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System-size convergence of point defect properties: The case of the silicon vacancy
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We present a comprehensive study of the vacancy in bulk silicon in all its charge states from 2+ to 2−,
using a supercell approach within plane-wave density-functional theory, and systematically quantify the various
contributions to the well-known finite size errors associated with calculating formation energies and stable charge
state transition levels of isolated defects with periodic boundary conditions. Furthermore, we find that transition
levels converge faster with respect to supercell size when only the �-point is sampled in the Brillouin zone, as
opposed to a dense k-point sampling. This arises from the fact that defect level at the �-point quickly converges
to a fixed value which correctly describes the bonding at the defect center. Our calculated transition levels with
1000-atom supercells and �-point only sampling are in good agreement with available experimental results. We
also demonstrate two simple and accurate approaches for calculating the valence band offsets that are required for
computing formation energies of charged defects, one based on a potential averaging scheme and the other using
maximally-localized Wannier functions (MLWFs). Finally, we show that MLWFs provide a clear description of
the nature of the electronic bonding at the defect center that verifies the canonical Watkins model.
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I. INTRODUCTION

The presence of point defects can have many consequences
for the optical, electrical, and mechanical properties of mate-
rials. In particular, the behavior of defects in semiconductors
has been the subject of thorough and ongoing research due
to their use in devices such as transistors, solar cells, and
light-emitting diodes. This is because point defects strongly
influence the electrical conductivity of semiconductors by
adding states in the band gap, thus changing the number
of charge carriers available. Therefore, both native defects
(vacancies and self-interstitials) and impurity-related defects
(dopants) play a crucial role in understanding and controlling
the performance of semiconducting materials such as silicon,
germanium, and gallium arsenide.

To this end, the study of point defects in semiconduc-
tors using first-principles electronic structure simulations
has received a considerable amount of attention in recent
years.1 Most notably, density-functional theory2 (DFT) has
proven extremely popular due to its balance of computational
speed and predictive success. Nevertheless, it has been noted
that even for one of the simplest cases of point defects
in semiconductors, that of the neutral vacancy in silicon,
theoretical studies have shown a large scatter in results for
basic quantities such as the defect formation energy.3,4

For a point defect in an infinite crystal lattice, the relaxation
of atomic positions around the defect can extend to many suc-
cessive shells of atoms. In simulations with period boundary
conditions, this gives rise to elastic interactions between the
defect and its images in neighboring supercells; the relaxation
must therefore be contained within one supercell. Additionally,
there is a spurious electrostatic interaction between a defect
and its periodic replicas that depends on the size of the
supercell.

We focus on the isolated vacancy in bulk silicon (denoted
vq , where q is the charge state of the defect center). A number
of previous studies have been undertaken on this defect center
using a variety of theoretical techniques;5 in particular, Probert

and Payne,4 Puska et al.,6 and Wright7 have performed studies
of the convergence of the defect formation energy.

In this paper, we investigate systematically and quantify
the main contributions to the finite size error that lead to the
well-known slow convergence with respect to system size of,
for example, the vacancy formation energy, which arise from
spurious electrostatic interactions, elastic interactions, and
wave function orthogonality constraints between periodic im-
ages of the defect center in the supercell approach. In addition,
our calculations demonstrate that the defect formation energy
and equilibrium charge state transition levels exhibit different
convergence behavior with respect to supercell size, depending
on the Brillouin zone sampling used: the former benefits
from the use of a dense k-point grid, while the latter from
sampling at the �-point only. The reasons for this difference
will be discussed in the text. Furthermore, we present two
simple and accurate methods for calculating the potential
alignment correction to the valence band maximum of charged
defect supercells, one based on averaging the potential with
a Voronoi cell construction, the other on matrix elements
between maximally-localized Wannier functions8 (MLWFs).
Finally, we relate the MLWFs associated with the defect center
for each charge state to the canonical model of Watkins9–11

(described in Fig. 5, Appendix) and show that the qualitative
description given by this simple model is in full agreement
with parameter-free DFT calculations.

The rest of the paper is organized as follows: in Sec. II,
we describe the computational techniques that we employ
and give the technical details of our simulations. In Sec. III,
we illustrate the two methods we use to perform the po-
tential alignment correction and show preliminary results
comparing them. In Sec. IV, we present our main results;
first, we describe the convergence properties of the unrelaxed
(Sec. IV A) and relaxed (Sec. IV B) neutral vacancy, and then
we describe the results obtained for different charge states
of the defect (Sec. IV C) in terms of the transition levels
(Sec. IV D). In Sec. V, we give a brief summary of our main
conclusions.
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II. COMPUTATIONAL METHODS

In the supercell approximation, the formation energy of the
vacancy E

q

f is defined (following Zhang and Northrup12) as

E
q

f = Eq
vac −

(
N − 1

N

)
Ebulk + qμe, (1)

where Ebulk is the total energy of the bulk (perfect crystal)
supercell, E

q
vac is the total energy of the same supercell

containing a single vacancy with charge q, N is the number
of atoms in the bulk supercell, and μe is the electron chemical
potential. This last term can be divided into εv + �μe, where
εv is the value of the valence band maximum (VBM) and
�μe is the position of the Fermi level in the band gap. The
determination of εv is discussed in more detail in Sec. III.

