
PHYSICAL REVIEW B 84, 035204 (2011)

Nonlinear structure-composition relationships in the Ge1− ySn y/Si(100) ( y < 0.15) system
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The compositional dependence of the cubic lattice parameter in Ge1−ySny alloys has been revisited. Large
1000-atom supercell ab initio simulations confirm earlier theoretical predictions that indicate a positive quadratic
deviation from Vegard’s law, albeit with a somewhat smaller bowing coefficient, θ = 0.047 Å, than found
from 64-atom cell simulations (θ = 0.063 Å). On the other hand, measurements from an extensive set of
alloy samples with compositions y < 0.15 reveal a negative deviation from Vegard’s law. The discrepancy with
earlier experimental data, which supported the theoretical results, is traced back to an unexpected compositional
dependence of the residual strain after growth on Si substrates. The experimental bowing parameter for the
relaxed lattice constant of the alloys is found to be θ = −0.066 Å. Possible reasons for the disagreement between
theory and experiment are discussed in detail.
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I. INTRODUCTION

Linear interpolation between the parent compounds is the
simplest approach for estimating the properties of semiconduc-
tor alloys. Although this scheme, in principle naı̈ve, works sur-
prisingly well for a variety of properties and material systems,
applications that require very accurate values of certain pa-
rameters have prompted systematic studies of departures from
linearity. A good example is the compositional dependence of
band gaps. In laser or detector devices, the exact emission or
cutoff wavelengths are of primary importance; therefore, even
small deviations from linearity may be of practical significance
in this context. Similarly, detailed knowledge of the deviations
from Vegard’s law1 in the compositional dependence of the
lattice constant can be used for accurate determinations of the
alloy composition using x-ray diffraction (XRD).

The deviations from linear behavior in the compositional
dependence of alloy properties are often characterized by
introducing bowing parameters (quadratic coefficients). The
magnitude of these bowing parameters has been successfully
correlated with the mismatch in size and electronic properties
between the constituent atoms.2 For example, a comparative
study of the optical properties of Si1−xGex and Ge1−ySny

alloys3 reveals much larger bowing parameters in the latter,
which has been attributed to the larger difference in atomic
sizes, as well as electronegativities. In the case of the cubic
lattice parameter, a small negative deviation from linearity
was observed in Si1−xGex alloys,4 whereas a small positive
departure was reported for Ge1−ySny alloys.5 This qualita-
tively different behavior has been confirmed in a number of ab
initio theoretical studies.5–9

The different signs of the bowing parameters in Si1−xGex

and Ge1−ySny alloys provide a unique insight into the origin
of the deviations from Vegard’s law. Using a simple structural
model of the alloys that assumes force constants independent
of the bond nature, Mousseau and Thorpe showed that in a
Si1−xGex alloy the observed negative deviation from Vegard’s
law is obtained if the equilibrium heteronuclear Si-Ge bond
length is smaller than the average of the homonuclear Si-Si
and Ge-Ge lengths.10 However, they were unable to confirm
that this is the main cause of bowing, because they lacked an

independent way to determine the equilibrium bond lengths
and they could not rule out other factors, such as different
force constants or clustering effects. Strong evidence for the
bond length origin of the bowing was provided by Chizmeshya
et al., who studied solid-state systems and molecular analogs
consisting of tetrahedral clusters of the form A(BH3)4, where A
and B can be C, Si, Ge, or Sn.5 Their crucial finding is that the
difference between heteronuclear and average homonuclear
bonds in the molecular compounds is about the same, in
magnitude and sign, as in the corresponding solid phases. In
particular, the trends in the molecular compounds are in perfect
agreement with the predicted positive bowing in Ge1−ySny

alloys and negative bowing in Si1−xGex alloys.
Although the work of Chizmeshya et al. provides a

convincing framework for understanding the origin of bowing
in the compositional dependence of the lattice constant in
group IV alloys,5 the problem cannot be considered defini-
tively solved because the smallness of the quadratic terms
make their theoretical evaluation and experimental determi-
nation quite challenging. On the theoretical side, earlier ab
initio theoretical calculations for Si1−xGex alloys indicated
a positive deviation from linearity,11 in disagreement with
the experimental results from Dismukes et al.4 and with
more recent calculations.12,13 This suggests that convergence
issues, as well as artificial correlations introduced by the small
supercells used to simulate the alloy, may affect the predicted
deviations from linearity. Accordingly, we have carried out ab
initio lattice constant calculations in very large (1000 atom)
supercells, which provide a statistically accurate description
of the random alloy. We optimized the supercell cell shape,
dimensions, and internal atomic positions to obtain highly
converged equilibrium structures, with residual cell stresses
<1 kbar and atomic forces <0.005 eV/Å. These calculations
confirm the earlier predictions of a positive deviation from
Vegard’s law.

