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Band structure parameters of wurtzite and zinc-blende GaAs under strain in
the GW approximation
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Quasiparticle self-consistent GW calculations are used to study the band structure in wurtzite and zinc-blende
GaAs. The band-gap change between wurtzite and zinc blende is found to be sensitive to lattice constant and
k-point convergence of the GW self-energy. Furthermore, the conduction-band minimum can switch between
�1 and �3 character as a function of strain and the valence-band maximum can cross over from �5 to �1 under
compressive uniaxial strain. The Kohn-Luttinger and Rashba-Sheka-Pikus effective Hamiltonian band structure
parameters of zinc-blende and wurtzite GaAs, respectively, are determined from these first-principles band
structure calculations. The uniaxial and homogeneous strain dependence of the band structure are studied and
summarized in the appropriate strain deformation potential parameters.
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I. INTRODUCTION

Recently, it has become possible to grow high-quality
nanowires of semiconductors with mixed zinc-blende and
wurtzite structure1–4 for III-V semiconductors, which normally
only exhibit the zinc-blende (ZB) structure in bulk form. In
order to model the electronic and optical properties within an
envelope approximation, one needs to know the band structure
parameters of the wurtzite (WZ) structure for these materials.
These nanowires may occur in different strain states and, thus,
it is also important to study the strain dependence of the band
structure. In this paper, we use first-principles calculations to
study the strain dependence of the band structure of wurtzite
GaAs. We compare our calculations to previous theoretical
studies.4–6

II. METHOD

The calculations are performed using the full-potential
linearized muffin-tin orbital method7 (FP-LMTO). The equi-
librium structural parameters are determined within den-
sity functional theory in the local density approximation8,9

(LDA). The von Barth–Hedin exchange correlation func-
tional is used.10 In order to obtain accurate band struc-
tures, we use the quasiparticle self-consistent GW method
(QSGW).11–13

We note that LDA might not be sufficient to extract accurate
band splittings such as the crystal field splitting. In fact, the
threefold-degenerate valence band of ZB splits into a �5 and
�1 state in WZ, which correspond, respectively, to in-plane
X,Y -like and perpendicular to the plane Z-like states. The
conduction-band minimum is �1 and is by symmetry allowed
to interact with the �1 crystal field split-off state. Thus, an
underestimate of the gap (by LDA) is expected to lead to an
overestimate of the crystal field splitting.

As is well known,14 the GW approximation (GWA) is the
first term in an expansion of the self-energy of one-particle
excitations in the screened Coulomb interaction W . While
usually it is applied as a one-shot correction to LDA, assuming
LDA wave function to calculate both the one-electron Green’s
function and the dynamically screened Coulomb interaction, in
QSGW, one obtains a new nonlocal (but energy-independent)

exchange-correlation potential from the self-energy �,

V QSGW
xc = 1

2

∑
nm

|�n〉�[�nm(En) + �nm(Em)]〈�m|, (1)

from which a new GW calculation is performed. When this
procedure is iterated to convergence, the Kohn-Sham eigenval-
ues of the above exchange-correlation potential become equal
to the GW quasiparticle energies. This procedure, combined
with an accurate and efficient scheme for calculation of the GW
self-energy based on the FP-LMTO band structure method, and
a mixed basis set for expanding all two-electron operators,
has been shown to give very accurate results for a wide
variety of systems. For most semiconductors, it slightly but
systematically overestimates the band gaps because of the
underscreening of the random-phase approximation used in the
GWA. The mixed basis set combines products of muffin-tin
orbitals with additional plane waves to span the interstitial
region. Details can be found in Refs. 12 and 13. It is found that
a slight scaling of the self-energy �xc by a factor 0.8 provides
band gaps in agreement with experiment to better than 0.1 eV.

A unique feature of the above QSGW scheme is that the
above exchange-correlation potential can be expanded in a
basis of muffin-tin orbitals in real space. This then allows us
to perform the GW calculations on a relatively sparse k mesh,
Fourier transforming to real space and back to an arbitrary
fine k mesh or to the k points of interest for the bands along
symmetry lines. This procedure is important to obtain accurate
effective masses and related parameters, which is the main goal
of this paper.

The calculations are performed first in the scalar relativistic
approximation and spin-orbit coupling is then added by
rediagonalizing the double-sized Hamiltonian matrices with
the above V QSGW

xc and spin-orbit coupling calculated form
the corresponding potentials within the spheres. Spin-orbit
coupling arises mostly from the inner parts of the atom, so this
is a good approximation.

