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Berry phase of nonideal Dirac fermions in topological insulators
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A distinguishing feature of Dirac fermions is the Berry phase of π associated with their cyclotron motions. Since
this Berry phase can be experimentally assessed by analyzing the Landau-level fan diagram of the Shubnikov–de
Haas (SdH) oscillations, such an analysis has been widely employed in recent transport studies of topological
insulators to elucidate the Dirac nature of the surface states. However, the reported results have usually been
unconvincing. Here we show a general scheme for describing the phase factor of the SdH oscillations in
realistic surface states of topological insulators, and demonstrate how one can elucidate the Dirac nature in real
experimental data.
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I. INTRODUCTION

During the last three decades, the Berry phase1 has become
an important concept in condensed matter physics,2 playing
a fundamental role in various phenomena such as electric
polarization,3 orbital magnetism,4,5 anomalous Hall effects,6

etc. The Berry phase (or geometrical phase) in solids7 is
determined by topological characteristics of the energy bands
in the Brillouin zone (BZ) and represents a fundamental
property of the system.8 For example, a nonzero Berry
phase, which can be measured directly in magnetotransport
experiments, reflects the existence of a singularity in the
energy bands such as a band-contact line in three-dimensional
(3D) bulk states or a Dirac point in a two-dimensional (2D)
surface state.9 Also, the Berry phase of π is responsible for
the peculiar “antilocalization” effects in carbon nanotubes or
graphene.10 Recently, the π Berry phase has been observed
in the Shubnikov–de Haas (SdH) oscillations in graphene,11,12

giving one of the key pieces of evidence for the Dirac nature
of quasiparticles in the 2D carbon sheet.

The 3D topological insulator13–16 (TI) also supports spin-
polarized 2D Dirac fermions on its surface,17 which can be
distinguished from ordinary charge carriers by a nonzero Berry
phase. Recently, several groups have reported observations
of the SdH oscillations coming from the 2D surface states
of TIs.18–25 In those studies, a finite Berry phase has been
reported, but it usually deviates from the exact π value. For
example, in the new TI material Bi2Te2Se (BTS),21 where
a large contribution of the surface transport to the total
conductivity has been observed, the apparent Berry phase
extracted from the SdH-oscillation data was 0.44π . So far,
the Zeeman coupling of the spin to the magnetic field has been
considered20 as a possible source of such a discrepancy. Here,
we show that in addition to the Zeeman term, the deviation of
the dispersion relation E(k) from an ideal linear dispersion26

can shift the Berry phase from π . We further show how the
real experimental data for nonideal Dirac fermions can be
understood by taking into account those additional factors.

II. ENERGY DISPERSION OF SURFACE STATES

The energy dispersion of the surface states in TIs can
be directly measured in angle-resolved photoemission spec-
troscopy (ARPES) experiments. As an example, Fig. 1 shows

the dispersion of the surface state (together with the bulk state)
in BTS reported by Xu et al.27 One can easily recognize that
E(k) is not an ideal Dirac-like dispersion, but it can be fitted
reasonably well for the two high-symmetry axes with

E(k) = vFh̄ k + h̄2

2m
k2, (1)

with a single Fermi velocity vF = 3.4×105 m/s and an
effective mass m which slightly varies with the direction in
the surface BZ as shown by the solid lines in Fig. 1 [m/m0 =
0.15 (0.125) for the �̄ → M̄ (�̄ → K̄) direction with m0 the
free-electron mass].

Similar fittings can be obtained for other TIs owing to the
progress in ARPES studies of these materials.17,24,28,29

III. BERRY PHASE IN QUANTUM OSCILLATIONS

It is commonly accepted that quantum oscillations ob-
served in 3D metals can be well understood within Lifshits-
Kosevich30 (the de Haas–van Alphen effect) and Adams-
Holstein31 (the SdH effect) theories. Recently this approach
has been generalized to describe magnetic oscillations in
graphene, which is a 2D system with a Dirac-like spectrum
of charge carriers.32,33 There are two most prominent features
that distinguish such systems from materials with a parabolic
spectrum: First, rather weak magnetic fields are sufficient to
bring the system into a regime where only a few Landau levels
are occupied. Second, Dirac quasiparticles acquire the Berry
phase of π in the cyclotron motion, changing the phase of
quantum oscillations.