On the experimental side, the problem is particularly diffi-
cult because bulklike Ge1−ySny samples are not available and
the measurements must be performed on epitaxial alloys on Si
substrates. A good illustration of the experimental difficulties
associated with thin film measurements is provided by the
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work of Kasper et al.,14 who determined the lattice parameter
in Si1−xGex films grown pseudomorphically on Si and could
only verify Dismukes’s earlier bulk data4 in a semiquantitative
way because of the uncertainties in the Ge concentrations and
in the strain corrections. In the case of Ge1−ySny alloys, the
experimental evidence so far is based on measurements of
Ge1−ySny films grown directly on (001) Si.5 In this work, the
c lattice constant perpendicular to the growth plane was
obtained from the (004) x-ray reflection in the tetragonally
distorted diamond structure. In view of the low residual strain
in the samples, the measured c was identified with the relaxed
cubic lattice constant a0. The systematic error incurred by
using this approximation does not affect the sign of the
quadratic term in the compositional dependence of the lattice
constant as long as the residual strain can be assumed to be the
same for all samples, a reasonable assumption at the time. In
subsequent years, however, we have accumulated increasing
evidence that this residual strain is strongly correlated with the
alloy composition, to the extent that a systematic error might
be introduced in the determination of the bowing parameters
for the alloy if a strain correction is not applied. In view
of these complications, we have measured x-ray reciprocal
space maps (RSMs) of the (224) reflection for a large set
of Ge1−ySny alloys grown on Si substrates. We extract the
relaxed cubic lattice parameter from these measurements, and
we find that the deviation from Vegard’s law is negative.
Thus, we conclude that that there is a remaining disagreement
between theory and experiment in the case of Ge1−ySny alloys.
The experimental lattice constant bowing parameter for the
Ge1−ySny alloy, however, is less than the bowing parameter for
the Si1−xGex alloy as a fraction of the lattice constant mismatch
between the parent elemental semiconductors, whereas the
bowing parameters for all other measured properties are much
larger in Ge1−ySny than in Si1−xGex . This suggests that the
data may be viewed as qualitative confirmation of theory
if we assume that the predicted trend to positive bowing
in Ge1−ySny alloy is overcompensated by an intrinsic or
extrinsic contribution that is unaccounted for in the theoretical
simulations.

The remainder of the paper is organized as follows: in Sec. II
we present the new theoretical simulations, in Sec. III we
present the new experimental data, and in Sec. IV we discuss
the divergent conclusions from theory and experiments and
analyze possible reasons for the discrepancy.

II. THEORY

For the alloy simulation, we adopted 1000-atom supercells
composed of a 5 × 5 × 5 array of conventional 8-atom
crystallographic cells, in which the Sn and Ge atoms are
randomly distributed on the available sites. We specifically
consider two alloy compositions: the first containing 50% Sn,
where any deviations from average behavior are expected to
be close to maximal, and a 10% Sn model, which overlaps
with the high end of the composition range explored in our
study. The latter is expected to provide a useful point of
comparison with experiment. The 1000-atom supercell models
represent a significant refinement over our earliest calculations
for this system in which much smaller 64-atom supercells

were used to describe SnyGe1−y alloy compositions with
Sn content from 0%–50%.5 In this case, however, highly
symmetric ordered atomic distributions were used to make
the calculations tractable. In subsequent work on related
Si1−ySny alloys, we incorporated the random nature of the
alloys using both discrete 64-atom distributions and special
quasirandom cells.15 In this regard, the present treatment using
the very large supercells is expected to inherently capture most
random lattice pair correlations up to about the sixth nearest
neighbor. As we show later, our Ge1−ySny simulations yield
nearly Gaussian bond species distributions, which follow the
expected limiting statistical behavior based on concentration
products, i.e., y2, 2y(1 − y), and (1 − y)2 for Sn-Sn, Sn-Ge,
and Ge-Ge bonds, respectively. For a 1000-atom diamond
lattice unit cell, the number of bonds is 2000 (e.g., 4 bonds
per tetrahedral site times 1

2 for double counting). For 10%
Sn concentration, our Ge1−ySny alloy representation should
contain 20 Sn-Sn bonds, 360 Sn-Ge bonds, and 1620 Ge-Ge
bonds. In practice, we find that our random configurations
contain distributions that deviate from these ideal values by
only 1 or 2 bonds, suggesting that our approach should be
sufficient to capture the essential structural properties of real
alloys.

