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Bruker AXS GmbH, Östliche Rheinbrückenstr. 49, 76187 Karlsruhe, Germany

K. Saito
Bruker AXS K.K., 3-9 Moriya, Kanagawa, 221-0022 Yokohama, Japan

V. M. Kaganer
Paul-Drude Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin, Germany

(Received 30 March 2011; revised manuscript received 8 June 2011; published 12 July 2011)

A method is proposed to determine the concentration and relaxation depth profiles in graded epitaxial films from
x-ray reciprocal space maps (RSMs). Various approximations in the kinematical x-ray diffraction from epitaxial
films with the misfit dislocation density depth profile are developed. We show that a symmetric and an asymmetric
RSM, or two asymmetric RSMs, contain enough information to obtain the concentration, relaxation, and lattice
tilt depth profiles without any additional assumptions. The proposed approach is applied to InxGa1−xAs/GaAs and
GaAs1−xPx /GaAs epitaxial graded films. The reconstructed concentration and dislocation density depth profiles
are found to be in an agreement with the ones expected from the growth conditions.
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I. INTRODUCTION

High-resolution x-ray diffraction is a standard tool to
measure the relaxation in epitaxial films. For uniform layers, a
comparison of the diffraction peak positions on the reciprocal
space maps (RSMs) taken in a symmetric and in an asymmetric
reflection provides the lattice parameter of the film and the
degree of relaxation.1 The problem becomes more complicated
for layers containing the lattice parameter gradients due
to concentration variations. Instead of separate peaks from
uniform layers on the RSMs, one observes in the graded layers
a continuous intensity distribution.

The determination of the concentration and relaxation
profiles from graded epitaxial films on the basis of RSM
measurements is not straightforward. It has been performed
by introducing additional simplifying assumptions.2–5 Holy
et al.2 suggested to subdivide the RSM into slices parallel to
the film surface, and consider the intensity maximum position
for a slice as a diffraction peak position due to corresponding
layer in the film. This approach has a severe restriction in
resolution, which remains evident if one attempts to treat the
RSM from a uniform relaxed layer in the same way. The
misfit dislocations at the layer interface give rise to broad
(with the width increasing as a square root of the dislocation
density) spots, approximately described by an anisotropic
Gaussian intensity distribution.6 Their interpretation in the
same way as suggested for the graded layer would result
in a continuous (approximately Gaussian) variation of the
concentration, instead of the abrupt change in the experiment.
Even with this resolution restriction in mind, this method2

delivers the relaxed lattice parameter and the misfit dislocation
density of the film sublayer corresponding to the given slice of
RSM. The depth position of this sublayer cannot be directly
determined from the x-ray data and needs a preliminary

knowledge of the concentration profile. Danis et al.5 avoided
the use of a known concentration profile but introduced an
assumption on the relation between the concentration and the
dislocation density profiles. They suggested that the relaxation
corresponds to the minimum of elastic energy, so that the
dislocation density is given by the concentration gradient.

The aim of the present work is to determine the concentra-
tion and the dislocation density profiles from RSMs of graded
epitaxial films without assuming any relations between these
profiles and using the RSM intensity distributions only.

II. CALCULATION OF RECIPROCAL SPACE MAPS

The relaxation of graded epitaxial films occurs by creation
of misfit dislocations parallel to the interface. The areal
dislocation density is the number of dislocation lines per unit
area in the plane perpendicular to the dislocation lines. For a
(001) oriented cubic crystal, there are two orthogonal sets of
parallel dislocation lines, we take the directions of which as x

and y axes. For each set of dislocations, the density is

ρ(z) = 1

bxax(z)

dax(z)

dz
, (1)

where ax(z) is the lattice spacing in the plane of interface in
the direction perpendicular to the dislocation line, and bx is the
Burgers vector component that provides the relaxation. Here
the z axis is along the normal to the plane of the interface.
For typical gradient layers, e.g., virtual substrates, the dimen-
sionless parameter ρd2, where d is the layer thickness, varies
between 101 and 103. The static Debye-Waller factor e−ρd2

is negligibly small and the dynamical x-ray scattering effects
can be neglected. Thus, the theory below is restricted with the
kinematical approximation.
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The relaxation of the graded epitaxial films can also be
characterized by the relaxation parameter R(z) defined with
respect to the substrate:

R(z) = ax(z) − a(s)
x

a
(0)
x (z) − a

(s)
x

, (2)

where a(s)
x is the substrate lateral lattice parameter, a(0)

x (z)
is the lateral lattice parameter which the film would have if
at depth z it were completely relaxed. The value a(0)

x (z) for
a two-component solid solution alloy AxB1−x can be found
from concentration c(z) at depth z, e.g., using Vegard’s law:
a(0)

x (z) = c(z)aA + [1 − c(z)]aB . In this case, it follows from
Eq. (1) that dislocation density, relaxation, and concentration
profiles are connected by

R(z) = bx

∫ z

0 ρ(z′)dz′

ε c(z)
, (3)

where ε = (aA − aB)/aB is the crystal lattice mismatch
between materials A and B. The difference of the lattice
parameters aA and aB is assumed here to be small, ε � 1.

The displacement of atoms from their positions in ideal pe-
riodic lattice taken as a reference consists of two contributions.
One is the displacement with respect to the substrate in a fully
pseudomorphic layer. For the two-component solid solution
alloy AxB1−x , the displacement gradient is proportional to the
concentration c(z) of the component A and can be written,
using Vegard’s law and assuming isotropic elasticity, as5

du
p
z(z)

dz
= 1 + ν

1 − ν
ε c(z), (4)

where ν is the Poisson ratio. The z-component (4) is the only
nonzero component of the displacement up.

The other contribution to the displacement is due to
displacement fields of the misfit dislocations. We denote by
u(x,z; z′) the displacement field at the point (x,z) due to the
dislocation going through the point (0,z′). The dislocation line
is along y axis. The displacement field can be represented,
taking into account the elastic relaxation at the free surface,
as6

u(x,z; z′) = u∞(x,z − z′) − u∞(x,z + z′) + usurf(x,z + z′),
(5)

where u∞(x,z) is the displacement field in the infinite medium
of a dislocation at origin. The first two terms in Eq. (5)
correspond to the dislocation itself and image with respect
to the surface, and the third term is the remaining surface
relaxation. The explicit expressions for all these terms and for
all Burgers vector orientations are given in Appendix B of
Ref. 6.

The diffracted x-ray intensity distribution from layer with
dislocations at interface was considered in Ref. 6. In this work,
we extend this approach on the case of graded layers. The next
two paragraphs summarize information from Ref. 6 that is
needed further.

Taking into account the two contributions to the displace-
ment field, Eqs. (4) and (5), and the dislocation distribution

over the film, the general expression for the scattered x-ray
intensity can be represented as

I (qx,qz) =
∫ ∫ d

0
dz1 dz2

∫ ∞

−∞
dx eiqxx+iqz(z2−z1)

× eiQ·(up(z2)−up(z1)) G(x,z1,z2), (6)

where d is the film thickness, Q is the scattering vector,
q = Q − Q(s) is deviation of the scattering wave vector from
reciprocal-lattice point Q(s) of the substrate, and G(x,z1,z2)
is the correlation function due to dislocation displacements. It
originates from displacements caused by randomly distributed
dislocations. Assuming that the dislocation positions are not
correlated, one can represent the correlation function for
dislocations of one type (the dislocations that have the same
direction and the same Burgers vector) as (see also Refs. 7
and 8)

G(x,z1,z2) = exp[T (x,z1,z2)], (7)

where

T (x,z1,z2) =
∫ d

0
dz′ρ(z′)τ (x,z1,z2,z

′) (8)

and

τ (x,z1,z2,z
′) =

∫ ∞

−∞
dx ′(eiQ·[u(x ′+x,z2;z′)−u(x ′,z1;z′)] − 1). (9)