In the LDA self-consistent calculation, we used a 10 ×
10 × 10 k-point mesh, which resulted in 150 irreducible
k points after symmetry operations are applied. Moreover,
32 × 32 × 55 divisions are used to specify the uniform mesh
density along the x, y, and z directions in direct space for
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the smooth parts of the potential, charge density, and wave
functions. A double κ-basis set was used as envelope functions
up to f states in the first κ and up to d states in second κ .
Semicore Ga-3d bands were included as local orbitals.15,16

The calculations were converged to within a change in total
energy less than 10−6 Ry.

Starting from the above LDA band structures, the QSGW
calculation is performed with a 4 × 4 × 4 k-point mesh for
WZ. Four floating orbitals (orbitals centered on interstitial
sites) are added to improve the basis set even further for high-
energy unoccupied states. The latter are not augmented, so they
have only an envelope function but no augmentation sphere.

On the other hand, the GW self-energy is very sensitive
to convergence of the basis set and k points. Our present
calculation differs slightly from that in Ref. 13. We treated
Ga-4d states as band and Ga-3d states as “local orbitals,” while
Kotani et al.13 treated Ga-3d as bands and Ga-4d as localized
orbitals and also included high-lying As-5s as local orbitals,
which we omit. While their calculation is better converged
with respect to basis set, it overestimates the gap by about
0.2 eV, as usual. We found that, with our basis set, the gap
for ZB GaAs is very close to the experimental value and no a
posteriori scaling by 0.8 is required. For the present purpose,
all we care about is good agreement with experiment for ZB
and equivalent level of convergence for WZ, not studying the
absolute convergence of the GWA itself.

In order to accurately obtain the band-gap difference
between ZB and WZ, we found again that the k-point
convergence is crucial. To obtain maximal systematic error
cancellation, it is important to use an exactly equivalent k-point
convergence of the GW self-energy. This can be achieved by
treating the ZB as a three- (111-) layer cell and WZ as a two-
(0001-) layer cell and using a 4 × 4 × 2 mesh for ZB and
4 × 4 × 3 mesh for WZ.

The valence-band manifold near the valence-band maxi-
mum are fit to the Rashba-Sheka-Pikus Hamiltonian, which is
described in Bir and Pikus17, given by

Ĥ = �1L
2
z + �2Lzσz +

√
2�3(L+σ− + L−σ+)

+ (
A1 + A3L

2
z

)
k2
z + (

A2 + A4L
2
x

)(
k2
x + k2

y

)
− A5(L2

+k2
− + L2

−k2
+)

− 2iA6kz([Lz,L+]k− − [Lz,L−]k+)

+ A7(k−L+ + k+L−), (2)

where L± = ±(i/
√

2)(Lx ± iLy), σ± = ±(i/
√

2)(σx ± iσy),
and k± = kx ± iky . In this equation, �1 is the crystal field
splitting, while �2 and �3 represent spin-orbit coupling
parameters required by hexagonal symmetry. The inverse
mass parameters (Ai , for i = 1,2,3,4) for in-plane and along
z directions are obtained by fitting parabolic curves to the first-
principles bands without spin-orbit coupling. The remaining
parameters are estimated from the quasicubic approximation
and the A7 parameter is obtained by fitting the behavior near
the avoided band crossing of the light hole and crystal field
split-off band. The procedure is similar to that followed in
Kim et al.18 The spin-orbit parameters are obtained from
the splittings at � in the first-principles calculation and then
combined with the above mass parameters to diagonalize the
full 6 × 6 Hamiltonian and compared to the directly calculated

bands with spin-orbit splitting. The k range over which the
parabolic fits is made is such that the bands of the model and
the first-principles calculation agree within an energy range of
about 200 meV.

III. RESULTS

A. Structure

First, we consider the equilibrium structural properties. The
equilibrium volume per GaAs pair V w (i.e., half the volume
of the wurtzite primitive cell) lattice constant a, c/a ratio
and internal parameter u as well as the zinc-blende lattice
constant az and volume V z are given in Table I for both
LDA and generalized gradient approximation (GGA). The
experimental value included in the table is for zinc-blende
GaAs. Our calculations give the volume of zinc-blende GaAs
in LDA to be 44.23 Å3 and 47.45 Å3 in GGA, in both cases
very close to that of wurzite, to within 0.1 %.