For supercell sizes up to and including 256 atoms, the cal-
culations are performed using the CASTEP (Ref. 13) code (ver-
sion 5.0). The Ceperley-Alder local-density approximation14

(LDA) is used to describe exchange and correlation. For
charged supercell calculations, a compensating uniform
background charge is added. We use two pseudopoten-
tials for silicon: CASTEP’s “on-the-fly” Vanderbilt ultrasoft
pseudopotential,15 and a norm-conserving pseudopotential;16

both have four valence electrons and give accurate lattice
constants for bulk silicon (5.39 and 5.38 Å, respectively,
compared with an experimental value of 5.43 Å). This slight
underestimation of less than 1% is typical for LDA DFT. The
DFT-optimized lattice parameter is used in all calculations.

For our largest calculations, on a 1000-atom simple cubic
(sc) supercell, we use the linear-scaling DFT code ONETEP

(Refs. 17 and 18) (version 2.4). The “crossover,” namely, the
system size at which it becomes computationally more efficient
to use ONETEP as opposed to conventional cubic-scaling DFT,
is highly system dependent and lies at around 500 atoms for
silicon. For this reason, we use conventional plane-wave DFT
for supercells smaller than this crossover, and linear-scaling
DFT for the largest supercell. ONETEP makes use of the
single-particle density matrix, expressed in separable form
in terms of a localized basis of nonorthogonal generalized
Wannier functions (NGWFs) and a density kernel.17,18 We use
the same norm-conserving pseudopotential as for CASTEP, and
nine NGWFs on each silicon atom with a truncation radius of
3.97 Å. We do not truncate the density kernel.

We follow the methodology outlined by Probert and Payne
in their study of the neutral silicon vacancy;4 however,
numerical parameters are converged independently for all
system sizes. The supercells are constructed from three unit
cell shapes: fcc (the primitive cell, with 2 atoms), sc (with
8 atoms), and bcc (with 32 atoms). The supercells are then
made from n3 unit cells. We perform calculations on both
unrelaxed and relaxed geometries; our convergence tolerance
for the defect formation energy of a given supercell is 10 meV.
We use a regular Monkhorst-Pack (MP) mesh19 of k-points
for the Brillouin zone integration. In the text, the parameter
kMP refers to a k3

MP grid. The issue of Brillouin zone sampling
shall be discussed in Sec. IV; in general, we make use of two
sampling schemes: a �-point only sampling (i.e., kMP = 1),
and what we call a “dense” sampling. This last term we shall
use to indicate that kMP has been converged with respect to the
formation energy for a particular supercell.

For the relaxation, a quasi-Newton BFGS scheme is used.
All the atoms in the supercell are allowed to move, and their
positions are slightly randomized at the start of the procedure
to allow for symmetry breaking. Our convergence tolerance
for the geometry optimization is 5 × 10−3 eV/Å for the root
mean square force on all the atoms.

III. DETERMINING THE ELECTRON CHEMICAL
POTENTIAL

As described in Sec. II, the formation energy of charged
defects depends on the electron chemical potential, which is
given relative to the VBM eigenvalue position εv . εv is more
precisely defined as the energy difference between the pure
host material and the host with a single electron hole. In the
limit of a dilute hole gas, this energy difference is equivalent
to the VBM eigenvalue. For a finite supercell calculation,
however, the energy difference between the bulk system with
and without the hole only slowly converges to the infinite limit
as the system size is increased.20 Instead, the VBM will always
remain at the same position (given a sufficient Brillouin zone
sampling), which is the limiting value.

Two approaches can be taken to determine εv: either
calculating the energy difference of the bulk supercell with
q = 0 and q = +1, or using the bulk VBM eigenvalue and
employ a potential alignment correction.20–22 In the rest of
this section, we describe the two methods that we employ for
calculating the potential alignment correction: a partitioning
of the real-space potential using Voronoi cells, and an MLWF-
based approach. To the best of our knowledge, this is the first
time these methods have been used to calculate the correction.

A. The real-space Voronoi cell method

Our first method is based on considering the electrostatic
potential directly. In such approaches, the correction is
typically determined by plotting the electrostatic potential
obtained from the DFT calculation, and averaging it either
in the x–y plane, within atomic spheres or over primitive cells
of the host material. The important point is that the averaging
must be done in some localized manner, such that it is possible
to measure the value of the bulk-like potential in the charged
defect supercell by considering a region far away from the
defect center. The correction to the defect formation energy
is then q(Vvac − Vbulk), where Vbulk and Vvac are the average
potentials in the bulk supercell and in a “bulk-like” region of
the vacancy supercell.

