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Nernst effect beyond the relaxation-time approximation
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Motivated by recent interest in the Nernst effect in cuprate superconductors, we calculate this magnetother-
moelectric effect for an arbitrary (anisotropic) quasiparticle dispersion relation and elastic-scattering rate. The
exact solution of the linearized Boltzmann equation is compared with the commonly used relaxation-time
approximation. We find qualitative deficiencies in this approximation to the extent that it can get the sign wrong
of the Nernst coefficient. Ziman’s improvement of the relaxation-time approximation, which becomes exact when
the Fermi surface is isotropic, also cannot capture the combined effects of anisotropy in dispersion and scattering.
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I. INTRODUCTION

The Nernst effect is a magnetothermoelectric effect in
which an electric field Ex in the x direction results from a
temperature gradient ∂T /∂y in the y direction in the presence
of a (weak) magnetic field B in the z direction.1 The Nernst
coefficient Nxy = −Ex(B∂T/∂y)−1 depends sensitively on
anisotropies in the band structure. In particular, for a square
lattice, Nxy = −Nyx is antisymmetric upon interchange of
x and y—just like the Hall resistivity—but lattice distortion
breaks this antisymmetry.

There has been much recent interest in the Nernst effect
in the context of high-Tc superconductivity, since underdoped
cuprates were found to have an unusually large Nernst coeffi-
cient in the normal state.2 This may be due to superconducting
fluctuations above Tc,3,4 chirality of the ground state,5 or it
may be a purely quasiparticle effect.6 The quasiparticle Nernst
effect has been studied on the basis of the linearized Boltzmann
equation in the relaxation-time approximation.7–13 This is a
reliable approach if the scattering rate is isotropic, since then
the neglected “scattering-in” contributions average out to zero.
There is, however, considerable experimental evidence for pre-
dominantly small-angle elastic scattering in the cuprates,14–17

possibly due to long-range potential fluctuations from dopant
atoms in between the CuO2 planes.18,19

It is not surprising that existing studies rely on the
relaxation-time approximation, since the full solution of the
Boltzmann equation with both band and scattering anisotropies
is a notoriously difficult problem.20 In our literature search,
we found magnetoelectric calculations that go beyond the
relaxation-time approximation,21–24 but no magnetothermo-
electric studies. It is the purpose of this paper to provide such
a calculation and to assess the reliability of the relaxation-time
approximation.

We start in Sec. II with a formulation of the anisotropic
transport problem, in terms of the so-called vector mean free
path.25,26 In the relaxation-time approximation, this vector �k

is simply given by the product vkτk of velocity and scattering
time (all quantities are dependent on the point k on the Fermi
surface). Going beyond this approximation, �k is determined
by an integral equation, which we solve numerically.

We also consider, in Sec. III, an improvement on the
relaxation-time approximation, due to Ziman,20,27 which
incorporates some of the scattering-in contributions into the
definition of the scattering time. For isotropic Fermi surfaces,

Ziman’s scattering time is just the familiar transport mean free
time—which fully accounts for scattering anisotropies. If the
dispersion relation is not isotropic, this is no longer the case.

We compare the exact and approximate solutions in Sec. IV
and conclude in Sec. V.

II. FORMULATION OF THE TRANSPORT PROBLEM

A. Boltzmann equation

We start from the semiclassical Boltzmann transport equa-
tion for quasiparticles (charge e) in a weak magnetic field B,
driven out of equilibrium by a spatially uniform electric field
E and temperature gradient ∇T . The excitation energy is εk,
relative to the Fermi energy εF . The band structure may be
anisotropic, so that the velocity

vk = h̄−1∇kεk (2.1)

(with ∇k = ∂/∂k) need not be parallel to the momentum h̄k.
For simplicity, we assume there is only a single type of carriers
at the Fermi level (either electrons or holes).

Upon linearization of the distribution function fk = f0 +
gk around the equilibrium solution

f0 = 1

1 + exp[(εk − εF )/kBT ]
, (2.2)

the Boltzmann equation takes the form20

vk · U − e

h̄
(vk × B) · ∇kgk =

∑
k′

Q(k,k′)(gk − gk′), (2.3)

U =
(

eE − εk − εF

T
∇T

)(
− ∂f0

∂εk

)
. (2.4)

The right-hand side of Eq. (2.3) is the difference between the
scattering-in term

∑
k′ Q(k,k′)gk′ and the scattering-out term∑

k′ Q(k′,k)gk [with Q(k′,k) = Q(k,k′) because of detailed
balance].

