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Ab initio calculation of electron-phonon scattering time in germanium
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The intervalley scattering time in n-type germanium from the � valley to the L, �, and X valleys, has
been computed ab initio with a method based on the density functional perturbation theory. We demonstrate
that the pressure dependence of the lifetime of the exciton limited by the electron-phonon interaction is well
described. Moreover, we discuss relaxation times measured by various pump-probe experiments at low and
ambient temperatures. The contributions of the various phonons to the scattering are computed. Relaxation times
due to the electron-phonon coupling are provided for each intervalley transition, as well as their behavior under
pressure.
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I. INTRODUCTION

While germanium—thought to be the most suitable material
for the manufacturing of transistors at the early time of
electronics—1,2 was supplanted by silicon, scientific interest
in Ge has been renewed with the possibility of tuning the band
gap in strained germanium by nanostructuring or alloying it,
e.g., with silicon. In alloys, the theoretical possibility to tune
the magnitude of the indirect band gap3,4 has proved to be
particularly interesting experimentally,5–7 while in strained
germanium nanostructures, the computed change in the band
gap from indirect to direct is potentially crucial for applications
in electronics or in the field of lasers.8,9

These changes come from the conduction band minimum
(CBM), the top of the valence band remaining at the �

point. In fact, germanium is an indirect gap semiconductor
with the lowest CBM at the L point (Fig. 1, left panel), but
electrons close to � show a high mobility, due to the small
effective mass (Table I, column 7). The precise knowledge of
the electron-phonon scattering probability from the bottom of
the � valley is therefore extremely important. At low pressure,
only the �–L scattering is efficient, and is the dominant
process in the relaxation of photoexcited carriers in intrinsic
Ge.10–13 As the hydrostatic pressure increases, however, �–�

and �–X scatterings come into play (center and right panels of
Fig. 1), and are the main source of broadening of the excitonic
linewidth,14 but their respective contributions have not been
evaluated so far.

In this work, the intervalley scattering time τ has been
calculated as the inverse of the electron relaxation rate γ

(ERR), τ = h̄γ −1, and the relaxation rate of an electron
at the Brillouin zone (BZ) center � toward all of the
possible final valleys f has been computed as a function of
pressure P ,

γ (P ) =
∑
f

h̄

2
Wf (P ) (1)

and compared with experimental data when avail-
able. The expression for the transition rate Wf has

been obtained from the application of Fermi’s golden
rule,15

Wf (P ) = π

MN

∑
qλ

2nλ
kf +q + 1

ωλ
kf +q

∣∣Dλ
�,kf +q

∣∣2
δ
(
ε� − εkf +q

)
, (2)

where f stands for eight symmetry equivalent (SE) valleys
L, six SE � valleys, and six SE X valleys. Deformation
potentials Dλ

�,kf +q(P ) for the intervalley scattering from the
lowest conduction state at � to the final states at kf + q have
been computed at the pressure P within the density functional
perturbation theory (DFPT).16 As in our previous work,15,17

it depends on the matrix elements of the phonon-induced
variation of the self-consistent Kohn-Sham potential �V λ

kf +q:

Dλ
�,kf +q =

√
2Mωλ

kf +q

h̄

∣∣〈ψ�

∣∣�V λ
kf +q

∣∣ψkf +q
〉∣∣2

. (3)

In previous equations, M is the mass of the unit cell, N is the
number of unit cells in the crystal, kf is the vector joining �

and the minima of L, �, and X valleys, q is the wave-vector
variation around kf , ε

f

kf +q is the Kohn-Sham eigenenergy,

and ωλ
kf +q and nλ

kf +q are, respectively, the frequency and the
Bose-Einstein occupation number of the phonon defined by
the mode index λ and the wave vector kf + q.