In order for the correction to be unambiguous and accurate,
the averaging volume should be as small as possible while still
covering a region of space that is completely representative
of the bulk material (i.e., all regions in the bulk supercell
should give the macroscopic average for the material). Our
approach is to use Voronoi cells: each region corresponds to
the real-space volume of points closest to one particular atom
in the supercell. There are, therefore, as many regions as there
are atoms. The electrostatic potential, however, is given on a
discrete real-space grid whose spacing depends on the basis set
cut-off energy and which, in general, is not commensurate with
the atomic spacing, leading to inaccuracies in the averaging
procedure that may swamp the difference between the bulk
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FIG. 1. (Color online) Potential alignment correction for v2−

using the MLWF and real-space Voronoi cell methods. The values
are adjusted with respect to the bulk supercell. The dashed horizontal
lines show the value for the furthest point from the defect center.

and defect supercells. In order to overcome this drawback,
we Fourier interpolate the potential onto a finer grid that is
commensurate with the atomic spacing, which results in each
Voronoi cell containing exactly the same number of points.
We note that care must be taken to give the correct fractional
weighting to points which are directly between two or more
atoms.

The potential alignment correction is then determined by
considering Voronoi cells belonging to the atoms which are
furthest from the defect center, as shown in Fig. 1.

B. The MLWF method

Our second approach to calculating the potential alignment
correction is based on matrix elements of the Hamiltonian in
the basis of MLWFs. The shift in the reference of potential that
is sought is reflected in the position of the energy eigenvalues;
however, comparing the eigenvalues of bulk-like states in the
defect supercell with those of the bulk supercell is problematic
since the eigenstates are delocalized. MLWFs, on the other
hand, provide a probe of the localized properties of the system.
Once the Hamiltonian is transformed into a basis of MLWFs,
the potential alignment correction can be determined by
considering on-site matrix elements H̃nn = 〈ωn|Ĥ |ωn〉 (where
ωn is a MLWF belonging to the cell at the origin) for Wannier
functions whose centers, defined by their first moments, are
far away from the defect center. The shift in potential is then
simply H̃nn,vac − H̃nn,bulk. In practice, as shown in Fig. 1, we
plot this difference for all n as a function of the distance of the
Wannier function center from the defect center, and the value
of the potential alignment correction is taken as the mean of
the values which are furthest from the defect center.

This method is feasible since the wannierization procedure
results in the same partitioning of the electronic density in
the bulk and defect supercells everywhere except in the direct
neighborhood of the defect; hence it is possible to identify
Wannier functions that are associated with the defect center and
Wannier functions that are not. In the latter case, therefore, it is
straightforward to unambiguously match equivalent Wannier
functions in the bulk and defect supercells.

From Fig. 1, it can be seen that the MLWF correction
method is in an excellent agreement with the Voronoi cell

TABLE I. List of all supercells up to 256 atoms with their
respective symmetries. Also listed are the value of kMP used
(converged with respect to the formation energy for each supercell),
the corresponding k-point volume in reciprocal space, the unrelaxed
defect formation energy, and the kinetic energy contribution to this
value. Calculations were performed with an ultrasoft pseudopotential
and a plane-wave energy cutoff of 400 eV.

k-point volume E0
f (eV)

N Symmetry kMP (10−3Å
−3

) Total Kinetic

2 fcc 8 12.35 2.65 −10.19
8 sc 7 4.61 3.13 −11.49
16 fcc 6 3.66 3.10 −11.68
32 bcc 6 1.83 3.83 −12.08
54 fcc 4 3.66 3.51 −12.36
64 sc 6 0.91 3.81 −12.45
128 fcc 4 1.54 3.79 −12.53
216 sc 3 2.17 4.05 −12.51
250 fcc 3 1.87 3.95 −12.60
256 bcc 3 1.83 4.13 −12.47

method. Among all our calculations for the various charge
states, the maximum discrepancy was 0.01 eV. The MLWF
method gives a finer representation of the system than
averaging over atomic sites (as in the Voronoi cell approach),
since each silicon atom has four bonding Wannier functions
connecting it to its neighbors. Therefore, there are twice as
many Wannier functions as atoms, and hence twice as much
information to consider.23

MLWFs are now a standard tool for the analysis of elec-
tronic structure calculations; therefore, this approach provides
a simple and accurate method for calculating the potential
alignment correction, since all the necessary information is
readily available once the standard wannierization procedure
has been performed.24

IV. RESULTS

A. The neutral unrelaxed vacancy

In order to study the finite size convergence properties
of the system, we first simulate the neutral vacancy in its
unrelaxed state, with all the atoms in their perfect crystalline
positions; our results are reported in Table I. Considering the
different supercell geometries separately, it can be seen that E0

f

increases monotonically with system size. We therefore take
our highest value of 4.13 eV (for the 256-atom bcc supercell)
as a lower bound to the unrelaxed defect formation energy.

The slow convergence of the formation energy as a function
of system size is due to the spurious interaction between peri-
odic images of the defect center. As the defect is both unrelaxed
and uncharged, this is neither caused by elastic interactions nor
monopole-monopole electrostatic interactions; rather, it is the
result of higher multipole interactions and overlap between the
wave functions of the periodically repeated defect centers.