The u parameter is found to behave linearly with c/a

according to the equation

u(η) = u(η0) + ξ (η − η0) (3)

with a slope parameter ξ = −0.089, where η is c/a ratio and
η0 is c/a ratio at the equilibrium. This linear relation results
from the internal strain parameter in the system.19

B. Band gaps

First, let us check the accuracy of our QSGW approach for
ZB GaAs. At the experimental lattice constant, we find the
QSGW gap with our present basis set to be 1.595 eV without
spin-orbit correction. By including the spin-orbit coupling, we
find 1.503 eV. The gap reduction by the spin-orbit coupling
amounts to about 1/3 of the spin-orbit splitting for which
we find 0.32 eV, very close to the experimental value of
0.341 eV.20 The experimental band gap is 1.519 eV.20 Thus, we
have excellent agreement to within 16 meV without making
any further corrections to the GW self-energy.

As is well known, LDA or GGA significantly underestimate
the band gap. In the present case, for ZB GaAs at the LDA
lattice constant we obtain 0.320 eV. But, usually one assumes
that one can nevertheless obtain band-gap differences between
two structures such as ZB and WZ rather accurately because
the systematic LDA error is assumed to be similar for both
structures. However, LDA or GGA also influences the lattice
constant and this, in turn, has an effect on the band gap. We
calculated the band gaps at the LDA, GGA, and experimental
lattice volume all using the QSGW approach. As mentioned in
Sec. II, to ensure exactly equal k-point convergence between
ZB and WZ in the GW self-energy, we used a three-layer ZB

TABLE I. Structural parameters of wurtzite and zinc-blende GaAs.

Zinc blende Wurtzite

az (Å) V z (Å3) V w (Å3) a (Å) c/a u

LDA 5.614 44.23 44.20 3.955 1.650 0.3735
GGA 5.746 47.45 47.44 4.050 1.649 0.3741
Experiment 5.653 45.17
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TABLE II. QSGW band gaps (in eV) between high-symmetry
points in zinc-blende and wurtzite GaAs at three lattice constants.

Zinc blende Wurtzite

�15v − �1c �15v − L1c �5v − �1c �5v − �3c

aLDA 1.774 1.959 1.861 1.712
aGGA 1.189 1.703 1.284 1.497
aexpt 1.595 1.884 1.675 1.646

cell and a two-layer WZ cell with 2/3 of the number of k points
along the c direction in ZB than in WZ.

We found that an additional complication arises in under-
standing the trend of the minimum gap: the conduction-band
minimum (CBM) in WZ GaAs changes symmetry character
as function of lattice constant. In Table II, we give the QSGW
gaps (without spin-orbit coupling) for WZ and ZB for specific
conduction-band states. For the GGA lattice constant (larger
than the experimental one), the CBM in WZ is �1c as expected,
but for the experimental lattice constant and the LDA lattice
constant (volume compression), the �3c state becomes the
conduction band. The latter is closely related to the ZB lowest
conduction band at L, which is folded on to � by the doubling
of the cell in the c direction.

As can be seen in Fig. 1, the ZB �15v − L1c and WZ �5v −
�3c gaps are nearly parallel as a function of volume change,
showing that they have the same deformation potential. The
same is true for the ZB �15v − �1c and WZ �5v − �1c gaps.
There is a downward shift from the indirect �15v − L1c gap
in ZB to the pseudodirect �5v − �3c gap in WZ, but a slight
upward shift of the direct gap from ZB to WZ. The latter
is consistent with the usual trend in other materials where
ZB-WZ polytypism has been observed, e.g., GaN, AlN.

As a result, the minimum gap in WZ changes from being
�1c-like for the GGA lattice constant to becoming �3c-like at
the LDA lattice constant, and the crossover occurs very close to
the experimental lattice constant. In ZB, the conduction-band
minimum stays at �1c.

FIG. 1. (Color online) �5v − �1c (circle) and �5v − �3c (square)
gaps of wurtzite structure and �15v − �1c (pentagon) and �15v − L1c

(triangle) gaps of zinc-blende structure as a function of change in
volume dV/V relative to the experimental volume.
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FIG. 2. (Color online) GW correction to the band gap as function
of lattice constant and for different conduction-band states.