The ground state energy calculations of the random alloys
and elemental Ge and Sn lattices were all carried out using
the Vienna ab initio simulation package (VASP) electronic
structure code.16,17 We employed the Ceperley-Alder (CA)
parameterization of the local density approximation (LDA)
functional18,19 for exchange-correlation energy, a plane wave
cutoff of 350 eV, and a single k point centered at �, which is
found to be adequate in view of the large lattice dimensions
(∼30 Å). Special precautions were taken to ensure that the
calculations of the elemental α-Ge and α-Sn reference system
properties and those of the alloys are performed consistently
and at the same level of fidelity. In particular, we ensured that
all internal integration grids and sampling procedures were
identical in all cases. Using these computational conditions,
we then simultaneously optimized the supercell shape and
dimensions, as well as the atomic positions, to obtain very
accurate equilibrium structures with residual cell stress and
atomic forces of less than ∼1 kbar and ∼0.005 eV/Å,
respectively.

The key outcomes of our study are summarized in Table I,
which lists the electronic ground state energies U0 and lattice
parameters a0 for the elemental reference states (α-Ge and
α-Sn), as well as the compositionally average (Vegard) values
corresponding to 10% and 50% Sn content. Energies produced
by VASP (listed here as U0) are relative to spin-compensated
neutral atoms, not spin-polarized ground state configurations.
All lattice constants listed in the table correspond to a conven-
tional crystallographic cell and were obtained by dividing the
supercell edge length by 5 (small distortions in edge length
of ∼0.001 Å were averaged). Our LDA values for the lattice
constants of α-Ge and α-Sn are, respectively, 0.57% and 0.49%
smaller than their corresponding experimental values at room
temperature. Because the calculations correspond to static
values, a more meaningful comparison is with low-temperature
lattice constants corrected for zero-point vibrational expan-
sion. The experimental static values are extrapolated from
the asymptotically linear temperature dependence observed
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TABLE I. Summary of energetic and structural results for the Ge1−ySny supercell calculations.

U0 (eV/atom) �U (eV/atom) �G (eV/atom)a a0 (Å) �a0 (Å)

α-Sn −4.5008 — — 6.4574 —
−4.5016b 6.4557b

6.4894c

α-Ge −5.1969 — — 5.6250 —
−5.1980b 5.6261b

5.6574c

ySn + (1 − y)Ge (y = 0.5) −4.8489 — — 6.0412 —
ySn + (1 − y)Ge (y = 0.1) −5.1273 — — 5.7082 —

α-Ge0.9Sn0.1 (RAND) −5.1079 +0.0194 +0.0110 5.7127 0.0045
α-Ge0.5Sn0.5 (RAND) −4.8009 +0.0480 +0.0301 6.0529 0.0117
α-Ge0.5Sn0.5 (ZB) −4.8197 +0.0292 +0.0292 6.0522 0.0110

NOTE : RAND = random; ZB = zincblende.
aThe free-energy estimates �G are obtained by combining the molar mixing enthalpy and an ideal mixing formula for mixing entropy at T =
300K.
bValues from our prior study (Ref. 5) using 64-atom cell representations for α-Ge and α-Sn.
cExperimental values at room temperature, shown in italics.

at high temperatures;20 proceeding this way, we find that the
differences between theory and experiment are reduced to
0.46% (α-Ge) and 0.35% (α-Sn). The residual discrepancy
is typical for this level of density-functional theory (DFT).
Also listed in the table are values from our prior work, which
were obtained using a similar DFT treatment at the CA-LDA
level using the much smaller 64-atom setting but higher cutoff
energy (600 eV) and 3 × 3 × 3 Monkhorst-Pack sampling for
reciprocal space integrations. The agreement is clearly good,
and the small discrepancies result entirely from the different
computational conditions used.