In the SdH effect, the oscillating part of ρxx follows

�ρxx ∼ cos

[
2π

(
F

B
− γ

)]
, (2)

where F is the oscillation frequency and 2πγ is the phase
factor (0 � γ < 1). This is the same γ as in the Onsager
semiclassical quantization condition34

AN = 2πe

h̄
B(N + γ ), (3)

when the N th Landau level (LL) is crossing the Fermi energy
EF (AN is the area of an electron orbit in the k space). γ is
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FIG. 1. (Color online) Experimental band dispersions (symbols)
in Bi2Te2Se measured by ARPES in Ref. 27 and the fitting of Eq. (1)
to the surface state (solid line). Large symbols depict the bulk state.

directly related to the Berry phase through9

γ − 1

2
= − 1

2π

∮
�

�� d�k, (4)

where ��(�k) = i
∫

d�k u∗
�k(�r) �∇�ku�k(�r) is the Berry connection,

u�k(�r) is the amplitude of the Bloch wave function, and
� is a closed electron orbit [the intersection of the Fermi
surface E(�k) = EF with the plane kz = const]. For spinless
quasiparticles, it is known9,34 that the Berry phase is zero for a
parabolic energy dispersion (γ = 1

2 ) and π for a linear energy
dispersion (γ = 0).

Experimentally, γ can be obtained from an analysis of the
Landau-level fan diagram. There are three quantities which
are often used as abscissa for plotting a LL fan diagram:
(i) The Landau level index N , which determines the energy
EN of the N th LL. (ii) The filling factor ν (≡ NsS

Nφ
, where Ns

is the density of charge carriers, S is the area of the sample,
Nφ = BS


0
is the number of flux quanta, and 
0 = h

e
is the

flux quantum). (iii) An integer number n which marks the
nth minimum of the oscillations in ρxx . Although all three
quantities are related to each other, the most straightforward
way to plot a LL fan diagram from the ρxx oscillations in a 2D
system18 is to assign an integer n to a minimum of ρxx (or a half
integer to a maximum of ρxx). From Eq. (2), one can see that
the first minimum in ρxx is always in the range of 0 < F

B1
� 1.

Thus, the plot of F/Bn vs n, which makes a straight line with
a unit slope for periodic oscillations, is uniquely defined and
cuts the n axis between 0 and 1 depending on the phase of the
oscillations, γ .

The ordinate 1/Bn in a LL fan diagram is determined by the
Landau quantization of the cyclotron motion of electrons in a
magnetic field. In 2D systems, upon sweeping B, ρxx shows a
maximum (or a sharp peak in the quantum Hall effect18) each
time that EN (B) crosses the Fermi level. Thus, the position of
the maximum in ρxx that corresponds to the N th LL, 1/BN ,

is given by

2π

(
F

BN

− γ

)
= 2πN. (5)

On the other hand, the n th minimum in ρxx occurs at 1/Bn

when 2π ( F
Bn

− γ ) = 2πn − π , so the positions of the maxima

and minima are shifted by 1
2 on the n axis.

The Onsager relation34 gives F in terms of the Fermi wave
vector kF as F = (h̄/2πe)πk2

F , and this kF can be calculated
from Eq. (1) as

k2
F = 2

(mvF

h̄

)2
(

1 + EF

mv2
F

−
√

1 + 2EF

mv2
F

)
. (6)

Also, when EF is at the N th LL, there is a relation

EN (BN ) = EF . (7)

From Eqs. (5)–(7), one obtains

γ = mv2
F

h̄ ωc

(
1 + EN

mv2
F

−
√

1 + 2EN

mv2
F

)
− N, (8)

where ωc = eB/m is the cyclotron frequency.
In the general case, γ is a function of B, meaning that

oscillations in ρxx are quasiperiodic in 1/B. In order to
calculate γ one needs to find the eigenvalues EN for a given
Hamiltonian.