The importance of wave function overlap may be gauged
by considering the kinetic energy contribution to the de-
fect formation energy, which we define analogously to Eq.
(1), except using only the noninteracting kinetic energy
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contribution to the total energy instead of the total energy itself.
The results are listed in the right-hand column of Table I. It
is immediately apparent that the kinetic energy component of
the defect formation energy varies on a scale larger than the
total formation energy as the supercell size is increased, and
that, even at our largest supercell sizes, it is not converged to
better than 0.1 eV. These changes are caused by subtle changes
in the defect wave functions of neighboring defect centers
that occur in order to maintain orthogonality as the periodic
images of the defect move apart. While the electronic density
is rather insensitive to them and, therefore, the electrostatic
interactions are not affected, the kinetic energy is not. As
a result, any correction scheme that accounts solely for the
classical electrostatic interaction will not be sufficient in this
case to predict the correct formation energy for an infinite
system beyond this level of accuracy.

We consider one last question before moving on to ionic
relaxations: is it desirable to use a dense k-point grid when
simulating point defects? Although this is obviously necessary
for describing the delocalized bulk states, it seems reasonable
that a �-point sampling might give a better approximation
of the localized defect levels in the dilute limit, as a way
of deliberately eliminating unwanted dispersion, and by
occupying the state which most closely resembles the bonding
defect state for the infinite system.25 Indeed, Fig. 2 shows that
the position of the defect level at � rapidly converges to a fixed
value, even if the total dispersion of the level throughout the
Brillouin zone is large.

As far as the defect formation energy is concerned, at least,
our results show that �-point calculations do not give a better
estimate of the defect formation energy: for the 256-atom
supercell, E0

f is underestimated (as compared to our lower
bound estimate) both for the unrelaxed and relaxed cases, by
0.2 and 0.4 eV, respectively. This conclusion is in agreement
with two other studies on the relaxed silicon vacancy: Puska
et al.,6 who report that a 23 MP sampling shows a faster
convergence than a �-point sampling for the neutral charge
state; and Wright,7 whose results for the 216-atom supercell
show a greater average error across all charge states for
�-point sampling than any finer MP grid sampling. We note
that, conversely, quantities of interest other than the defect
formation energy might benefit from a �-point only sampling;
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FIG. 2. (Color online) Dispersion of the unrelaxed defect level.
The symbols show the position of the level at �, and the bars show the
extent of the dispersion obtained from our dense k-point sampling.
The positions are given with respect to the bulk VBM.

as we shall see in Sec. IV D, the stable charge state transition
levels are an example of this.

B. The neutral relaxed vacancy

On relaxation of the ionic positions, the predicted symmetry
for v0 from Watkins’ model (D2d ) is not seen in any supercell
smaller than 256 atoms, as shown in Fig. 3. Calculations on
the 32-atom bcc, 64-atom sc, and 128-atom fcc supercells do
not exhibit a change in symmetry, only an inward relaxation.
Consequently, the defect formation energy is only lowered by
∼0.2 eV in these cases.

The 256-atom bcc supercell undergoes the predicted change
in symmetry and a reduction in defect volume by more than
40%. This results in the defect formation energy being lowered
by 0.7 eV (full results are given in Table II). Therefore, even
though the unrelaxed defect formation energy is highest for
the largest supercell, after relaxation it becomes the lowest,
demonstrating the well-known importance of Jahn-Teller
distortion and the long-ranged nature of the elastic interactions
which can lead to both qualitatively incorrect relaxation
patterns and quantitatively inaccurate formation energies in
small supercells.

These results confirm several previous DFT studies on
this system.4,6,7 In particular, Puska et al.6 report that small
supercells can show a range of different symmetries depending
on the k-point sampling, and there is some evidence from
their results that a �-point only sampling favors D2d . It is
clear from our results that a dense k-point sampling favors the
lattice’s unrelaxed tetrahedral point group symmetry Td for
small supercells.

Figure 3 also shows the relaxed defect formation energy in
a 1000-atom sc supercell, as calculated with the linear-scaling

 3

 3.5

 4

 4.5

32 64 128 256 1000

D
ef

ec
t f

or
m

at
io

n 
en

er
gy

 (
eV

)

N-atom supercell

Ultrasoft
Norm-conserving

Previous studies

Td Td Td D2d D2d c
a

b

d
e

FIG. 3. (Color online) Relaxation effects for the neutral vacancy.
Squares show the defect formation energy for the unrelaxed lattice and
circles for the relaxed one. Labeled below is the point group symmetry
of the defect center after relaxation. The last column shows the
relaxed formation energy from previous studies: (a) Ref. 6 (N = 216,
kMP = 2, LDA); (b) Ref. 3 (N = 216, kMP = 2, GGA); (c) Ref. 4
(N = 256, kMP = 2, GGA); (d) Ref. 7 (N = 1000, kMP = 3, LDA);
(e) Ref. 7 (N = 1000, kMP = 3, GGA). Our calculations were
performed with an ultrasoft (norm-conserving) pseudopotential and
the LDA functional, with a converged plane-wave energy cutoff of
400 eV (800 eV) and a k-point grid of kMP = 3 (kMP = 4).