The bottom portion of Table I summarizes the key energetic
and structural results for the alloys, including their equilibrium
lattice constants a0 and ground state electronic energies U0,
as well as corresponding deviations from compositionally
weighted average (Vegard) values (�a0 and �U, respectively).
The arbitrary spin-compensated atomic reference states (dis-
cussed earlier), contained in the U0 values generated by VASP,
cancel out one another in the calculation of �U. Accordingly,
the latter represent the electronic contribution to the formation
energies of a Ge1−ySny alloy relative to its pure Sn and
Ge end members. On the basis of the calculated �U listed
here, the 10% and 50% random SnGe alloys are predicted
to be metastable by ∼19 and ∼48 meV/atom, respectively.
Also listed for comparison is the corresponding �U value of
∼29 meV/atom for the symmetric zinc-blende configuration
of the Ge0.5Sn0.5 alloy, which is found here to possess a
slightly lower (i.e., less metastable) electronic energy than the
corresponding random alloy. To more quantitatively describe
the thermodynamic stability of the alloys, we calculated
the alloy Gibbs free energy G = H − TS. For simplicity,
we ignore the vibrational contributions to the free energy
(assumed to be small in comparison to �U) and approximate
the alloy enthalpy of mixing as �H MIX

SnGe(y) = USnGe
0 (y) −

yUSn
0 − (1 − y)UGe

0 . For the corresponding entropy contribu-
tion to the free energy, we assume an ideal mixing formula,
TSMIX

GeSn(y) = −kBT [y ln y + (1 − y) ln(1 − y)], which yields

8.40 and 17.92 meV/atom for the 10% and 50% random
alloys, respectively. With these approximations, the Gibbs
free energy �G levels of the random and ordered systems
are predicted to be nearly identical, differing by only a few
millielectron volts per atom near ambient conditions, while at
higher temperatures the mixing entropy is expected to favor the
random alloy.

The equilibrium lattice constants a0 of the alloys obtained
from our simulation are listed in the bottom right-hand portion
of the table, along with their corresponding deviations from
compositionally averaged (Vegard) values, �a0. For both
compositions, the deviations are predicted to be positive, and
the nominal bowing parameter, assuming a dependence of the
form

a0(y) = aGe
0 (1 − y) + aSn

0 y + θGeSny(1 − y), (1)

is found to be θGeSn = 0.0468 Å, quite close to the value
θGeSn = 0.063 Å reported in our earlier study on Ge1−ySny ,5

as well as in other studies.6,8 The bowing parameter obtained
in the present study for the perfectly ordered zinc-blende
configuration is θGeSn = 0.0440 Å, which is perhaps surprising
in view of its radically different bonding topology (e.g., the
presence of exclusively Sn-Ge bonds).

Equilibrium structures for the calculated alloys are shown
in Fig. 1, where the Sn atoms are represented by gray
spheres and the tetrahedral lattice, including the Ge atoms,
is drawn using faint (blue) lines. The supercell parameters
aSC and lattice constants a = aSC/5 are listed below these
figures. The parameter 〈b〉SC provided above the structure
model represents an “intrinsic bond length” obtained from
the macroscopic cell dimension (

√
3

4 a). In the zinc-blende
structure (and elemental diamond lattices), 〈b〉SC is precisely
equal to the unique tetrahedral bond length in the system.
The Ge-Ge, Sn-Ge, and Sn-Sn bond distributions obtained
from our 1000-atom simulations of the 10% and 50% Sn
alloys are plotted in the right panels of Fig. 1, which exhibit
nearly Gaussian forms for all species. The mean bond length
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FIG. 1. (Color online) Bond distribution analysis of the Sn0.1Ge0.9 (a) and Sn0.5Ge0.5 (b) random alloy models. Representative structures
for the alloys are shown in the left panels, with the diamond lattice, including Ge positions, drawn using faint (blue) lines and gray spheres
representing the Sn atoms. Plots on the right show the corresponding distributions for GeGe (black), SnGe (blue), and SnSn (red) bonds. The
number of bonds and mean bond lengths for each species are indicated within the figures. The values 〈b〉BD and 〈b〉SC are the average bond
lengths obtained from the weighted bond distributions and the macroscopic crystal dimensions, respectively.