We now turn to the LDA or GGA to GW gap correction.
Figure 2 shows the gap corrections at the three lattice constants
for the different types of gaps. We can see that the gap
correction is slightly larger by about 0.1 eV for the WZ
than for the ZB corresponding direct gaps at � for each
lattice constant. The gap correction also slightly decreases
with increasing lattice constant. We should note that, at the
GGA lattice constant, we compare GW with GGA rather than
with LDA. Thus, the GW-GGA gap correction seems to be a
bit smaller than for LDA, but all gap corrections vary only in
a narrow range between 1.0 and 1.4 eV. So, to this precision,
one can indeed use LDA or GGA to obtain gap changes, but in
this case, the gap change is actually smaller than this and thus
we conclude that GGA or LDA are insufficient to obtain such
small gap differences between two structures. Furthermore, the
GW correction for the �3c state is significantly smaller than
for the �1c state. In other words, the �3c gap is lowered relative
to the �1c in GW. GW does not lead to a uniform scissor shift
as is often approximately assumed.

We believe that the controversial results about the gap
change from ZB to WZ in the previous literature stems in part
from this change in the conduction-band character in wurtzite,
in part on the sensitivity to lattice constant used, and in part on
the sensitivity of the GW self-energy to k-point convergence.

The slopes of the various band gaps versus volume change
dV/V define the corresponding hydrostatic deformation
potentials dEi

g/d ln V = ai for each type of gap i and are
given in Table III.

TABLE III. Band-gap deformation potentials.

Gap type ai = dEi
g/d ln V (eV)

ZB �15v − �1c −8.44
ZB �15v − L1c −3.71
WZ �5v − �1c −8.25
WZ �5v − �3c −3.09
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FIG. 3. (Color online) Energy level differences of the �1v , �1c,
and �3c states relative to the �5v as a function of uniaxial strain εzz in
wurtzite GaAs. The first label with each line gives the method used
(LDA or GW) and the second label gives the lattice constant at which
the calculation is performed (LDA or experiment).

C. Uniaxial-strain-induced band crossings

Next, we examine the valence-band and conduction-band
behavior in wurtzite as a function of uniaxial strain along the
c axis. In Fig. 3, we can see that at zero strain, the �5v level
(X,Y -like states) lie above the �1v level, with a positive crystal
field splitting �1 = 212 meV for the LDA calculation and
�1 = 186 meV for the QSGW calculation. We first focus on
the lines labeled LDA lattice constant. As mentioned earlier, as
the gap increases, the crystal field splitting decreases slightly.
However, under compressive strain, the crystal field splitting
decreases and, at a strain of εzz = −1.5 × 10−2 for the LDA
calculation and εzz = −1.8 × 10−2 for the QSGW calculation,
the levels cross.

We also find a crossing of the conduction bands between
the �1c and �3c bands. As already mentioned, the latter can
be viewed as a folded L state of the zinc-blende structure.
The �3c − �1c crossing is thus related to a direct-to-indirect
gap transition in zinc-blende GaAs. We found indeed that
under uniaxial strain along the [111] direction, the CBM
switches from � to the L point at a strain of e[111] = −0.08.
Recently, such a transition was observed under shock-wave
high-pressure experiments.21

We note that the corresponding lines are almost exactly
parallel in GW and LDA, thus, the strain dependence is
already well described by LDA. Our LDA calculation suggests
that the conduction bands will cross at a compressive strain
εzz = −9.0 × 10−3, but QSGW predicts the crossing to occur
already for a tensile strain εzz = 2.7 × 10−3. Therefore, for
LDA, the minimum band gap changes from �5v − �1c to
�5v − �3c character after the conduction-band crossing. Then,
it changes from �5v − �3c to �1v − �3c after the valence-band
crossing.

This should have important effects on the optical properties,
since the �5v − �1c transition is dipole allowed for polarization
perpendicular to the c axis (E ⊥ c), while the �1v − �1c

transition is dipole allowed for polarization parallel to the
c axis (E ‖ c). On the other hand, the transitions from �5v

and �1v to �3c are both dipole forbidden. While in absorption,
it is possible to observe the transitions to the �1c state even
if it is not the lowest conduction-band state, luminescence
at low temperature would be strongly suppressed with a �3c

conduction-band minimum because the higher level would
not be populated at low temperature. So, LDA predicts that we
would start out with a dipole-allowed transition polarized in the
plane in luminescence, but we would never observe a strong
polarization parallel to the c axis under compressive strain
because the conduction bands already have switched before
the valence bands switch. The QSGW calculations predict that
already at zero strain, the conduction bands have switched to a
�3c minimum and, hence, luminescence would be suppressed
in wurtzite even for the in-plane polarization. One would need
to go to a slight tensile strain to obtain a strong dipole-allowed
transition.