Numerical calculations that directly use the general expres-
sions (7)–(9) occur very cumbersome. For relaxed uniform
layers, with misfit dislocations located at the interface,6

the main contribution to the integral (9) is due to closely
located points, so that the difference of displacements can
be expanded:

u(x ′ + x,z2; z′) − u(x ′,z1; z′)

≈ ∂u(x ′,z1; z′)
∂x ′ x + ∂u(x ′,z1; z′)

∂z1
ζ, (10)

where we denote ζ = z2 − z1. As a result, the imaginary part
of the function τ (x,z1,z2,z

′) is linear over x and ζ ,

Im τ (x,z1,z2,z
′)

=
∫ ∞

−∞
dx ′Q ·

[
∂u(x ′,z1; z′)

∂x ′ x + ∂u(x ′,z1; z′)
∂z1

ζ

]
, (11)

and leads to shift of the peak center according to average strain
of the layer lattice, while the real part is quadratic over these
distances:

Re τ (2)(x,z1,z2,z
′) = −[w11x

2 + 2w12xζ + w22ζ
2]. (12)

Here it is denoted

w11(z,z′) = 1

2

∫ ∞

−∞
dx ′

(
Q · ∂u(x ′,z; z′)

∂x ′

)2

, (13)

the functions w12(z,z′) and w22(z,z′) are defined similarly6 by
making derivatives over z instead of the derivatives over x ′.
The quadratic form of the real part of T in the case of uniform
relaxed layers leads to anisotropic Gaussian shape of diffracted
peak with the minor axis parallel to the diffraction vector Q.
The real part Re τ is denoted in Eq. (12) as Re τ (2) to indicate
the expansion quadratic over x and ζ .
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The expansions (11) and (12) are accurate enough to cal-
culate the x-ray diffraction peaks from uniform relaxed films
with misfit dislocations located at the interface. However, for
dislocations distributed in the film, we find that the coefficients
wij (z,z′) (here i, j = 1, 2) diverge at z′ → z as wij (z,z′) ∝
|z − z′|−1. As a result, this approximation leads to an erroneous
divergence of the integral (8), while in an accurate calculation,
the integral converges. The same problem arose for uniformly
distributed dislocations in Ref. 11. In this latter case, the
contribution to the correlation function from small separations
was estimated and used to renormalize the contribution from
the upper limit of the integral. Since this upper limit was an
ill-defined crystallite size, its change was not important. In
the present case, however, the contribution from the lower
limit is essential and the upper limit is a well-defined film
thickness.

The singularity of the function wij (z,z′) at z′ → z appears
since the expansion (10) becomes invalid. In the limit z′ → z,
numerical calculations show that the real part Re τ (x,z1,z2,z

′)
is well approximated by the expression

Re τ (1)(x,z1,z2,z
′)

≈ −
√

x2 + ζ 2[a0 + a1 cos(2φ) + a2 sin(2φ)], (14)

where φ = arctan(ζ/x) and the coefficients ai(z,z′)(i = 1,2,3)
remain finite at z′ → z and decrease as the distance |z − z′|
increases. Re τ is denoted as Re τ (1) in this approximation, to
indicate that it is linear over x and ζ .

We have numerically calculated the function of four
arguments τ (x,z1,z2,z

′) and fitted its real part to the sum
Re (τ (1) + τ (2)) given by Eqs. (14) and (12). The result of the
fit is three functions wij (z,z′) (i,j = 1,2) and three functions
ai(z,z′)(i = 1,2,3). We find that wij decrease to zero at z′ → z,
while ai are maximal in this limit and decrease when the
distance |z − z′| increases.

The imaginary part Im τ (x,z1,z2,z
′) is well approxi-

mated by Eq. (11), and the integrals can be calculated
analytically:6

Im τ (x,z1,z2,z
′) ≈ −i[δq̃x(z,z′)x + δq̃z(z,z

′)ζ ], (15)

where

δq̃x(z,z′) = QxbxH (z − z′),
(16)

δq̃z(z,z
′) = − 2ν

1 − ν
QzbxH (z − z′).