〈b〉ij listed above each distribution function is calculated by
dividing the first moment of the distribution by its integrated
area (equal to the number of bonds, listed as Nij ). Finally,
above each plot we list the mean bond length 〈b〉BD obtained
for each alloy from the weighted sum of individual mean
bond lengths 〈b〉ij . For disordered binary alloy systems such
as Ge1−ySny , characterized by relatively compressible bonds,
our simulations correctly embody the fundamental deviations
of bonds lengths from their natural values as deduced from
the elemental end members and interpolation between these
latter values. Variations on the order of 2%–4% are typical,
as illustrated in Table II, which lists the characteristic Ge-Ge,

Sn-Ge, and Sn-Sn bond lengths obtained from our simulations
of elemental Ge and Sn and the GeSn alloys.

III. EXPERIMENT

Ge1−ySny films were grown on (001) Si substrates via
reactions of SnD4 with Ge2H6, as described elsewhere.21

Rutherford backscattering (RBS) via the Rutherford Universal
Manipulation Program (RUMP) was used to determine the Sn
concentration and film thickness,22 which varied from ∼800
nm for the lowest Sn concentrations to ∼90 nm for y =
0.13. The calculated areal density is obtained by modeling
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TABLE II. Characteristic bond lengths (in Å) in the Ge1−ySny al-
loys and elemental Sn and Ge calculated using 1000-atom supercells.

Ge-Ge Sn-Ge Sn-Sn

α-Ge 2.436 — —
Ge0.9Sn0.1 2.449 2.583 2.711
Ge0.5Sn0.5 2.494 2.628 2.751
α-Sn — — 2.796

the system as a diamond-structure Ge1−ySny alloy. This
approach is found to perfectly reproduce the thickness of the
layers as measured by cross-sectional transmission electron
microscopy (XTEM) and from ellipsometric determinations.
In typical acquisition of the random spectrum, the sample is
continuously rotated to avoid channeling. Typically, 105 counts
are collected at a beam energy of 0–2 MeV corresponding
to 350 channels, which ensure a high signal-to-noise ratio
sufficient for resolving Sn contents as low as 0.1%. This
technique is ideally suited for these binary alloys, because
the atomic number of each constituent element is high and
sufficiently distinct to enable a clear (unambiguous) separation
of their signals.

In addition to thickness and composition, the degree of
crystallinity and epitaxial alignment of the films is gauged by
RBS analysis using the ratio of the aligned versus random
peak heights (χmin). In our samples, it decreases from 10% at
the interface to 5% at the surface, indicating a reduction in
dislocation density across the thickness of the film. The 5%
value approaches the limit of χmin ≈ 3% observed in a perfect
Si crystal, suggesting that most defects accommodating the
lattice mismatch between film and substrate are confined at the
interface. This is consistent with XTEM micrographs showing
essentially defect-free films. The concentration of residual
threading defects and the mosaic spread of the crystal are im-
proved by performing a few—typically three—rapid-thermal
annealing (RTA) cycles of 2–30 s each at temperatures between
600 ◦C and 750 ◦C. This postgrowth processing reduces the
full width at half maximum of the (004) rocking curve in
high-resolution x-ray diffraction (HR-XRD) measurements.

The HR-XRD measurements of the lattice constant were
carried out at room temperature using a PANalytical diffrac-
tometer. The in-plane a and perpendicular c tetragonal lattice
parameters of 56 Ge1−ySny samples and 14 reference Ge films
on Si were determined from measurements of the (004) 2θ/ω

peaks and RSMs of the (224) reflection. The pure Ge films had
a range of thicknesses comparable to those of the Ge1−ySny

alloys and were grown using the method described in Ref. 23.
The samples were first aligned to the Si (004) reflection, and
the position of the Ge1−ySny (004) peak was measured. From
the Ge1−ySny (004) peak position, the c lattice parameter and
a possible lattice tilt were calculated. In all cases, the tilt was
found to be negligible. After that, the sample was aligned
to the corresponding Si (224) reflection and the Ge1−ySny

(224) reflection was measured. The in-plane and out-of-plane
lattice parameters were determined from the 224 peak maxima.
For a subset of the samples we measured the four (224),
(2̄24),(22̄4), and (2̄2̄4) reflections to confirm the tetragonal

nature of the distortion and establish a limit for the inherent
error of the method. All c lattice parameters determined from
(224) reflections were found to match the value obtained from
the (004) reflections to within 0.0004 Å. The relaxed cubic
lattice constant a0 was computed from the measured a and c
parameters using

a0 = c + 2C12
C11

a

1 + 2C12
C11

, (2)

where C11 and C22 are cubic elastic constants in the contracted
index notation. The elastic constant ratio is taken as

C12

C11
= 0.3738 + 0.1676y − 0.0296y2. (3)

The independent term in Eq. (3) is the value of
C12/C11 in pure Ge, as reported by McSkimin.24 The
compositional dependence of C12/C11 was obtained from a
quadratic interpolation of the ab initio theoretical calculations
in Ref. 25.