035209-4



SYSTEM-SIZE CONVERGENCE OF POINT DEFECT . . . PHYSICAL REVIEW B 84, 035209 (2011)

DFT code ONETEP.26 The result (calculated with the same
pseudopotential) is within 23 meV of the 256-atom bcc system,
and the relaxed defect structure is almost identical, with only a
33 mÅ root mean square difference in the lengths of the bonds
at the defect center.

C. Charged vacancies

Our results for the relaxed symmetries and defect formation
energies of the various charge states of the vacancy are
shown in Table II. All the charge states apart from v2− are
in agreement with Watkins’ model. For v2−, a completely
different “split vacancy” configuration is found, with a point
group symmetry of D3d (in agreement with previous studies
by Nieminen et al.3,6 and Wright7). The symmetry predicted
by the model (C2v) was found as a metastable state. For all
charge states, there were no qualitative differences between
the �-point only and multiple k-point calculations, although
the former consistently showed a greater inward relaxation
and thus a smaller defect volume. For a detailed discussion
of the electronic structure of the different charge states of the
vacancy, the reader is referred to the Appendix.

We note that the relaxation of v1− is the most problematic; in
fact, if the initial random displacement of the atomic positions
is not large enough, the system consistently converges to a
metastable Td configuration with a completely spin-polarized
triply degenerate defect level (i.e., filled with three spin-
aligned electrons). Furthermore, our final lowest configuration
is only approximately C2v , as there is a small but noticeable
splitting of ∼0.1 Å of the bond lengths between the two pairs

of neighbors of the vacancy. Nieminen and Wright both report
that the LDA does not give the expected symmetry for this
charge state, although they find a D3d configuration.

As explained in Sec. III, there are two possible ap-
proaches for estimating the position of εv in the system:
we can either use a calculation of the bulk supercell with
an electron hole (denoted “Hole” in Tables II–III), or the
bulk VBM value with a potential alignment correction27

(“VBM”). The agreement between the two approaches is
better for the positively charged vacancies (−0.05 to 0.01 eV)
than the negatively charged ones (0.05 to 0.21 eV); however,
these uncertainties are small enough not to affect the level
ordering.

D. Transition levels

Following the careful description of Baraff et al.,10 we
define the stable charge state transition level E(m/n) to be
the value of the Fermi level (with respect to the perfect crystal
valence band edge) at which there is a crossing of the defect
formation energies of two charge states m and n, leading to
a change in the most stable state from vm to vn as the Fermi
level is raised. This is given by

E(m/n) = En
f (�μe = 0) − Em

f (�μe = 0)

m − n
. (2)

As first predicted by Baraff et al.10 and then experimentally
verified by Watkins and Troxell,28 the isolated silicon vacancy
exhibits a “negative-U” effect, by which the stable charge state
changes directly from v2+ to v0. The v1+ state is therefore only

TABLE II. Summary table of the results obtained for the 256-atom bcc supercell and the 1000-atom sc supercell. Bond lengths are given
between the atoms surrounding the vacancy, as labeled in Fig. 6(a) for v2+, v1+, v0, v1−, and Fig. 6(g) for v2−. Atoms labeled with the same
letter are equivalent by symmetry. �α = α − 90◦ is the distortion of the regular octahedron in the split vacancy configuration. The defect
volume is calculated from the tetrahedron formed by the four neighbors of the vacancy site. The defect formation energy is given for �μe = 0.
Symmetry labels are given in Schönflies notation.

Bond lengths (Å) E
q

f (eV)

Charge N kMP Relaxed Pseudopotential Symmetry a–a b–b a–b Defect volume (Å
3
) Hole VBM

2+ 256 1 Yes Ultrasoft Td 3.22 3.22 3.22 3.93 2.86 2.85
256 3 Yes Ultrasoft Td 3.63 3.63 3.63 5.61 3.62 3.66

256 1 Yes Ultrasoft D2d 2.93 2.93 3.27 3.62 2.99 3.00
1+ 256 3 Yes Ultrasoft D2d 2.86 2.86 3.40 3.73 3.50 3.55

1000 1 Noa Norm conserving D2d 2.87 2.87 3.37 3.70 – 3.50

256 1 No Ultrasoft Td 3.81 3.81 3.81 6.54 3.90
256 3 No Ultrasoft Td 3.81 3.81 3.81 6.54 4.13
256 1 Yes Ultrasoft D2d 2.83 2.83 3.31 3.53 3.06

0 256 3 Yes Ultrasoft D2d 2.86 2.86 3.40 3.73 3.45
256 4 No Norm conserving Td 3.81 3.81 3.81 6.50 4.20
256 4 Yes Norm conserving D2d 2.86 2.86 3.41 3.74 3.52
1000 1 Yes Norm conserving D2d 2.87 2.87 3.37 3.70 3.55

1− 256 1 Yes Ultrasoft ∼C2v 3.10 2.70 3.24 (av.) 3.50 3.48 3.44
256 3 Yes Ultrasoft ∼C2v 2.94 2.87 3.26 (av.) 3.55 3.80 3.71

a–a a–c �α

2− 256 1 Yes Ultrasoft D3d (split) 3.45 2.60 6.63◦ 2.86 3.70 3.57
256 3 Yes Ultrasoft D3d (split) 3.46 2.60 6.52◦ 2.88 3.92 3.72

aFor this system, we use the relaxed atomic positions obtained for the 1000-atom v0 supercell, without further relaxation.
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TABLE III. Transition levels for the 256-atom bcc supercell and the 1000-atom sc supercell. Results from previous studies are also
shown. Our calculations use the LDA functional. Crosses (×) are used when there is no transition in the band gap. Asterisks (*) denote
thermodynamically stable transitions. All values are given in eV.