Here H (z − z′) is the step-like Heaviside function. The
accuracy of this approximation increases with the decreasing
x and ζ .

We now substitute Eqs. (15) and (16) into Eq. (8), and
combine the result with Eq. (4), to obtain the wave vectors
defining the local peak position,

q̃x(z) = Qxbx

∫ z

0
dz′ρ(z′),

(17)

q̃z(z) = − 2ν

1 − ν
Qzbx

∫ z

0
dz′ρ(z′) − Qz

1 + ν

1 − ν
ε c(z).

Finally, collecting the equations above, we can represent the
x-ray scattering intensity as

I (qx,qz) =
∫ d

0
dz

∫ ∫ ∞

−∞
dx dζei{[qx−q̃x (z)]x+[qz−q̃z(z)]ζ }

× exp

[ ∫ d

0
dz′ρ(z′) Re τ (x,z,ζ,z′)

]
, (18)

where, in the approximation that we described above, Re τ =
Re (τ (1) + τ (2)), the two contributions are given by Eqs. (14)
and (12), and we write their arguments as z and ζ instead of
z1 = z and z2 = z + ζ .

The scans of constant qx of the intensity distribution
I (qx,qz) on a RSM usually have well-defined maxima, we
denote the positions of which as qz max(qx). Equations (17)
approximately give, in the parametric form, the line qz max(qx).
We simplify the fit of the experimental RSMs by defining this
line on the experimental map and substituting corresponding
values qz max and qx max instead of q̃z and q̃x into Eq (17).
Then, combining the two equations of Eq. (17), one can
directly express c(z) through qz max and qx max. The value of
z is obtained, in the current approximation for the dislocation
density ρ(z), by numerically solving the first equation of
Eq. (17). We denote this value of z by z∗. That allows us
to reduce the search from two unknown functions, c(z) and
ρ(z), to the search of just one unknown function.

We can also make a rough estimate of the intensity
I (qz max, qx max). Let us assume that the most essential con-
tribution into diffraction intensity when integrating Eq. (18)
over dz is given by a small vicinity of the point z∗. This
assumption works better as the dislocation density increases
and the integrand, as a function of z, becomes a sharp peaked
function. Then, we can write∫ d

0
dz ei{[qx−q̃x (z)]x+[qz−q̃z(z)]ζ }

≈
∫ ∞

0
dz exp

{
i

(
dq̃x(z)

dz
x + dq̃z(z)

dz
ζ

)
(z − z∗)

}
≈ 2πδ

(
dq̃x(z)

dz
x + dq̃z(z)

dz
ζ

)
. (19)

In this approximation, the integration over dx dζ is reduced
to the one-dimensional integration in the direction normal to
the line qxmax(qzmax). If we make further severe approximation,
assuming that wij and ai are constants, we arrive at a notably
simple relation

I (qxmax, qzmax) ∝ 1

/
dq̃z(z∗)

dz
∝ 1/ρ(z∗). (20)

Qualitatively, Eq. (20) states that, the smaller is the dislocation
density, the larger is the thickness of a sublayer contributing
to diffraction intensity. However, Eq. (20) only qualitatively
describes the experimental data. We used it to obtain the first
approximation for further fit of the dislocation density profile.

III. X-RAY EVALUATION OF GRADIENT
SEMICONDUCTOR STRUCTURES

Two samples, one with tensile and another with com-
pression gradient layers have been grown using molecular
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FIG. 1. (Color online) Experimental reciprocal space maps from sample 1 for 224− (a), 004 (b), and 224+ (c) Bragg reflections.

beam epitaxy (MBE). Sample 1 contains graded InxGa1−xAs
layer and sample 2 contains GaAs1−xPx layer grown on
2 in. GaAs(001) substrates. The growth was performed in a
Riber 32 MBE system, which employed solid source effusion
cells for gallium, indium, and dimeric arsenic. The substrate
temperature was 510 ◦C and the growth rate was ∼500 nm/h.
Both structures were grown with the concentration varying
from zero at the bottom interface and increasing to ∼40% at
the top surface of the layer for sample 1 and ∼30% for sample
2. The high-resolution x-ray diffraction RSMs were measured
around 224+(the angle between the incident x-ray beam and
the surface is larger than the angle between the exit beam
and the surface), 224−(the angle between the incident x-ray
beam and the surface is smaller than the angle between the exit
beam and the surface), and 004 Bragg reflections (see Figs. 1
and 2).