For the pure Ge films on Si, the use of Eqs. (2) and (3) gives
a0 = 5.6571 ± 0.0004 Å. This is in good agreement with the
value a0 = 5.6574 Å quoted in Ref. 26 as the average of all
data for pure Ge compiled from 1922 to 1968. For the samples
for which the four (224) were measured, the relaxed lattice
parameters a0 were found to be nearly identical, with typical
standard deviations of ∼0.0001 Å. In Fig. 2 we show the a, c,
and a0 values for the Ge1−ySny samples. The calculated value
of a0 for the alloys is in principle affected by the accuracy
of the compositional dependence of the elastic constant ratio
in Eq. (3), for which there is no experimental corroboration.
However, the exact value of C12/C11 is not as critical as in the
Si1−xGex experiments reported in Ref. 14, because the strain
levels in our samples are about one order of magnitude lower;
therefore, the uncertainties in the compositional dependence
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FIG. 2. Experimental lattice constants a (parallel to growth plane)
and c (perpendicular to the growth plane) obtained from room-
temperature HR-XRD RSM measurements of Ge1−ySny films on
Si. The relaxed cubic lattice constant a0 is calculated from these
values using Eqs. (2) and (3). The solid line is a fit with Eq. (1).
The residual strain is tensile (a > c) for low Sn concentrations and
becomes compressive (a < c) for high Sn concentrations.
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the data in Fig. 2 for all Ge1−ySny samples. The color code indicates
the after-growth RTA temperatures for the different samples. Black
circles correspond to samples measured as grown without RTA
treatment. The line is a linear fit to the strain.

of the elastic constant ratio have a substantially reduced
impact on the final a0 value. The bowing parameter for the
compositional dependence of a0 (discussed later) remains
virtually unchanged if we ignore the composition-dependent
terms in Eq. (3) and simply use the pure Ge value from
McSkimin.24

It is apparent from Fig. 2 that for low Sn concentrations
a > c, whereas for high Sn concentrations a < c. This indicates
a gradual transformation of the nature of the in-plane strain
ε‖ = (a − a0)/a0 from tensile at low Sn concentrations to
compressive at the highest Sn concentrations, as shown in
Fig. 3.

If the films are perfectly relaxed during growth, we would
expect the residual strain at room temperature to be tensile
because of the smaller thermal expansion coefficient of the
Si substrate relative to the Ge1−ySny film. This is in fact the
approach used to obtain tensile-strained Ge films on Si.27 The
presence of compressive strain indicates an incomplete strain
relaxation while the sample is growing. Although the higher
Sn concentration may by itself inhibit the generation of the
required misfit dislocations, the most likely reason for the
incomplete strain relaxation is the lower growth temperatures
used to deposit films with high Sn concentrations. These lower
temperatures also reduce the growth rate, which leads to a
monotonic decrease in film thickness as a function of the Sn
concentration. Thus, we cannot rule out the possibility that
the degree of strain relaxation during growth depends not
only on the growth temperature but also on film thickness.
Interestingly, our postgrowth annealings increase the tensile
strain only marginally, as seen in Fig. 3, even though
the annealing temperatures are much higher than the film
growth temperatures. At even higher annealing temperatures,
we expect the samples to relax and develop tensile strain
upon cooling to room temperature, regardless of the growth
temperature. The threshold annealing temperature for this
behavior seems to be close to 725 ◦C for pure Ge films, but

this limit is difficult to explore in Ge1−ySny alloys because
the Sn concentration may change at the highest temperature
annealings.

The simplest way to show that the data in Fig. 2 deviate
from Vegard’s law is to fit the a0 values to a linear func-
tion of composition. This fitting gives a0(0) = 5.6571 ±
0.0004 Å, which is in perfect agreement with the directly
measured Ge lattice constant, but a0(1) = 6.428 ± 0.010 Å for
α-Sn, which is substantially below the experimental value a0 =
6.4894 Å at 300K.28 This clearly indicates a negative deviation
from Vegard’s law. The disagreement with the earlier finding
of a positive deviation can be traced back to the measured
c parameter increasing faster than a0 as a function of Sn
concentration, as seen in Fig. 2, because of the monotonic
change in the residual strain from tensile to compressive.
The solid line in Fig. 2 shows a fit with Eq. (1). Because
the compositional range of the data is limited, a fit that uses
aGe

0 , aSn
0 , and θGeSn as adjustable parameters gives a negative

value for θGeSn, as expected, but an unphysical value for aSn
0 .