We have described germanium within the local-density
approximation (LDA). The norm-conserving pseudopotential
of Ref. 18 has been used for Ge. Kohn-Sham eigenvalues
and eigenfunctions, as well as phonon frequencies and the
electron-phonon matrix elements were calculated using a
plane-wave basis set with a cutoff energy of 60 Ry and a
Monkhorst-Pack grid of ten nonequivalent k points in the
irreducible BZ.

In Eq. (2), the energy conservation law in which we
neglected the phonon frequency,

δ
(
ε� − εkf +q ± ωλ

kf +q

) ≈ δ
(
ε� − εkf +q

)
, (4)

plays an essential role as it enables us to reduce the three-
dimensional integral of Eq. (2) into a search for the q points
on isosurfaces such that εkf +q(P ) = ε�(P ). This is, however,
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FIG. 1. Schema of electronic relaxation processes in germanium. (Left panel) �–L intervalley scattering for P < 0.5 GPa. (Center panel)
Additional �–� scattering for 0.5 < P < 1.4 GPa. (Right panel) Additional �–X scattering for P > 1.4 GPa. In the experiment, �–� and
�–X are not distinguished (see Appendix A).

computationally heavy, and our strategy has been to first
compute the energy dispersion εf (P ) of the final valleys at
selected pressures with the DFT, and then design an analytical
expression for each of them, as described in Appendix B. Each
quadrature on the surface of constant energy εf (P ) = ε�(P )
has been performed with Gauss’s formula.

II. RESULTS

The total electronic relaxation rate for the intervalley
scattering from the � point has been computed as a function
of pressure at T = 0 K [Fig. 2(a)]. Our results are compared
with the half of the linewidth of the direct exciton in Ge,
measured by optical absorption under pressure.14 Arguments
in favor of the direct comparison of the calculated ERR and the
excitonic linewidth have been given in our previous work.15 We
compare our results to experiments up to P = 8 GPa, because
of the structural phase transition which occurs at a pressure of
9.7 GPa, according to Refs. 19 and 14. The overall qualitative
agreement between theory and experiment is remarkable as
besides the shift in pressure described in Appendix A, our
calculation is completely ab initio and does not contain any
adjustable parameters.

Although in cases such as GaAs and GaP, the capacity of
the DFPT to describe the electron-phonon transitions in the
conduction band has already been demonstrated,15 the case
of Ge was less obvious as calculations based on the DFT fail
in reproducing the relative positions of the conduction band
minima, in particular, when relativistic effects are taken into
account 20 or when 3d states are considered as semicore states
such as in Ref. 21 (Appendix A). In order to overcome this

problem, we have introduced a shift in pressure of −1.6 GPa
in our pressure dependencies, and thus defined an effective
pressure, as explained in detail in Appendix A. As one can
see from Table I, the topology of the conduction band is very
well described at our effective pressure P = 0. Its evolution
with respect to pressure remarkably fits the experimental one
[Fig. 3(a)].

The computed ERR is in extremely satisfactory agree-
ment with the experimental halfwidth of the direct exciton
[Fig. 2(a)]. At low pressure, the latter is larger than the
theoretical ERR, and this is the sign that other sources of
broadening can be present in the experiment. Our calcula-
tions adequately reproduce the pronounced threshold in the
experimental excitonic linewidth around 0.6 GPa. According
to our calculations, this threshold is due to the activation of the
scattering to the � valley at P1 = 0.5 GPa and to the X valley
at P2 = 1.4 GPa. This is in agreement with and adds details
on the anterior interpretation of the experiments in Ref. 14.
Indeed, we are able to discriminate between the contributions
from the � and X valleys in our calculations, which has not
been achieved in the experiment.

The separate contributions from the three valleys to the total
ERR are shown in the panel (c) of Fig. 2, and the scattering
from � to the X valley is responsible for as much as 20% of the
linewidth at 8 GPa. Finally, at effective pressures larger than
2 GPa, our calculations slightly overestimate the experimental
data. We attribute this discrepancy to the overestimation
of the density of final states in our calculation: indeed, as
shown in Fig. 3(a), the energy differences between the � and
other valleys grow slightly faster in our calculations than in
experiments, as pressure increases.