Reference 6 Reference 3a Reference 7a

N = 256 N = 1000 N = 216 N = 216 N = 1000

kMP = 1 kMP = 3 kMP = 1 kMP = 1 kMP = 2 kMP = 3

Experimental (Ref. 9) Hole VBM Hole VBM VBM LDA GGA LDA GGA

E(2+/1+) 0.13 0.13 0.16 × × – 0.19 0.13 0.27∗ 0.27
E(2+/0) 0.09* 0.10∗ 0.11∗ × × – 0.15∗ 0.10∗ 0.28 0.19∗
E(1+/0) 0.05 0.07 0.06 × × 0.04 0.11 0.06 0.28∗ 0.12
E(0/1−) – 0.43 0.38 0.35 0.26 – 0.57 0.37 0.76 0.63
E(0/2−) – 0.32∗ 0.25∗ 0.24∗ 0.13∗ – 0.49∗ 0.37∗ 0.66∗ 0.53∗
E(1−/2−) – 0.22 0.13 0.13 0.00 – 0.40 0.36 0.56 0.42

aThe transition levels have been calculated from the quoted values of the formation energy of the various charge states using Eq. (2).

metastable; this is a direct consequence of the Jahn-Teller
distortion, which lowers the energy of the neutral vacancy
much more than the singly positive vacancy. It has also been
suggested that the same effect might be observed in the
sequence v0, v1−, v2−.

Our transition levels are given in Table III; as can be seen,
the �-point calculations predict the negative-U behavior both
for the negatively and positively charged levels as expected,
and are in a good agreement with the available experimental
results (also shown in Fig. 4). Surprisingly, the calculations
using a dense k-point sampling (kMP = 3) give the opposite
ordering for the sequence v2+, v1+, v0; this results in no
transitions in the band gap between these levels, and only
v0 being a stable charge state. The negative-U behavior
is, however, still present for the negatively charged levels,
although their positioning is lower than for the �-point
calculations. The �-point, therefore, gives better estimates
of the transition levels. However, as stated previously, the
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FIG. 4. (Color online) Formation energy of the different charge
states of the vacancy as a function of the electron chemical potential
(plotted relative to the VBM). The energy range shown covers the
DFT band gap for silicon. The thermodynamically stable charge state
at each point is highlighted in bold, and the circles indicate the level
position for the stable transitions. The dashed vertical lines show the
available experimental values for the transition levels. The results
shown are for the 256-atom bcc supercell with a �-point sampling.

absolute value of the defect formation energy is not as well
converged with respect to the dilute limit when using this
Brillouin zone sampling. However, calculations of v0 and v1+
in the 1000-atom supercell at � (also included in Tables II and
III) are converged with respect to system size both in terms
of the transition level E(1+/0) = 0.04 eV and the absolute
value of the formation energy E0

f = 3.55 eV. Therefore, this
suggests that at this system size, a �-point sampling can be
employed for simultaneous convergence of both quantities of
interest.

V. CONCLUSIONS

We have studied the silicon vacancy in all its charge
states using the supercell approach and plane-wave pseu-
dopotential DFT. Our calculations confirm the slow finite
size convergence of defect formation energies and transition
levels, due to electrostatic interactions and wave function
overlap between periodic images of the defect, and long-
ranged ionic relaxations. The impact of each of these has
been quantified, and it has been found that all three provide
non-negligible contributions to the total error. Furthermore,
due to the hybridization of the defect levels with the perfect
crystal band structure, we find that the choice of k-points
has a noticeable impact on the results. In particular, �-point
calculations converge faster than calculations with uniform,
multiple k-point sampling when considering stable charge state
transition levels (given by differences in formation energies of
different charge states), and vice versa when considering the
absolute value of formation energies.

Due to this slow convergence, the calculations may still
benefit from the use of even larger supercells than the ones
currently employed. This, however, will present additional
numerical challenges: the defect formation energy is an
intensive quantity that is obtained by taking the difference
of two total energies that are extensive with the system size.
As a result, to achieve a given accuracy for Ef as the supercell
size is increased, it is necessary to proportionately increase the
precision per atom in the total energy calculations in order to
avoid the result being swamped by numerical noise.