We assume elastic scattering with the rate

Q(k,k′) = δ(εk − εk′)q(k,k′) (2.5)

from k′ to k. Detailed balance requires

q(k′,k) = q(k,k′) (2.6)
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and particle conservation requires
∑

k

gk = 0. (2.7)

The sum over k represents a d-dimensional momentum
integral,

∑
k → (2π )−d

∫
dk (in a unit volume). The spin

degree of freedom is omitted.
It is convenient to define the Fermi surface average

〈f (k)〉SF
=

∮
dSF f (k)|vk|−1∮

dSF |vk|−1
, (2.8)

with a weight factor |vk|−1 from the volume element dk =
h̄−1|vk|−1dεkdSF . The density of states is given by

N (εF ) = h̄−1(2π )−d

∮
dSF |vk|−1. (2.9)

For later use, we note the identity

〈f (k)(vk × ∇k)g(k)〉SF
= −〈g(k)(vk × ∇k)f (k)〉SF

,

(2.10)

valid for arbitrary functions f,g of k.

B. Vector mean free paths

We seek the solution of Eq. (2.3) to first order in B.
Following Refs. 25 and 26, we introduce the vector mean free
paths �k (of order B0) and δ�k (of order B1) by substituting

gk = U · (�k + δ�k) . (2.11)

Since the vector U can have an arbitrary direction, it cancels
from the equation for �k. The equation for δ�k also has a term
∝ (vk × ∇k)U , which vanishes because ∇kU = h̄vk∂U/∂εk.

The resulting equations for the vector mean free paths are
∑

k′
Q(k,k′)(�k − �k′) = vk, (2.12)

∑
k′

Q(k,k′)(δ�k − δ�k′) = e

h̄
B · (vk × ∇k)�k. (2.13)

They can be written in terms of Fermi-surface averages,

N (εF )〈q(k,k′)(�k − �k′)〉S ′
F

= vk, (2.14)

N (εF )〈q(k,k′)(δ�k − δ�k′)〉S ′
F

= e

h̄
B · (vk × ∇k)�k.

(2.15)

(The prime in the subscript S ′
F indicates that k′ is averaged

over the Fermi surface, at fixed k.) The solution should satisfy
the normalization

〈�k〉SF
= 0 = 〈δ�k〉SF

, (2.16)

required by particle conservation to each order in B.
The integral equations (2.12) and (2.13) can be readily

solved numerically. In the limit of small-angle scattering, an
analytical solution is possible by expanding the k′ dependence
around k to second order,28,29 but we have not pursued that
method here.

C. Linear-response coefficients

In linear response, the electric current density j is related
to the electric field E and temperature gradient ∇T by

j = σ E − α∇T . (2.17)

The conductivity tensor σ follows from the vector mean free
paths by

σ =
∑

k

evk ⊗ ∂gk

∂ E

= e2
∑

k

(
− ∂f0

∂εk

)
vk ⊗ (�k + δ�k) . (2.18)

[The direct product indicates a dyadic tensor with elements
(a ⊗ b)ij = aibj .]

At low temperatures, when −∂f0/∂εk → δ(εk − εF ), this
may also be written as a Fermi-surface average,

σ = e2N (εF )〈vk ⊗ (�k + δ�k)〉SF
. (2.19)

By substituting Eq. (2.14) for vk and using Eq. (2.15) together
with the detailed balance condition (2.6) and the identity
(2.10), one verifies the Onsager reciprocity relation

σij (B) = σji(−B). (2.20)

The thermoelectric tensor α is given by

α =
∑

k

evk ⊗ ∂gk

∂(−∇T )

= e

T

∑
k

(εk − εF )

(
− ∂f0

∂εk

)
vk ⊗ (�k + δ�k) . (2.21)

At low temperatures, this reduces to the Mott formula,

α = −π2k2
BT

3e

d

dεF

σ . (2.22)

These equations all refer to a single type of carriers at
the Fermi level (electrons or holes), as would be appropriate
for hole-doped cuprates. The ambipolar effects of coexisting
electron and hole bands are not considered here.

D. Nernst effect

We take a two-dimensional (d = 2) layered geometry in the
x-y plane, with a magnetic field B = Bẑ in the z direction.
The Nernst effect relates a transverse electric field, say in the
x direction, to a longitudinal temperature gradient (in the y

direction) for zero electric current.
One distinguishes the isothermal and adiabatic Nernst

effect,1 depending on whether ∂T /∂x = 0 or jh,x = 0 is
enforced (with jh the heat current). As is appropriate for the
cuprates,30 we assume that a high phonon contribution to the
thermal conductivity keeps the transverse temperature gradient
∂T /∂x negligibly small, so that the Nernst effect is measured
under isothermal conditions.