IV. MODEL HAMILTONIAN

For the (111) surface state of the Bi2Se3-family TI com-
pounds, the Hamiltonian for nonideal Dirac quasiparticles in
perpendicular magnetic fields can be written as35

Ĥ = vF (�xσy − �yσx) + �2

2m
− 1

2
gsμBBσz, (9)

where the Landau gauge A = (0,By,0) for the vector potential
is used, � = h̄k + eA, σi are the Pauli matrices, μB is the
Bohr magneton, and gs is the surface g-factor. Note that this
Hamiltonian is essentially the same as for a conventional
2D electron gas (2DEG) with Bychkov-Rashba spin-orbit
interaction term.36 The only difference is that in TIs the
parabolic term in Eq. (1) is a small perturbation in comparison
with the linear one. The LL energies are given by35–37

E
(±)
N = h̄ωcN ±

√
2h̄ v2

F eBN +
(

1

2
h̄ωc − 1

2
gsμBB

)2

,

(10)
where the “+” and “−” branches are for electrons and holes,
respectively. The obtained eigenvalues EN define the exact
positions of maxima in ρxx and, thus, the phase of oscillations
through Eq. (8).

In two extreme cases, for nonmagnetic fermions (gs = 0),
Eq. (8) gives the expected results. First, for a linear dispersion
(ideal Dirac fermions), m → ∞ leads to EN = ±

√
2h̄ ev2

F BN

and γ → E2
N

2h̄ ev2
F B

− N , giving γ = 0 (Berry phase is π ).
Second, for a parabolic dispersion, vF → 0 leads to EN =
h̄ ωc(N + 1

2 ) and γ → EN

h̄ ωc
− N , giving γ = 1

2 (Berry phase
is zero). This gives confidence that the expression for γ given
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in Eq. (8) is generally valid for the topological surface state
with a nonideal Dirac cone described by Eq. (1).

V. LANDAU-LEVEL FAN DIAGRAM FOR NONIDEAL
DIRAC FERMIONS

Let us first consider how the LL fan diagram will be
modified when both linear and parabolic terms are present
in the Hamiltonian [Eq. (9)]. For the moment, the Zeeman
coupling of the electron spin to the magnetic field is assumed
to be negligible (gs = 0). Figure 2(a) shows the calculated
positions of maxima and minima in ρxx for oscillations with
F = 60 T and vF = 3 × 105 m/s as m/m0 is varied. One can
see that upon decreasing m/m0, the calculated lines on the LL
fan diagram are gradually shifting upward from the ideal Dirac
line that crosses the n axis at exactly 1

2 . Moreover, the lines
are not straight anymore, which is reflected in the dependence
of γ vs N shown in the inset. With decreasing N (increasing
B), γ becomes larger, reflecting the change in the phase of
oscillations at high fields.

A similar change in the LL fan diagram occurs if we modify
another parameter, vF . As shown in Fig. 2(b), the calculated
lines are gradually shifting upward from the ideal Dirac line as

(a)

(b)

FIG. 2. (Color online) (a) Landau level fan diagram calculated for
F = 60 T, vF = 3 × 105 m/s, gs = 0, and different m/m0. Arrows
show the direction of decreasing m/m0. The dashed and dotted
lines are the expected behaviors for an ideal Dirac dispersion and
a parabolic dispersion, respectively. (b) Landau level fan diagram
calculated for F = 60 T, m/m0 = 0.1, gs = 0, and different vF .
Arrows show the direction of decreasing vF . Insets show the
calculated γ (N ).

FIG. 3. (Color online) Landau-level fan diagram calculated for
F = 60 T and different gs , keeping vF = 3 × 105 m/s and m/m0 =
0.1 constant. Arrows show the direction of changing gs . The dotted
line is the expected behavior for a parabolic dispersion. Inset shows
the calculated γ (N ).

vF is decreased. The results shown in Fig. 2 can be understood
as a competition between linear and quadratic terms in the
Hamiltonian [Eq. (9)]. Note that for the whole range of the
parameters vF and m/m0, the positions of maxima and minima
in ρxx lie between two straight lines (shown as dotted and
dashed lines in Fig. 2) corresponding to γ = 0 and γ = 1

2 .
Let us now take the Zeeman term into consideration.