TABLE I. Relative positions of the conduction band minima (eV) and components of the effective mass tensor in units of the electron mass
me. In this work, data have been computed at the effective pressure defined in Appendix A.

�ε�L �ε�L �εXL mL
l mL

t m� m�
l m�

t

This work 0.11 0.19 0.38 1.56 0.07 0.05 0.89 0.19
Theorya 0.058 0.17 0.42 1.68 0.0816 0.91 0.19
Experiments 0.146b 0.19c 0.56 b >1.54 b < 0.079b

0.14d <1.74b < 0.082b

aFrom Table I of Ref. 22.
bFrom Ref. 23.
cCalled �εXL in Ref. 13.
dFrom Ref. 13.

035201-2



Ab INITIO CALCULATION OF ELECTRON- . . . PHYSICAL REVIEW B 84, 035201 (2011)

FIG. 2. Pressure dependence of the electronic relaxation rate γ

[panels (a) and (c)] and of the intervalley scattering time τ [panels
(b) and (d)] at low temperature. Panel (a): Total contribution of all
the scattering channels to γ . (Solid line) Our calculations at T = 0
K. (Symbols) Excitonic halfwidth from experiment at T = 10 K
(Ref. 14). Panel (b): Total contribution to τ . Panels (c) and (d):
Partial contributions from � → L, � → �, and � → X scattering.
Pressures P1 and P2 are defined in the text.

The intervalley scattering time at low pressure was found
to be 1.3 ps at a low temperature [Fig. 2(b)]. The lifetime that
could be deduced from the experimental linewidth of the direct
exciton would be much smaller. This is due to inhomogeneous
broadenings present in the experiment, in particular, the one
induced by the isotopic disorder.24,25 Therefore, our value can
be considered as the theoretical intrinsic lifetime limit for
electrons at �, and we point out the rapid decrease of the
lifetime τ for pressures higher than the ambient pressure.

Our results for ERR under hydrostatic pressure can also be
used to interpret pump-probe experiments, provided we make
an equivalence between the experimental excitation energy
and the theoretical pressure. The intervalley scattering time
has been deduced from pump-probe experiments to be 0.57 ±
0.05 ps at T = 20 K. This transfer time to L has been deter-
mined for electrons excited at Eexc = 0.1 eV above the bottom

TABLE II. Deformation potentials Dv (eV/Å) in n-type germa-
nium at low pressure for the virtual transitions in which the initial
state is � and the final states are L, �, or X valley minima. Dv is found
to be 0 for all of the transverse phonons. In the previous theoretical
work of Ref. 26, D�X was called, respectively, D�X1 and D�X3 for
LO and LA phonons.

Deformation potential (eV/Å)

Phonon ω (THz) This work Theorya Experiments

D�L LO 6.74 0 0 10–15b, 5–6.6c

LA 6.54 4.0 3.9 4.2 ± 0.2d

D�� LO 7.61 2.5
LA 5.97 0

D�X LO 6.89 2.4 2.4
LA 6.89 2.4 2.3

aFrom Ref. 26.
bFrom Ref. 27.
cFrom Ref. 28.
dConwell’s model applied to the experiment at 300 K of Ref. 11.

FIG. 3. Pressure dependence of the energy value of the con-
duction band minima with respect to the energy at �. Panel (a):
Comparison of our computed values at L, X, and � with experiment
Ref. 14. In the latter, the X and � points are not distinguished. Panel
(b): Comparison of our computed values at L and X with data from
the quasiparticle self-consistent GW method (Ref. 21).

of the � valley, by observing the decay in the luminescence
signal intensity of the excited electrons.12 In our calculations,
the effective pressure for which [εL − ε�](P ) = [εL − ε�]
(P = 0) + Eexc is found to be P ≈ P1 [Fig. 3(a)]. At P ≈ P1,
our calculations yield the intervalley scattering time τ = 0.97
ps at T = 10 K, which is compatible with the experimental
value of Ref. 12.