We have also introduced two methods for correcting the
alignment of the valence band maximum for charged defects:
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one is based on averaging the electrostatic potential using
a Voronoi cell construction, and the other on Hamiltonian
matrix elements in a basis of maximally-localized Wannier
functions. The two methods give an excellent mutual agree-
ment and constitute simple and robust ways to calculate
potential alignment corrections. However, the determination
of εv remains a somewhat uncontrolled source of error, as
demonstrated by the discrepancy between the potential align-
ment correction (“VBM”) and total energy difference (“Hole”)
approaches (described in Sec. III), which can be as small as
0.01 eV (for positively charged defects), or as large as 0.2 eV
(for negatively charged defects), as shown in Table II (right
hand columns). We note that the problem of correcting errors in
charged supercells arising from periodic boundary conditions
has been addressed by many previous studies.21,29–33

The accuracy of the LDA functional for describing ex-
change and correlation should also be investigated. GGA
calculations have already been shown to give very similar
qualitative and quantitative results (as shown in Sec. IV);
both local and semilocal functionals, however, suffer in
particular with respect to the well-known effect of self-
interaction error. Unfortunately, higher accuracy methods are
at present confined to relatively small system sizes due their
computational expense, and are therefore limited by the large
finite size errors that we have discussed earlier. Nonetheless,
qualitative differences have been suggested for the vacancy
from screened-exchange calculations.34

Finally, it is interesting to note that maximally-localized
Wannier functions give a chemically intuitive picture of the
electronic structure at the vacancy site, and without any
external input confirm Watkins’ LCAO model of the defect.
The only charge state which does not follow the predictions
from the model (the doubly negative vacancy) is also explained
in terms of its Wannier functions. Full details are given in the
Appendix.
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APPENDIX: VISUALIZATION USING MLWFs

Wannier functions provide a localized view of the electronic
structure. This is particularly useful in the study of point
defects, since the Bloch states associated with the defect
levels are not completely localized due to the periodicity of
the system; in fact, in small supercells, it is not possible to
disentangle them from the bulk band structure.

In the case of bulk silicon, previous work has shown that it is
possible to recover the typical σ bond orbitals between silicon
ions by wannierization of the valence band; alternatively,
the bottom conduction bands (once disentangled from higher
bands) give the corresponding antibonding orbitals, while
treating both these sets of bands together as a single manifold

produces four sp3 orbitals on each ion.8,35 The bulk silicon σ

orbitals obtained from our calculations are shown in Fig. 6(b).
For the wannierization of the defect systems, we only use

the occupied manifold, except in the case of the unrelaxed
vacancy where we include all the defect levels. We can loosely
define the concept of a defect Wannier function to be any
MLWF in the defect supercell which differs qualitatively from
the σ bond MLWFs of the bulk system. For all charge states,
such defect Wannier functions are only present within the first
ionic shell around the vacancy; between the first and second
shells, we already recover σ -like bonding orbitals.

Figure 6(c) shows the defect Wannier functions for the
neutral unrelaxed system; as expected from Watkins’ model
(described in Fig. 5), these are sp3 orbitals pointing toward the
vacancy. These orbitals cannot be obtained by wannierizing
the three visible defect levels in the gap alone, as the nodeless
combination which lies within the valence band is also needed;
therefore, the entire valence manifold plus the defect levels in
the gap must be wannierized as a whole.

The defect Wannier functions obtained for v2+, v0, and v1−
in their relaxed configurations, as shown in Figs. 6(d)–6(f), also

FIG. 5. (Color online) Watkins’ LCAO model for the silicon
vacancy, deduced from electron paramagnetic resonance (EPR)
studies of the defect center (Ref. 36), and later confirmed by electron-
nuclear double resonance (ENDOR) measurements (Refs. 37 and 38).
The four orbitals associated with the neighboring atoms of the defect
site are the dangling bonds resulting from the removal of the central
silicon atom. The figure shows the predicted ionic configuration and
point group symmetry for different charge states of the vacancy due to
Jahn-Teller distortion (Ref. 39). For the D2d and C2v configurations,
the first charge state listed in the figure refers to the spin-polarized
case with only one electron in the highest occupied orbital, and the
second charge state refers to the non-spin-polarized case with two
electrons.
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(a) Tetrahedral lattice schematic (b) Bulk Si; A = 2.5/
√
v, f = 2 (c) v0 (unrelaxed); A = 2/

√
v, f ≈ 1

(d) v2+ (relaxed); A = 0.75/
√
v, f = 2 (e) v0 (relaxed); A = 1.5/

√
v, f = 2 (f) v1− (relaxed); A = 1.75/

√
v, f = 2

(g) Split vacancy lattice schematic (h) v2− (relaxed); A = 2.25/
√
v, f = 2

FIG. 6. (Color online) Contour-surface plots of the MLWFs most strongly associated with the defect center for different charge states of
the vacancy, calculated using the 256-atom bcc supercell and a norm-conserving pseudopotential; for computational efficiency, we only include
the �-point wave function in the wannierization procedure, since we expect a negligible difference in the qualitative features of the resulting
Wannier functions. Each separate closed surface is an individual Wannier function. The amplitude A of the contour shown in each figure is
given in the caption in terms of the primitive cell volume v. In general, the Wannier functions also have small negative components on the
backbonds (not pictured). f is the electronic occupancy of a single orbital. The wannierization procedure is performed using the WANNIER90

(Ref. 24) code (version 1.2).

support Watkins’ model. For the doubly positive vacancy, the
defect levels in the gap are empty and therefore not included;
the result is a single MLWF corresponding to the symmetric s-
type nodeless combination of the four sp3 orbitals. The neutral
vacancy includes one lowered defect level only, and produces
the two bonding orbitals between the pairs of nearest neighbors

of the defect center. The singly negative vacancy includes two
defect levels in the gap (for the majority spin), producing one
bonding orbital (between the pair of ions with the shortest
bond length) and two sp3 orbitals.