To test these predictions further, we must again consider
how sensitive the results are to the exchange-correlation
potential used in determining the structure. As is well
known, LDA underestimates the equilibrium volume, while
the generalized gradient approximation slightly overestimates
it. The strain equal zero point therefore depends on whether we
use LDA or GGA. We thus also performed QSGW calculations
starting from the GGA lattice constants and at a lattice volume
corresponding to the experimental volume of zinc blende but
with the same c/a and u as before. In fact, we find that GGA
and LDA give almost the same c/a ratio and u as shown before,
so the only relevant parameter is the volume per GaAs pair.

We therefore think that the best estimate of the band
splittings, mass parameters, and the crossing points of the
bands as a function of strain is obtained by using the
experimental volume of zinc-blende GaAs, but the calculated
c/a and u parameters. The same approach was used in the
previous section discussing the gap changes.

The results for the experimental volume are also shown
in Fig. 3. We can see that the conduction-band states are
much more sensitive to this change than the valence bands.
For the experimental unit-cell volume, �1c is lower than �3c

by 81 meV, but, for the LDA calculated unit-cell volume, �3c

is lower than �1c by 110 meV. This result of a �1c CBM at
the experimental lattice constant should be more accurate than
the result given in the preceding section because we here used
an even better converged k-point set, with four divisions along
the c axis instead of three. The preceding section was focused
on obtaining the WZ-ZB gap difference and, hence, restricted
to compatible k-point sets between the ZB and WZ unit cells.

These results indicate that after all we may expect to observe
a dipole-allowed transition �5v − �1c at zero strain, but our
conclusion remains that the conduction band will switch to �3c

under slight compressive strain before the valence bands cross.
Thus, one expects not to see the �1v-�1c transition in low-
temperature luminescence. At any rate, these considerations
about polarization dependence would have to be modified by
including the spin-orbit coupling.

D. Rashba-Sheka-Pikus Hamiltonian in wurtzite

For further modeling of the nanowires, in the envelope
approximation, one needs the band structure parameters
of an effective Hamiltonian describing the valence-band
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FIG. 4. Band structure of wurtzite GaAs near the valence-band
maximum without spin-orbit coupling. The points represent the
QSGW results, and the lines represent the RSP fit.

manifold. For wurtzite, we use the Rashba-Sheka-Pikus (RSP)
Hamiltonian. The parameters of this model are deduced by
fitting to our first-principles band structure results as shown
in Figs. 4 and 5 for the QSGW calculation. In the former,
the spin-orbit coupling is not included. This allows us to
more easily extract the inverse effective mass parameters (Ai ,
i = 1, . . . ,7), and the crystal field splitting �1. In particular,
we note that A7 is related to the avoided band crossing along k⊥
between the crystal field split-off band and the light-hole band.
The relations between effective masses and Ai parameters
are given in Kim et al.18 The resulting parameters calculated
by LDA and QSGW are shown in Table IV. They are all
obtained at the experimental lattice volume. The difference of
the parameters calculated in Tables IV and V by using instead
the LDA equilibrium lattice constant are less than 5%. This
can be viewed as the uncertainty of our calculated parameters.

FIG. 5. Band structure of wurtzite GaAs near the valence-band
maximum including spin-orbit coupling. The points represent the
QSGW including spin-orbit effects results, and the lines represent
the RSP fit.

TABLE IV. Effective masses for the conduction- and valence-
band edges, excluding spin-orbit effects (in units of free electron
mass m0), and RSP parameters (in units of meV for �i , h̄2/2m0

for inverse mass parameters Ai,i = 1,..,6, e2/2 for A7, and eV for
D3,D4,DA1 ) in wurtzite GaAs from the results of LDA calculation,
GW calculation with LDA volume [GW (LDA)], and GW calculation
with experimental volume [GW (expt.)]