Most interestingly, the intervalley scattering time τ�→L has
been attributed to the emission of LA and TA phonons,12 be-
cause the optical deformation potential is symmetry forbidden.
This is true for the virtual transitions of Table II, for which the
initial electronic state is at � point, the final one is strictly
at L point, and the energy conservation law is not fulfilled.
Our values of Table II are remarkably close to the results of
previous theoretical work,26 and we provide additional values
for the � → � scattering.

When calculating the scattering time via Eqs. (2) and
(3), however, the contributions of final states at L + q on
the isosurface ε

f

L+q = ε� are summed up, and the symmetry
selection rules are lifted. It turns out that at low pressure, TA
phonons do not contribute to the scattering, in contrast with the
discussion of Ref. 12. This is illustrated in Fig. 4(a). In Fig. 4,
we show the role of the six phonon branches in the scattering to
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FIG. 4. Phonon contributions to the electron relaxation rate. (Left, center, and right panels) Scattering from � to L, �, and X valleys,
respectively.

L, �, and X valleys [Figs. 4(a), 4(b), and 4(c), respectively].
For scattering to L valley, the contributions of LA and LO
phonons amount, respectively, to 0.3 and 0.2 meV of the total
electronic relaxation rate at ambient pressure [Fig. 4(a)].

The pressure dependences of these contributions evolve
differently and result in 0.45 meV (LA) and 0.25 meV (LO)
when the pressure reaches P1. Beyond P1, TO phonons start
contributing in the scattering from � to � valley [Fig. 4(b)]. At
pressure P2, considering both � → L and � → � scattering,
the contributions to the ERR are 0.8 meV (LO), 0.65 meV
(LA), and 0.35 meV (TO). At higher pressures, the scattering
from � to X valley becomes possible and is dominated by LO
and LA phonons [Fig. 4(c)].

Finally, beyond P2, all of the phonons contribute to shorten
the excitonic lifetime. At 8 GPa, the contribution of the two TA
phonons is maximal and is only 36% of the linewidth, while
scattering by LA phonons represents 40% of the ERR. One of
the conclusions of this paper is that the intervalley scattering
time is caused by LA and LO phonons at ambient pressure,
and that most of the phonons are gradually involved in the
scattering between 2 and 8 GPa, so that three-fourths of the
ERR at 8 GPa is explained by LA and TA phonon scattering.

Turning to the temperature dependence of τ , our value at an
ambient temperature turns out to be halved with respect to the
low temperature value. At ambient pressure and temperature,
the theoretical lifetime is found to be 0.54 ps, and it is 0.45 ps
at P = P1. In Ref. 11, the transfer time τ�→L at ambient
temperature has been determined to be 0.25 ± 0.03 ps, in
satisfactory compatibility with our theoretical value. More
puzzling, the determination of the intervalley scattering time
by subpicosecond time-resolved Raman spectroscopy yielded
a relaxation time longer than ours, τ = 1.2 ± 0.1 ps at 300 K.10

In that experiment, electrons have been excited at 0.7 eV above
the bottom of the conduction band at � and were thought to
have cooled down extremely rapidly. Our theoretical value is
compatible with Ref. 11, and not with Ref. 10. Our results are
thus calling for a reexamination of the interpretation of the
experiment of Ref. 10.

