping of the
field because it is unstable, which can also be checked by the
standard stability analysis.

Both |R| and Im(R) behave in a very different manner,
manifesting hysteresis loops with kinks. In the case of |R| the
upper branch is unstable and the hysteresis loop is triangular,
while Im(R), with its unstable lower branch, has an even
more complicated bow-tie hysteresis curve. To the best of our
knowledge, no such optical hysteresis loops have been either
predicted or observed so far.

These unusual properties are also expected to manifest
themselves in the MNP dipole moment because it depends
on that of the SQD [see Eq. (3)] and can therefore be switched
abruptly as well.

V. RAYLEIGH SCATTERING AND OPTICAL STORAGE

In experiments, the intensity of the Rayleigh scattering can
be measured. The amplitude of this characteristic is known to
be proportional to the squared absolute value of the total system
dipole moment |PSQD + PMNP|2 and is therefore expected to
manifest bistability as well. We plot the amplitude of the
Rayleigh scattering in Fig. 5 for different values of detuning �.
The figure shows that various types of hysteresis curves can be
observed: the standard loop (for � = 0) as well as more exotic
triangular loops (� = 1.5	 and � = 8	) and the bow-tie one
(� = 4.5	). The latter two types of hysteresis curves are
characteristic for the SQD dipole moment (see Fig. 4), which
suggests that the major contribution to the scattering is coming
from the SQD. To confirm the latter we calculated the relative
contribution of the SQD dipole moment to the total scattering
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FIG. 5. (Color online) Rayleigh scattering intensity |PSQD +
PMNP|2 in units of |μ|2 for different values of � (indicated in the
figures) as a function of excitation intensity. The corresponding
power density is shown on the upper axis. Sweeping speeds of the
renormalized Rabi frequency �̃0/

√
γ	 in units of 	 are of the order

of 10−3 for all values of �. All other parameters are as in Fig. 3.
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amplitude, |PSQD|2/|PSQD + PMNP|2, which turned out to be of
the order of unity across the whole hysteresis region. Within
this region the contribution of the MNP to the scattered field
is typically an order of magnitude less than that of the SQD
for the chosen set of parameters.

It is to be noted that the ratio of the scattering intensity
in the two stable states can be as high as about 25 for � = 0.
Such a high contrast suggests that the system can be used as an
optical memory cell: the lower intensity can represent a logical
0; the higher intensity, a logical 1. The state of the cell can be
switched by sweeping the excitation power across the bista-
bility region. Another possibility for switching the cell is to
maintain the power constant while changing the incident-field
polarization. The latter mechanism is characteristic for this
particular system due to its axial symmetry. We point out that
this memory is a volatile one, as it requires constant pumping.

VI. SUMMARY

We have investigated theoretically the optical response of
a hybrid “artificial molecule” comprised of a closely spaced
spherical SQD (modeled as a two-level system) and a metal
nanosphere (considered classically), which are coupled by
the dipole-dipole interaction. The interaction results in a
self-action of the SQD via the MNP, leading to population
dependence of the SQD transition frequency and relaxation
constant of the SQD dipole moment. This provides a feedback
mechanism resulting in several fascinating effects. Thus, we
found that the system can manifest bistability and optical hys-
teresis. In particular, the total dipole moment of the system can
be switched between its two stable states by the incoming field.

The latter suggests such possible applications as optical mem-
ory cells and all-optical switches at the nanoscale in the visible.

Because the SQD-MNP dipole-dipole interaction depends
on the orientation of the dipole moments of the two particles,
switching can be achieved not only by the traditional
control by the incident amplitude, but also by change of
the polarization of the incoming field with respect to the
system axis. Our calculations performed for typical system
parameters, such as those of CdSe or CdSe/ZnSe quantum dot
and Au nanoparticle complexes, predict the optical bistability
of an SQD-MNP artificial molecule. Modern methods of
single-particle spectroscopy30,32–34 could probably be used to
discover the predicted effects experimentally.

To conclude, we have considered the simplest diatomic
hybrid artificial nanomolecule. We expect, however, that more
complicated clusters (such as an SQD surrounded by several
MNPs, as considered in Ref. 15) can also exhibit these effects
because in such systems nanoparticles are just playing the
role of a “resonator” and provide feedback to the nonlinear
two-level system. Anisotropy of nanoparticles can also easily
be accounted for by using an appropriate tensor instead of the
scalar polarizability. Finally, we note that a very interesting
aspect of this kind of system is the direction of the total induced
dipole moment, which can also be bistable.
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