Parameters LDA GW (LDA) GW (expt.)

m‖
c(�1) 0.034 0.060 0.060

m⊥
c (�1) 0.034 0.082 0.075

m‖
c(�3) 1.096 1.068 1.060

m⊥
c (�3) 0.091 0.107 0.107

�1 212 186 180
�2 116 116 115
�3 116 114 113
A1 −29.13 −18.35 −18.39
A2 −2.39 −1.62 −1.87
A3 27.87 16.95 17.05
A4 −13.76 −6.10 −6.26
A5 14.93 6.44 6.83
A6 −22.54 −6.22 −7.27
A7 0.04 0.035 0.035
m

‖
hh 0.79 0.72 0.75

m
‖
sh 0.03 0.05 0.05

m⊥
hh 0.82 0.75 0.77

m⊥
lh 0.03 0.07 0.07

m⊥
sh 0.42 0.60 0.53

D3 7.57 7.68
D4 −3.79 −3.84
DA1 12.7

Adding the spin-orbit coupling results in two extra parameters
�2 and �3 describing the splitting at � according to

E�9 = �1 + �2,
(4)

E�7± = �1 − �2

2
±

√(
�1 − �2

2

)2

+ 2�3
2.

Their effect on the band dispersions is shown in Fig. 5 and
the resulting effective masses of the A,B,C valence bands are
given in Table V.

E. Conduction-band masses and Kane matrix elements

We also included the conduction-band effective masses in
Table IV. From these, we can also deduce the optical matrix

TABLE V. Effective hole masses with spin-orbit effect in unit of
electron mass from the results of LDA calculation, GW calculation
with LDA volume [GW (LDA)], and GW calculation with experi-
mental volume [GW (expt.)]

Method m
‖
A m

‖
B m

‖
C m⊥

A m⊥
B m⊥

C

LDA 0.79 0.09 0.05 0.06 0.09 0.14
GW (LDA) 0.72 0.12 0.09 0.13 0.19 0.25
GW (expt.) 0.75 0.12 0.09 0.12 0.18 0.23
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elements in an eight-band k · p approximation. If we neglect
spin-orbit coupling, we obtain

Ep⊥ = 2 |〈�1c|p̂x |�5v〉|2
m0

=
(

m0

m⊥
c

− 1

) (
E�1c

− E�5v

)
, (5)

Ep‖ = 2 |〈�1c|p̂z|�1v〉|2
m0

=
(

m0

m
‖
c

− 1

) (
E�1c

− E�1v

)
, (6)

where p̂x and p̂z are momentum operators along x and
z directions, respectively. It is well known that the LDA
calculation underestimates the band-gap value, but QSGW
gives the value that is very close to the experimental value.
Therefore, we used E�1c

− E�5v
and E�1c

− E�1v
from QSGW

results, which are 1.684 and 1.845 eV, respectively. The values
of Ep⊥ and Ep‖ from our estimation are 18.8 and 28.9 eV,
respectively, which are strongly anisotropic.

As we can see in Table IV, the effective mass tensor of the
�1c state is nearly isotropic, but the effective mass tensor of
the �3c state is quite anisotropic and quite different from the
�1c mass tensor. This should facilitate us to recognize whether
the CBM is �3c- or �1c-like in experiment.

F. Strain deformation potentials

As noted earlier, the strain is an important variable in
the nanowires. The uniaxial strain effect on the valence-band
splitting is described by the equations

E�5v
− E�1v

= �1 + 3
2D3εzz (7)

defining the strain deformation potentials D3 and D4, where
D3 = −2D4 within the cubic approximation. The optical
deformation potential DA1 is defined by

E�5v
− E�1v

= DA1d ln u . (8)

These parameters are also included in Table IV. The �3c and
�1c gaps as function of strain can be described by

E�3c
− E�1c

= μεzz + β (9)

with slope parameters μ = 19.1 eV for LDA and μ = 21.0
for QSGW. We also calculated the volume strain effect on the
crystal field splitting, the band gap, and the difference between
�3c and �1c levels, which are described by

E�5v
− E�1v

= �1 + Dv

dV

V
, (10)

TABLE VI. Kohn-Luttinger (KL) parameters in units of h̄2/2m0.

Method A B C

LDA −36.2 −3.0 −38.0
GW −15.6 −3.2 −18.0
Expt.a −15.3 −2.7 −17.4

aFrom Ref. 25.

TABLE VII. Inverse effective mass parameters Ai, i = 1, . . . ,6,
in units of h̄2/2m0 calculated from quasicubic approximation.