III. CONCLUSION

In conclusion, we have computed the electronic relaxation
rate for the scattering from � to L, �, and X valleys by

intervalley phonons in germanium under pressure. Taking into
account the dispersion of the deformation potentials in the
Brillouin zone has proved to be crucial with respect to other
simplified approaches. Our results based on the DFPT are in
perfect agreement with the experimental linewidth of the direct
exciton in that material.14 The contributions of the � → �

and � → X scattering channels have been separated, and the
phonons responsible for the scattering have been identified.
In particular, the LO phonons have been shown to yield
an important contribution, as large as 40%, at low pressure
and temperature, despite the fact that the optical deformation
potential for virtual transitions is symmetry forbidden. The
intervalley scattering time has been computed at low and
ambient temperatures, and compared to data obtained by
pump-probe experiments at 20 and 300 K.11,12

APPENDIX A: ORDERING OF THE CONDUCTION
BAND MINIMA

According to the experimental knowledge about the CBM
in germanium,14 the lowest CBM is at the L point and � and
X are, respectively, the second and third minima by order
of increasing energy value. Then, at the pressure P

exp
1 = 0.6

GPa,14 the latter order becomes L, X, � (Fig 3, upper panel,
dotted, and dot-dot-dashed lines).

These subtleties in the band structure are not reproduced
theoretically; the energy value is found to be lower at X than at
� both within the DFT and the more involved QSGW method
of Ref. 21, where quasiparticle corrections are taken into
account self-consistently [Fig. 3(b), symbols]. In the QSGW
calculation, the 3d states have been included in the valence.
This turns out to yield a rather bad description of the relative
positions of the CBM εL − ε� and εX − ε� with respect to
the experiment (Fig. 3). In the present work, 3d states have
been kept frozen in the core. The volume has been slightly
expanded with respect to the theoretical one to counterbalance
the overbinding coming from our use of the LDA. At low
pressure, this amounts to work at the experimental lattice
parameter a = 5.66 Å instead of the theoretical equilibrium
a = 5.62 Å, with the effective pressure P = −1.6 GPa. At
other pressures, we have maintained this pressure shift of
−1.6 GPa constant up to 8 GPa.
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Under this condition, the computed values of the relative
energy of the CBM and the components of the effective mass
tensor are in satisfactory agreement with experimental ones
(Table I), and differences with the theoretical data of Ref. 22
are small.

At higher pressures, the transition from L < � < X to
L < X < � is recovered at the effective pressure of P1 =
0.5 GPa, very close to the experimental value P

exp
1 = 0.6 GPa.

Moreover, the experimental and computed pressure depen-
dencies of εL − ε� are quasi-identical up to 8 GPa [Fig. 3(a),
dashed and dot-dot-dashed line].

Experimentally, the CBM at X has not been distinguished
from the minimum at �. In our calculations, the X scattering
channel is active only for P > P2 with P2 = 1.4 GPa.
The pressure dependence of εX − ε� (dotted line) observed
experimentally is close to the theoretical ε� − ε� at low
pressure (solid line), and to the εX − ε� at high pressure (dot-
dashed line). This is experimental proof that the distinction
between the CBM at X and at � holds, and is not an artifact
of the calculations.

To summarize, the pressure ordering of the CBM is the
following one (Fig. 1): (i) L < � < � < X for P < P1;
(ii) L < � < � < X for P1 < P < P2; (iii) L < � < X < �

for P2 < P .

APPENDIX B: ANALYTICAL EXPRESSION FOR THE
ENERGY DISPERSION

In this work, the energy dispersion of the L, �, and
X valleys of the conduction band was studied at different
effective pressures between 0 and 8 GPa, within DFT. It has
been then approximated by an analytical function, fitted on
the DFT results.

The energy dispersion of the lowest conduction band around
the L point turned out to be nonparabolic on the whole pressure
range. It has been approximated by defining a system of
cartesian coordinates (ξ,η,λ) whose origin was at L, such
that

ε
f

L+q = εL + h̄2
(
q2

η + q2
ξ

)
2mt

(
1 − α

h̄2
(
q2

η + q2
ξ

)
2mt

)
+ h̄2q2

λ

2ml

,

(B1)

where the parameter α accounts for the nonparabolicity of the
dispersion, ml and mt are the components of the effective mass
tensor at L, the λ axis is directed along �, and the axes η and
ξ lie in the hexagonal edge plane of the BZ (Fig. 5). The fit
parameters ml , mt , and α turned out to be linearly dependent on
the pressure, with values ranging, respectively, from 1.56 me,
0.073 me (Table I), and 0.52 eV−1 at low pressure, to the values
1.67 me, 0.093 me, and 0.24 eV−1 at an effective pressure of
8 GPa. The shape of the isosurface describing the final states
available for the intervalley scattering to L valley, ε

f

L+q(P ) =
ε�(P ), is shown in Fig. 6(a).