We thus perform the fit using aSn
0 = 6.4894 Å as a fixed

parameter; to treat both end values on equal footing, we also
use a fixed aGe

0 = 5.6571 Å. We are then left with θGeSn as
the only adjustable parameter, and we obtain θGeSn = −0.066
± 0.005 Å. We have verified that the value of θGeSn remains
virtually unchanged if we use any of the published values for
the lattice constant of α-Sn (similarly, if we use aGe

0 as an
adjustable parameter, we obtain aGe

0 = 5.6573 ± 0.0004 Å
and θGeSn = −0.069 ± 0.009 Å). The deviation from Vegard’s
law �a0 = a0(y) − aGe

0 (1 − y) − aSn
0 y is shown in full detail

in Fig. 4.

IV. DISCUSSION

The significance of the discrepancy between the theoret-
ical predictions and the new measurements for Ge1−ySny

is difficult to assess. If we assume that the experimental
compositional dependence of the deviation from Vegard’s law
is quadratic (hardly obvious from our data, given the noise

0.010

0.005

0.000

-0.005

Δa
0 

(Å
)

14121086420

Sn concentration (%)

 Experimental data
 Experimental data fit
 Theoretical prediction

FIG. 4. Deviation �a0 from Vegard’s law for the lattice constant
of Ge1−ySny alloys. The lines correspond to the function θGeSn y(1 −
y). For the solid line, we use θ = −0.066 Å from our a0 fit in Fig. 2.
The dotted line corresponds to the theoretical value θGeSn = +0.0468
Å. The error bars assume an error of ±0.2% in the composition
determined by RBS.
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and the limited compositional range), the difference between
the predicted and the actual lattice constant for Ge0.5Sn0.5

would be 0.46%, which is comparable to the error in the
best DFT-LDA predictions of lattice constants. On the other
hand, DFT-LDA calculations seem to correctly predict bowing
in other semiconductor alloy systems, so the discrepancy in
the case of Ge1−ySny is puzzling. Moreover, the predicted
lattice constant error for α-Sn is less than that for Ge. If we
assume a correction factor that depends linearly on the alloy
composition, this would add an additional small but positive
contribution to the bowing, increasing the discrepancy with
theory. The agreement is better at the lowest Sn concentrations
(y < 0.02), as seen in Fig. 4. This could be fortuitous, given
the limited number of data points and large error bars, but we
have already found that at these same low Sn concentrations
the bowing parameter for the direct electronic gap E0 appears
to be significantly larger than the value obtained from samples
with y > 0.02.29,30 These observations, taken together, suggest
that some structural change might take place near y ≈ 0.02.
S-shaped deviations from Vegard’s law have been explained
in terms of the contribution from bond-bending forces.31

For sufficiently large values of these forces, the bonds are
prevented from expanding or compressing following atomic
substitutions. However, because such effects are automatically
included in ab initio calculations, we should have observed
some anomaly in the theoretical compositional dependence
of both lengths if the deviation from Vegard’s law has an
oscillating behavior as a function of the Sn concentration. A
convenient way to study bond lengths in terms of the com-
petition between bond-bending and bond-stretching forces is
provided by the so-called topological rigidity parameter a∗∗.32

This parameter measures of the difference between interatomic
bond lengths and the macroscopic lattice constant—a relevant
and useful figure of merit for the comparison of structural
properties within a compositional family of alloys. A value of
a∗∗ = 0 corresponds to the completely rigid lattice (Vegard
limit), in which bond-bending forces dominate and bonds
lengths take on equal values to match the macroscopic lattice
parameter. The opposite a∗∗ = 1 case represents the so-called
Pauling limit, in which bond-stretching forces are dominant,
so that all bond length species take on their natural values
and bond angle deviations accommodate the competition
between macroscopic dimensions and local bond lengths. For
a Ge1−ySny alloy, a∗∗ can be deduced by fitting the bond
distributions for various compositions y in a random alloy to
the formulas

〈bGeGe〉 = b̃ − ya∗∗(b0
SnSn − b0

GeGe

)
,

〈bSnSn〉 = 〈bGeGe〉 + a∗∗(b0
SnSn − b0

GeGe

)
, (4)