Method A1 A2 A3 A4 A5 A6

LDA −39.5 −1.4 38.0 −19.0 18.2 −24.6
GW −19.3 −1.4 18.0 −9.0 8.1 −10.1
Expt. −18.5 −1.1 17.4 −8.7 7.9 −10.0

E�1c
− E�5v

= E0
gap + Dg

dV

V
, (11)

E�3c
− E�1c

= E0
c + Dc

dV

V
, (12)

with Dv = −227 meV, Dg = −7.60 eV, Dc = 5.69 eV, E0
gap =

460 meV, and E0
c = −110 meV for the LDA calculation.

Our hydrostatic gap deformation potential Dg agrees well
with Cardona and Christensen’s LDA value for ZB GaAs
(Ref. 22) of −7.16 eV. We here do not include absolute
deformation potentials of individual band states but only of
energy differences because the former require a band lineup
calculation between compressed and uncompressed parts of
the crystal.23 Our Dg = D1 + D2 in Pikus-Bir notation for
wurtzite. Relations between the deformation potentials in
ZB and WZ and among the WZ ones within the quasicubic
approximation can be found in Pikus and Bir.17

G. Kohn-Luttinger Hamiltonian in zinc blende

Finally, it is of interest to compare the wurtzite parameters
with those of zinc-blende GaAs. For zinc-blende GaAs,
the appropriate Hamiltonian is the Kohn-Luttinger (KL)
Hamiltonian24 with parameters A,B,C. These parameters
from our calculations and from the experimental values25 are
shown in Table VI. The values obtained from the QSGW
calculation agree with the experimental values very well, but
the A and C parameters from the LDA calculation are about
two times more negative than the experimental values.

In the quasicubic approximation [see Eq. (5) in Ref. 18],
the Ai RSP parameters can be related to the KL parameters.
The resulting Ai parameters for wurtzite GaAs are shown in
Table VII. The values from QSGW and from the experiment
are consistent with the wurtzite parameters from the QSGW
calculation. However, the parameters from the LDA calcula-
tion deviate significantly from the other methods and also from
the wurtzite parameters from LDA itself. This indicates that the
parameters from the LDA calculation are not reliable for GaAs.
This is related to the very strong underestimate of the band
gap in GaAs. The conduction-band mass is also very much
underestimated by LDA, but our GW value of 0.069m0 is in
good agreement with the experimental value 0.067m0.20 Very
often, people prefer to use the γi paramters γ1 = − 1

3 (A + 2B),
γ2 = − 1

6 (A − B), and γ3 = − 1
6C for which we obtain γ1 =

7.3, γ2 = 2.1, γ3 = 3.0 in units of h̄2/2m0.

IV. DISCUSSION

Here, we compare our results with previous studies of
wurtzite GaAs. Zanolli and von Barth26 presented LDA
Linearized Augmented Plane Wave (LAPW) calculations and
later Zanolli et al.6 presented a model GW calculation for the
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wurtzite GaAs.6 They find an increase in gap from zinc blende
to wurtzite by 0.047 eV in LDA and by 0.218 eV in GW. We
find a smaller gap increase of only 0.080 eV from ZB to WZ
almost independent of lattice constant, but quite sensitive on
the k-point convergence of the GW self-energy, if we are sure
to consider the gap between the same states. The crossings
between �1c and �3c, however, can confuse the issue when
only considering the minimum gap.

Recently, De and Pryor5 presented calculations of various
wurtzite semiconductors, including GaAs using semiempir-
ical pseudopotential calculations. They also obtained the
�8c < �7c in the double-group notation, including spin-orbit
coupling. So, this is equivalent to �3c < �1c. However, their
calculation assumed an ideal c/a ratio. Since the actual c/a is
larger, it means that their calculation already corresponds to a
compressive strain along the c axis. They find a gap reduction
from ZB to WZ by only 16 meV, but this is related to their
CBM being �3c and the uncertainties in structure.

Heiss et al.4 mainly focused on nanowire band structures,
including a hybrid functional calculation of WZ an ZB GaAs
using the Heyd-Scuseria-Ernzerhof (HSE) functional.27 They
obtain also a gap reduction and obtain a somewhat smaller
crystal field splitting. They discuss the effective masses only
in the c direction � − Z. They do not discuss the symmetry
of the lowest conduction band being �3c or �1c. But, from
their conduction band masses (1.092 for m‖ for the lowest
conduction band close to our 1.096 for the �3c and 0.058 for
the next band, close to our 0.060 for the �1c), it is clear that
their CBM has �3c symmetry. They report a lower band gap
for WZ than for ZB in their table, but this is the �5v − �3c gap.
From their band structure figure, we can estimate that their
�5v − �1c gap would in fact be increased compared to the ZB
gap in agreement with our calculation.