The � valley minimum of the first conduction band is
found at six positions, symmetry equivalent to the BZ point
(0,0, 2π

a(P ) − q0), with q0 = 0.185 and 0.177 in units 2π/a(P ),

and a= 5.66 and 5.44 Å at 0 and 8 GPa, respectively.
Very close to the � valley minimum, the energy dispersion

FIG. 5. Definition of systems of coordinates in the reciprocal
space used for the analytical expressions of the energy dispersion
(Appendix B).

of the first conduction band is parabolic. At pressures be-
yond P2, the second conduction band dispersion is needed
(X valley scattering) as well as that of the first one (�
scattering).

The analytical formulation of the first and second conduc-
tion band dispersion around the X point has been made with the
help of the components of the effective mass tensor ml and mt .
The latter turned out to depend linearly on pressure, and were
equal to 0.89 and 0.19 me at low pressure (Table I), and to 0.92
and 0.22 me at 8 GPa. For the q point, the cartesian coordinate
system of Fig. 5 has been used. Its origin is at the point X, and
z axis is directed from X to � along one selected � direction,
while x and y axes are directed along two equivalent directions
in the square edge plane of the BZ, yielding

ε
f,1/2
X+q = εX + h̄2

(
q2

x + q2
y

)
2mt

+ h̄2
(
q2

z + q2
0

)
2ml

±h̄2

√
σ 2

q2
xq

2
y

m2
t

+ q2
z q

2
0

m2
l

, (B2)

where the index 1 (respectively, 2) is related to the first (respec-
tively, second) conduction band, and to the + (respectively, −)
sign in the last term in Eq. (B2). The fit parameter σ represents
the nonparabolicity of the band far from the � CBM, it
turned out to be linearly dependent on pressure, ranging
from the value 0.843 at low pressure, to the value 0.832 at
8 GPa. At the X point, first and second conduction bands are
degenerate.

The isosurface ε
f,1
X+q(P ) = ε�(P ) is shown in Fig. 6(b)

for the pressures P1 < P < P2. Its shape is quasiellipsoidal.
Interestingly, at pressures P2 < P , this isosurface shows
a pronounced goffered shape [Fig. 6(c)]. Moreover, at
these pressures, another constant energy surface ε

f,2
X+q(P ) =
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FIG. 6. Constant energy surfaces for L, �, and X valleys available for the intervalley scattering from � at various pressures. Note that, in
panels (b), (c), and (d), the scaling is different: the bold circle indicates the position of the � valley minimum.

ε�(P ) is inserted inside the goffered-shaped surface
[Fig. 6(d)].

To summarize, the isosurface for P < P1 consists of one
sheet per L valley, with ε

f

L+q(P ) = ε�(P ), where ε
f

L+q(P ) is
modeled by Eq. (B1) [Fig. 6(a)]. One additional isosurface
per � valley, comes into play when P1 < P < P2, defined by
ε

f,1
X+q(P ) = ε�(P ), where ε

f,1
X+q(P ) is modeled by Eq. (B2). At

those pressures, the isosurface is quasiellipsoidal [Fig. 6(b)].
At higher pressures, P2 < P , the isosurface ε

f,1
X+q(P ) becomes

goffered, and encloses an additional isosurface, ε
f,2
X+q(P ) =

ε�(P ), where ε
f,2
X+q(P ) is modeled by Eq. (B2) [Figs.

6(c) and 6(d)]. Finally, each quadrature on above-described

surfaces of constant energy has been performed with Gauss’s
formula.
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