Figure 3 shows the LL fan diagram calculated with F = 60 T,
vF = 3 × 105 m/s, and m/m0 = 0.1, while gs is varied. To
understand the effect of the Zeeman coupling, it is important
to recognize the following two points: (i) The Zeeman term
in Eq. (10) would tend to cancel the 1

2h̄ωc term when gs is
positive. In fact, when 1

2h̄ωc = 1
2gsμBB (i.e., gs = 2m0/m)

is satisfied, the effect of the finite effective mass is canceled
and the LL fan diagram becomes identical to that for the linear
dispersion (ideal Dirac) case. In the present simulations, we use
m/m0 = 0.1, so that this cancellations occurs when gs = 20.
(ii) A pair of gs values that give the same | 1

2h̄ωc − 1
2gsμBB|

are effectively the same in determining the behavior of the LL
fan diagram. The result of our calculations shown in Fig. 3 is a
demonstration of these two points. Since the Zeeman effect is
more pronounced at higher fields, the LL fan diagram in Fig. 3
is strongly modified from a straight line when the quantum
limit is approached, i.e., close to N = 0.

VI. THE CASE OF BTS

Let us examine the real data measured in the BTS sample,21

in the light of the above considerations. Figure 4 shows the LL
fan diagram for oscillations in dρxx/dB measured at T = 1.6
K in magnetic fields perpendicular to the (111) plane.21 In
Ref. 21, the data were simply fitted with a straight line, and
the least-squares fitting gave a slope of F = 64 T with the
intersection of the n axis at 0.22 ± 0.12; this result implies a
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FIG. 4. (Color online) Landau-level fan diagram
for oscillations in dρxx/dB measured at T =
1.6 K and θ 
 0◦ reported in Ref. 21 for BTS. Minima and
maxima in dρxx/dB correspond to n + 1

4 and n + 3
4 , respectively.

Solid (dark gray) line is the calculated diagram for an ideal Dirac
cone with vF = 3.4 × 105 m/s and F = 62 T; dashed (blue) line
includes the effect of the actual dispersion with m/m0 = 0.13;
dotted (red) line further includes the Zeeman effect, where gs

= 76 or −45 was determined from a least-squares fitting to the
data. Inset shows the experimental data and calculations after
subtracting the contribution from an ideal Dirac cone, (1/B)Dirac,
where �(1/B) ≡ (1/B) − (1/B)Dirac.

finite Berry phase, but it was not exactly equal to π , which
remained a puzzle.21 Now, we analyze this LL fan diagram
by considering the nonideal Dirac dispersion as well as the
Zeeman effect. The ARPES data27 for the surface state of BTS
(Fig. 1) give vF = 3.4 × 105 m/s and the averaged effective
mass m/m0 = 0.13. We fix the oscillation frequency F at 62 T
obtained from the Fourier-transform analysis of the dρxx/dB

oscillations.21

In Fig. 4, the calculated diagram for an ideal Dirac cone
is shown by the solid (dark gray) line, whereas that for the
nonideal Dirac cone with the effective-mass term is shown by
the dashed (blue) line. One can see that the difference is small,
which indicates that the effective mass of 0.13m0 is not light
enough to significantly alter the LL fan diagram. One may
also see that these two lines undershoot the actual data points
at smaller n, which is even more clearly seen in the inset,
where the experimental data and the calculations are shown
after subtracting the contribution from an ideal Dirac cone. By
further including the Zeeman effect, we can greatly improve
the analysis, as shown by the dotted (red) line; here, gs is taken
as the only fitting parameter and a least-squares fitting to the
data was performed. The best value of gs is 76 or −45.

The inset of Fig. 4 makes it clear that it is the slight
deviation of the experimental points from the ideal Dirac line
that causes a simple straight-line fitting of the LL fan diagram
to intersect the n axis not exactly at 0.5. Since the Berry phase
in real situations is not a fixed value but is dependent on
the magnetic field, the simple straight-line analysis of the LL
fan diagram should not be employed for the determination
of the Berry phase. Obviously, the SdH oscillations of the
topological surface states are best understood by the analysis
which considers both the the deviation of the energy spectrum

FIG. 5. (Color online) Landau-level fan diagrams for SdH oscil-
lations observed in various TIs and graphene. Symbols are obtained
from the published experimental data in the literature. Solid lines
are calculations taking into account the nonideal dispersions of the
surface states (determined by m/m0) and the Zeeman coupling to
an external magnetic field (determined by gs). Dashed lines are
calculations for ideal Dirac fermions (m/m0 = ∞ and gs = 0). Open
diamonds are (dρyx/dB)min,max in Bi2Te3 from Ref. 18; filled circles
are (�Rxx)min in Bi2Se3 from Ref. 20; open circles are (Rxx)min,max in
graphene from Ref. 11; filled squares are (�Rxx)min,max in a Bi2Te3

nanoribbon from Ref. 25; open squares are (dρxx/dB)min,max in BTS
from Ref. 21.

of the Dirac-like charge carriers from the ideal linear dispersion
and their strong coupling with an external magnetic field.