Experimental data on bulk wurtzite are not available and,
thus, any information on the band structure of wurtzite GaAs
at present must be extracted indirectly from the nanowire
states. However, in nanowires, additional effects control the
polarization dependence. For light incident on the nanowire,
with wave vector perpendicular to the nanowire, the electric
field for polarization parallel to the wire is the same inside and
outside the wire, while for polarization perpendicular to the
wire (c axis), the electric field is suppressed,

Ein
⊥ = Eout

⊥
2ε2

ε1 + ε2
, (13)

where ε1 is the dielectric constant in the wire and ε2 in the
medium outside the wire. This tends to favor polarization
along the nanowire axis. Furthermore, the confined exciton
states in the nanowire no longer have pure light-hole or
heavy-hole character and this complicates the ratio of the
luminescence for the two polarizations even in zinc blende.28

It leads, in fact, to the lowest exciton to have polarization

along the nanowire axis in zinc blende. For wurtzite, if the
crystal field splitting is sufficiently large compared to the
quantization energies, the heavy-hole band could, to first
approximation, be quantized independently and then leads to
a lowest exciton being polarized perpendicular to the wire.
At increasing temperature, the transition may then become
dominated by parallel polarization again as the next quantized
state involving light holes mixed with heavy holes comes into
play. Clearly, whether such polarization effects are observed
or not will sensitively depend on the crystal field splitting
and nanowire radius and, hence, on any residual strain in the
nanowire.

Our paper predicts additional interesting effects in sup-
pressing luminescence if the strain reaches the situation where
the �3c state becomes the conduction band. In mixed wurtzite
zinc-blende nanowires, one observes luminescence primarily
from the interfaces between the two because the conduction
band is lower in the ZB sections, which act as quantum wells
within the nanowire.3 The band alignment in fact is of type II.
Thus, we have at the moment no direct information on the
character of the conduction-band minimum in pure wurtzite
nanowires. A full discussion of the optical properties of such
nanowires is outside the scope of this paper, which focuses only
on establishing the relevant wurtzite band structure parameters
for future studies within the envelope function approximation.

V. CONCLUSIONS

In summary, we have determined the Rashba-Sheka-Pikus
effective valence-band Hamiltonian for wurtzite GaAs by fit-
ting to first-principles calculations. We find that the quasicubic
approximation from QSGW calculation is very good for GaAs
by comparison to the ZB parameters. The uniaxial strain effects
on the band structure were examined and show two band
crossings (in the valence and conduction bands), which will
have important consequences for optical properties. The Kane
matrix elements within an eight-band model are shown to be
strongly anisotropic. All this indicates the strong anisotropy of
wurtzite GaAs and a significant strain dependence. We found
that the �5v − �1c gap in wurtzite is slightly larger by about
80 meV. The uncertainty in even the sign of this band-gap
difference in the previous literature is here avoided by a careful
treatment with equivalent k points and analysis of the nature
of the conduction band and lattice constant variations.

ACKNOWLEDGMENTS

We thank M. van Schilfgaarde for providing the QSGW
and lmf codes and Al. I. Efros for useful discussions on GaAs
nanowires. This work made use of the High Performance
Computing Resource in the Core Facility for Advanced
Research Computing at Case Western Reserve University.

1K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson,
J. Yarrison-Rice, S. Paiman, Q. Gao, H. Hoe Tan, C. Jagadish,
X. Zhang, and J. Zou, Nano Lett. 9, 648 (2009).

2I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli,
G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 80, 245324
(2009).

035203-7

http://dx.doi.org/10.1021/nl802997p
http://dx.doi.org/10.1103/PhysRevB.80.245324
http://dx.doi.org/10.1103/PhysRevB.80.245324


CHEIWCHANCHAMNANGIJ AND LAMBRECHT PHYSICAL REVIEW B 84, 035203 (2011)

3D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas,
I. Zardo, M. Heigoldt, M. H. Gass, A. L. Bleloch, S. Estrade,
M. Kaniber, J. Rossler, F. Peiro, J. R. Morante, G. Abstreiter,
L. Samuelson, and A. Fontcuberta i Morral, Phys. Rev. B 80,
245325 (2009).

4M. Heiss, S. Conesa-Boj, J. Ren, H.-H. Tseng, A. Gali, A. Rudolph,
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