Before performing reconstruction of the concentration and
relaxation profiles, the data was corrected for the possible
crystallographic lattice tilt, using symmetric 004 RSMs and
procedure described in Refs. 2 and 3 (see Fig. 3). For the
sample 1, the tilt angles reached the value of 10◦, and after
correction, the lines qx max(qz max) for + and − geometries
were aligned. For the sample 2, the tilt values are comparable
with the angle uncertainty of the diffractometer.

Another factor to be taken into account in the calculation
of diffracted intensity is a correction for peak broadening due

to instrumental effects. The resolution function A(qx,qz) gives
rise to a convolution integral

Iexp(qx,qz) =
∫ ∫

dq ′
xdq ′

zA(q ′
x − qx,q

′
z−qz)I (q ′

x,q
′
z), (21)

where I (q ′
x,q

′
z) is the intensity distribution (18) that we have

described above, and Iexp(qx,qz) is the intensity measured in
the experiment. We can proceed from the convolution to the
product of Fourier transforms,

Iexp(qx,qz) =
∫ ∫

dxdzeiqxx+iqzzAF (x,z)IF (x,z). (22)

The comparison of this expression with Eq. (18) shows that
the effect of instrumental function can be taken into account
without extra calculational efforts, just by multiplication of the
correlation function by AF (x,z) in the right part of Eq. (18).6

We have determined the correlation function A(qx,qz) by
measuring the substrate reflection.

In order to extract composition and relaxation depth
profiles, a fit of the experimental data to the calculation by
Eqs. (17), (18), and (21) was performed. According to the
discussion after Eq. (18), the dislocation density distribution
ρ(z) was fitted. The function ρ(z) was specified by the
values ρ(zi) at equally spaced points zi . About ten points
were taken first and a rough approximation for the profile
ρ(z) was found, providing a qualitative agreement between

FIG. 2. (Color online) Experimental reciprocal space maps from sample 2 for 224− (a), 004 (b), and 224+ (c) Bragg reflections.
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FIG. 3. (Color online) Measured 224− RSMs from samples 1 (a) and 2 (b) after tilt correction. The blue line shows the positions of local
maxima qx max(qz max) used for linking profiles c(z) and ρ(z) during data fitting procedure [see Eq. (17) and subsequent discussion].

calculated and experimental RSMs. The profiles following
from approximations (19) and (20) were used as an initial
guess. Then, the intermediate points zi were introduced. For
each point, one after one, the values ρ(zi) were chosen for best
agreement between experimental and calculated RSMs. This
sequential point-by-point fitting was performed several times
until the fitted profile ρ(z) remained almost unchanged after a
single point-by-point fitting run.

Figure 4 shows the fit results for the Bragg reflection 224−
from samples 1 and 2. The calculations were performed for
the 60◦ dislocations with the dislocation line directions [110]
and [1̄10].

For sample 1, we expected from the nominal growth
parameters the linear dependence of the concentration on
thickness, with possible deviations from linear behavior at the
lower interface of the layer. The results presented in Fig. 4(b)
support this dependence. For some values of qz, the calculated
profiles are narrower than the experimental ones, even after
convolution with the instrumental function. A possible reason
for additional broadening of the experimental curves is a
fluctuation of densities of dislocations with opposite sign of the
tilt-related Burgers vector components.6 A similar broadening
was also observed by Danis et al.5 The calculated intensity
also deviates from the measured one at the origin, which
is explained by essential contribution of the substrate peak
broadened by the instrumental function.