VII. OTHER MATERIALS

Similar analyses can be performed for other TIs in which
the quantum oscillations coming from the 2D topological
surface states have been observed. Figure 5 shows the LL
fan diagrams for the SdH oscillations published to date for
TI materials,18,20,21,25,38 together with the data obtained in
graphene,11 which provides a good reference for studies
of Dirac fermions. We digitized the published experimental
data in the literature and determined ourselves the positions
of minima 1/Bmin and maxima 1/Bmax of the oscillating
parts of the resistivity (resistance), Hall resistivity, or their
derivatives with respect to B. The data obtained for various
materials are plotted as functions of n in Fig. 5. Note that, to
avoid ambiguities, we considered only those data that show
oscillations with a single frequency.38

The parameters of the surface states used in our fan-diagram
analyses have been obtained from the published ARPES data
by fitting them in the same way as for BTS (see Fig. 1).
Table I shows vF and m/m0 for the Bi2Se3/Bi2Te3 family
and graphene. These parameters were fixed during the fitting
of the data shown in Fig. 5. The only parameter that could

TABLE I. Parameters of the surface states from ARPES.

Material vF (m/s) m/m0 Ref. Remark

Bi2Se3 3.0 ×105 0.25 [28] Averaged
Bi2Te2Se 3.4 ×105 0.13 [21] Averaged
Bi2Te3 3.7 ×105 3.8 [29] Near Dirac point
Graphene 1 ×106 ∞ [11] Calculations
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TABLE II. Parameters used for the calculations shown in Fig. 5.

Material Ref. F (T) EF (eV) gs

Bi2Se3 [20] 30.7 0.074 55 or −39
Bi2Se3 [20] 88.6 0.143 55 or −39
Bi2Te2Se [21] 62.0 0.152 76 or −45
Bi2Te3 [18] 27.3 0.074 65 or −65
Bi2Te3, nanoribbon [25] 54.7 0.101 65 or −65
Graphene [11] 43.3 0.239 0

vary in our calculations was gs . Note that the frequency of
oscillations F (and, thus, the Fermi energy EF ) is essentially
determined by the periodicity of the observed oscillations.
Table II summarizes the parameters thus obtained. The results
of our calculations are shown in Fig. 5 by solid lines. Dashed
lines depict the behavior expected for ideal Dirac cones
(m/m0 = ∞) and negligible Zeeman coupling (gs = 0) for
the TI data. One can clearly see in Fig. 5 that only graphene
shows the ideal behavior in the LL fan diagram: a straight line
that crosses the n axis at 0.5. All TI materials, despite their
essentially Dirac-like nature of the surface state, present LL fan
diagrams that deviate from the ideal behavior. (The deviations
from the dashed lines are most clearly seen in strong magnetic
fields.)

In view of the good agreements between the data and
the fittings for all the materials analyzed in Fig. 5, one

may conclude that the advanced analysis considering both
the curvature of the Dirac cone and the Zeeman effect
can reasonably describe the SdH oscillation data obtained
for TIs and confirm the Dirac nature in their surface
states.

VIII. SUMMARY

We derived the formula for the phase γ of the SdH
oscillations coming from the surface Dirac fermions of
realistic topological insulators with a nonideal dispersion given
by Eq. (1). We also calculated how the curvature in the
dispersion as well as the effect of Zeeman coupling affect the
Landau-level fan diagram of the SdH oscillations for realistic
parameters. Finally, we demonstrated that the Landau-level fan
diagrams obtained from recently reported SdH oscillations in
topological insulators can actually be understood to signify
the essentially Dirac nature of the surface states, along
with a relatively large Zeeman effect in those narrow-gap
materials.
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