〈bSnGe〉 = 1
2 [〈bGeGe〉 + 〈bSnSn〉],

where the b0 are the natural (unique) bond lengths obtained
from the pure phases, and the average bond length is defined as
b̃ = yb0

SnSn + (1 − y)b0
GeGe. Using the data provided in Fig. 1

and Table II, our 1000-atom simulations yields a∗∗ = 0.685 for
Ge0.9Sn0.1 and a∗∗ = 0.693 for Ge0.5Sn0.5. These values are re-
markably consistent in view of the significant difference in Sn
content between the two alloys and similar to the correspond-
ing average value of a∗∗ ≈ 0.68 obtained in our prior studies on
12 GeSn alloy compositions between 0% and 50% Sn using 64-

atom supercells.5,15 Shen et al.6 also reported a value of a∗∗ ≈
0.69 for the Ge1−ySny alloy on the basis of three compositions
(y = 0.25, 0.50, and 0.75) using a 72-atom supercell setting.
Collectively, the foregoing evidence suggests a universal value
of a∗∗ = 0.69 for Ge1−ySny based on DFT-LDA. Thus, the
ratio of bond-bending to bond-stretching forces seems to be
independent of the composition, which is incompatible with an
oscillating dependence of the deviation from Vegard’s law near
the low-Sn compositional range. Recently we also carried out
a comparative topological rigidity analysis of the bonding in
Si1−ySny alloys15 (also using 64-atom supercells) and obtained
a value of a∗∗ ≈ 0.72. Direct experimental measurements of
a∗∗ are extremely difficult and only available for the Si1−xGex

alloy, where values of a∗∗ in the range of 0.6–0.8 have been
reported in the literature.11,33–35

Yet another interpretation of the discrepancy between
theory and experiment would be to assume that the observed
deviation from Vegard’s law is caused by the combined effects
of a positive contribution, as calculated for a perfectly random
alloy, plus a negative term associated with a nonrandom
atomic distribution and/or defects. This is suggested by the
observation that the ratio ηGeSn = θGeSn/(aSn

0 − aGe
0 ), which

measures the size of the nonlinear deviation relative to the
lattice mismatch between the parent materials, is ηGeSn =
0.089, whereas the equivalent quantity for Si1−xGex alloys is
ηSiGe = 0.12. Because we find ηSiGe < ηGeSn for the electronic
properties,3 the observation that ηSiGe > ηGeSn for the lattice
constant could be viewed as a qualitative confirmation of the
theoretical predictions under a scenario in which the trend
toward positive bowing is overcompensated for by the second
effect.

A good measure of the importance of randomness in the
predicted alloy lattice constants is provided by a comparison
of a0 calculated for the random Ge0.5Sn0.5 alloy and for the
ordered zinc-blende GeSn compound. The finding that these
lattice constants are nearly identical suggests that ordering
effects do not play a dominant role in this system. On the
other hand, the so-called Sn-split vacancies, in which Sn
atoms are located at the bond-center site between two missing
Ge atoms,36 lead to a decrease in the lattice parameter. For
example, Ventura et al. found a cubic lattice parameter of 5.77
Å for pure Ge, 5.82 Å for a Ge15Sn1 alloy, and 5.72 Å for a
Ge14Sn1 alloy with a split vacancy.37 The abundance of these
defects is related to the vacancy concentration,38 which may
not be constant as a function of Sn concentration because of
the different growth temperatures. Based on the Ventura et al.
results,37 we estimate that ∼6% of the Sn atoms in the alloy
should be in split vacancy locations to explain the difference
between the observed and the predicted lattice parameter for y
= 0.06. This is a much higher concentration of split vacancies
than predicted by these authors, and it constitutes a level of
nonsubstitutionality that likely would have been detected in
our XRD or RBS channeling experiments.

V. CONCLUSIONS

We have revisited the compositional dependence of the
lattice constant in Ge1−ySny alloys from a theoretical and ex-
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perimental perspective. Although the theoretical calculations
confirm the positive deviation from Vegard’s law predicted by
earlier work, the experimental results indicate a clear negative
deviation, in contradiction with earlier data that were affected
by the residual strain in Ge1−ySny films grown on Si. Different
scenarios have been analyzed to explain the discrepancy,
but no fully satisfactory explanation can be provided at this
time.
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