From the growth parameters for sample 2, the linear
dependence of the concentration on thickness is expected until
the thickness of 1.8 μm, after which the concentration was kept
approximately constant. Our calculation, see Fig. 4(b), con-
firms such concentration profile. There are obvious deviations
in the region of small concentrations, where the contribution
of the substrate peak is essential. The fitted profiles are slightly
broader than the experimental ones. A possible reason may be
a partial correlation of the dislocation positions.6

The proposed method provides the depth profiles c(z) and
ρ(z) independently. There are several models describing the
connection between these profiles.9,10,12,13 The minimization
of elastic energy due to lattice mismatch and misfit dislocations

gives rise to9,10

ρ(z) =
{

(ε/bx)dc(z)/dz, 0 < z < zc,

0, z > zc.
(23)

In this approximation, the misfit strain is completely compen-
sated up to critical thickness zc, and there are no dislocations
above zc. The critical thickness zc is given by the condition∫ d

zc
ε[c(z) − c(zc)]dz = λ/(bxμ), where λ is the energy per

unit length of dislocation, and μ is the appropriate elastic
constant for biaxial strain. In the expressions above, Vegard’s
law is implied. The dislocation density of the form Eq. (23)
was derived under assumption of complete thermodynamic
equilibrium. However, it is commonly observed that the actual
dislocation distribution deviates from it.3 In Fig. 4(c), the
profiles ρ(z) calculated from obtained concentration profile
c(z) according to Eq. (23) are shown by dashed lines.
Corresponding dislocation densities obtained from RSMs are
smaller in the region z < zc. Also, the jump at z = zc is
smeared out. Such deviations are expected since the evolution
of dislocation distribution to equilibrium is not instant but
takes place via plastic flow which is thermally activated kinetic
process.12,13

We note that the effect of dislocation correlations in the
graded layers under investigation is minor. The experimental
RSMs are quite well described under the assumption of
uncorrelated dislocations. The same assumption was used
in the previous studies of relaxed graded layers2–5 and also
occurred accurate enough. This result contrasts with the case of
uniform layers, where the misfit dislocations at the interface are
highly correlated.6 These correlations give rise to the observed
peaks notably (e.g., by a factor of 5) narrower than the ones
calculated under assumption of uncorrelated dislocations. We
conclude that in graded layers, where the misfit dislocations are
distributed in the bulk of the film, the positional correlations
between dislocations are much smaller than in uniform layers
with dislocations at the interface.
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FIG. 4. (Color online) Results of RSM fitting for sample 1 (left) and sample 2 (right). (a) Contour plots of experimentally recorded (blue
solid lines) and fitted (red dashed lines) intensity distribution from reflection 224−. The step of isointensity contours is 100.1. (b) Concentration
and relaxation depth profiles. (c) The fitted misfit dislocation density (full line), black squares denote points ρ(zi) which were used for fitting.
The dashed line corresponds to dislocation distribution according to model (Refs. 9 and 10).

IV. CONCLUSIONS

We show that the reciprocal space maps from graded
epitaxial film contain enough information to obtain the con-
centration and relaxation depth profiles without any additional
information. In the absence of a crystal lattice tilt, just single
reciprocal space map in an asymmetric reflection is enough
for such analysis. In the presence of crystal lattice tilt, the
tilt corrections need to be done, which requires an additional

symmetric or an asymmetric RSM. Our RSM calculations
are based on the kinematical x-ray diffraction theory from
crystalline films with the misfit dislocation density depth
profile. The theory is extended with respect to the case of
the misfit dislocations located at interface. The concentra-
tion and relaxation depth profiles of InxGa1−xAs/GaAs and
GaAs1−xPx /GaAs epitaxial graded films are determined by
fitting of the experimental RSMs to the theoretically calculated
ones. An accounting for the instrumental resolution function

035302-6



CONCENTRATION AND RELAXATION DEPTH PROFILES . . . PHYSICAL REVIEW B 84, 035302 (2011)

is necessary for the correct data treatment. The obtained
concentration profiles are found to be in a good agreement with
the nominal profiles expected from the film growth conditions.
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