Finally, we show the split vacancy configuration obtained
for v2− in Figs. 6(g)–6(h). In this case, one of the neighbors
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(labeled c) moves halfway along the line connecting it with the
vacancy site, thus placing itself at the center of an octahedron
made up of two pairs of second-nearest neighbors (labeled a
and b). This octahedron is approximately regular (having as
faces equilateral triangles); however, there is a small distortion
due to the difference in distance between a–a/b–b pairs and a–b
pairs. This distortion is quantified by the angle α between any
three ions a, c, b; for a regular octahedron, α is a right angle,
and so the distances a–a, b–b, a–b are identical. In general, the
split configuration can be specified with only two parameters:
the distortion angle α and the distance a–c between the central
ion and any of the ions forming the octahedral cage.

The wannierization of the occupied manifold produces six
defect Wannier functions, each one a bond between the central
ion and one of its neighbors. This suggests that the c ion is
forming six sp3d2 orbitals which then bond to the dangling
sp3 orbitals of the a, b ions. The inward relaxation of the ionic
positions also shortens the bonds and reduces the distortion of
the octahedron. This configuration is favored since these bonds
are shorter than the ones obtained by dimerization in the C2v

arrangement predicted by Watkins’ model, and so are closer
in length to the bulk silicon bond. However, only in the case
of the doubly negative vacancy are there enough electrons to
fully occupy the six orbitals.
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30C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73,

035215 (2006).
31A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. Lett. 101,

046405 (2008).
32C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev.

Lett. 102, 016402 (2009).
33N. D. M. Hine, K. Frensch, W. M. C. Foulkes, and M. W. Finnis,

Phys. Rev. B 79, 024112 (2009).
34J. Lento and R. M. Nieminen, J. Phys.: Condens. Matter 15, 4387

(2003).
35I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109

(2001).
36G. D. Watkins, in Defects and Their Structure in Non-metallic

Solids, edited by B. Henderson and A. E. Hughes (Plenum, New
York, 1976), p. 203.

37M. Sprenger, S. H. Muller, and C. A. J. Ammerlaan, Physica B +
C 116B, 224 (1983).

38M. Sprenger, S. H. Muller, E. G. Sieverts, and C. A. J. Ammerlaan,
Phys. Rev. B 35, 1566 (1987).

39H. A. Jahn and E. Teller, Proc. R. Soc. Lond. A 161, 220 (1937).

035209-9

http://dx.doi.org/10.1063/1.1682673
http://dx.doi.org/10.1063/1.1682673
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1016/j.mseb.2008.10.040
http://dx.doi.org/10.1103/PhysRevB.67.075204
http://dx.doi.org/10.1103/PhysRevB.58.1318
http://dx.doi.org/10.1103/PhysRevB.58.1318
http://dx.doi.org/10.1103/PhysRevB.74.165116
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.21.5662
http://dx.doi.org/10.1103/PhysRevB.21.5662
http://dx.doi.org/10.1016/0378-4363(83)90432-1
http://dx.doi.org/10.1103/PhysRevLett.67.2339
http://dx.doi.org/10.1524/zkri.220.5.567.65075
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevLett.43.1494
http://dx.doi.org/10.1103/PhysRevLett.43.1494
http://dx.doi.org/10.1063/1.1839852
http://dx.doi.org/10.1016/j.cpc.2008.12.023
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.72.035211
http://dx.doi.org/10.1103/PhysRevB.72.035211
http://dx.doi.org/10.1103/PhysRevB.78.235104
http://dx.doi.org/10.1103/PhysRevB.53.3813
http://dx.doi.org/10.1103/PhysRevB.53.3813
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1103/PhysRevLett.44.593
http://dx.doi.org/10.1103/PhysRevLett.44.593
http://dx.doi.org/10.1103/PhysRevB.51.4014
http://dx.doi.org/10.1103/PhysRevB.73.035215
http://dx.doi.org/10.1103/PhysRevB.73.035215
http://dx.doi.org/10.1103/PhysRevLett.101.046405
http://dx.doi.org/10.1103/PhysRevLett.101.046405
http://dx.doi.org/10.1103/PhysRevLett.102.016402
http://dx.doi.org/10.1103/PhysRevLett.102.016402
http://dx.doi.org/10.1103/PhysRevB.79.024112
http://dx.doi.org/10.1088/0953-8984/15/25/309
http://dx.doi.org/10.1088/0953-8984/15/25/309
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1016/0378-4363(83)90251-6
http://dx.doi.org/10.1016/0378-4363(83)90251-6
http://dx.doi.org/10.1103/PhysRevB.35.1566
http://dx.doi.org/10.1098/rspa.1937.0142