The isothermal Nernst effect is expressed by

Ex = θxy

(
−∂T

∂y

)
,

∂T

∂x
= 0, j e = 0, (2.23)
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and similarly with x and y interchanged. The thermopower
tensor

θ = −σ−1α (2.24)

has off-diagonal elements

θxy = −σyyαxy − σxyαyy

σxxσyy − σxyσyx

, (2.25a)

θyx = −σxxαyx − σyxαxx

σxxσyy − σxyσyx

. (2.25b)

We will consider two-dimensional anisotropic band struc-
tures that still possess at least one axis of reflection sym-
metry, say the y axis. Upon reflection, the component
jx 	→ −jx of the electric current changes sign, while Ey

and ∂T /∂y remain unchanged. The perpendicular magnetic
field B 	→ −B also changes sign, because it is an axial
vector. It follows that σxy(B) = −σxy(−B) and αxy(B) =
−αxy(−B) are both odd functions of B, so they vanish when
B → 0.

Using the Mott formula (2.22), one can then define the
B-independent Nernst coefficients

Nxy = lim
B→0

θxy/B

= π2k2
BT

3e
lim
B→0

1

Bσxx

(
dσxy

dεF

− σxy

σyy

dσyy

dεF

)

= π2k2
BT

3e
lim
B→0

1

B

σyy

σxx

d

dεF

σxy

σyy

, (2.26a)

Nyx = −π2k2
BT

3e
lim
B→0

1

B

σxx

σyy

d

dεF

σxy

σxx

. (2.26b)

These expressions relate the Nernst coefficients to the
energy derivative of the Hall angle in the small magnetic-field
limit. The cancellation in Eq. (2.26a) of any identical energy
dependence of σxy and σyy is known as the Sondheimer
cancellation.6,31 On a square lattice, one has σxx = σyy , hence
Nxy = −Nyx , but without this C4 symmetry the two Nernst
coefficients differ in absolute value.

In terms of the vector mean free paths, the Nernst coeffi-
cients are given by

Nxy = π2k2
BT

3eB

〈vk,y
k,y〉SF

〈vk,x
k,x〉SF

d

dεF

〈vk,xδ
k,y〉SF

〈vk,y
k,y〉SF

, (2.27a)

Nyx = −π2k2
BT

3eB

〈vk,x
k,x〉SF

〈vk,y
k,y〉SF

d

dεF

〈vk,yδ
k,x〉SF

〈vk,x
k,x〉SF

, (2.27b)

where we have used that �k is B-independent and δ�k

is ∝ B.

III. RELAXATION-TIME APPROXIMATION

In the relaxation-time approximation, the scattering-in
term

∑
k′ Q(k,k′)gk′ on the right-hand side of the Boltz-

mann equation (2.3) is omitted.20 Only the scattering-out
term gk

∑
k′ Q(k,k′) = gk/τk is retained, containing the

momentum-dependent relaxation rate

1/τk =
∑

k′
Q(k,k′) = N (εF )〈q(k,k′)〉S ′

F
. (3.1)

Without the scattering-in term, Eqs. (2.12) and (2.13) for
the vector mean free paths can be solved immediately,

�k = vkτk, δ�k = e

h̄
τk B · (vk × ∇k)τkvk. (3.2)

In general, this solution does not satisfy the particle conserva-
tion requirement (2.16), which is the fundamental deficiency
of the relaxation-time approximation.

Substitution into Eq. (2.19) gives the conductivity tensor

σ = e2N (εF )〈τkvk ⊗ (vk + �kτkvk)〉SF
, (3.3)

with differential operator

�k = e

h̄
B · (vk × ∇k). (3.4)

For a two-dimensional lattice with reflection symmetry in
the y axis, the elements of the conductivity tensor are given by

σxx = e2N (εF )
〈
τv2

x

〉
SF

, σyy = e2N (εF )
〈
τv2

y

〉
SF

, (3.5)

σxy = −σyx = e2N (εF )
eB

h̄

×
〈
τvx

(
vx

∂

∂ky

− vy

∂

∂kx

)
τvy

〉
SF

. (3.6)

(Here we do not write the subscript k to simplify the notation.)
The Nernst coefficients in the relaxation-time approximation
then follow from Eq. (2.26) as the energy derivative of the ratio
of two Fermi-surface averages,

Nxy = Z0
σyy

σxx

d

dεF

〈
τvx

(
vx

∂
∂ky

− vy
∂

∂kx

)
τvy

〉
SF〈

τv2
y

〉
SF

, (3.7a)

Nyx = −Z0
σxx

σyy

d

dεF

〈
τvx

(
vx

∂
∂ky

− vy
∂

∂kx

)
τvy

〉
SF〈

τv2
x

〉
SF

, (3.7b)

where we have defined

Z0 = π2k2
BT

3h̄
. (3.8)

One may further simplify the relaxation-time approxima-
tion by taking an isotropic relaxation time τ0(εF ), which is
the approach taken in Refs. 9–13. Since (vk × ∇k)τ0(εF ) = 0,
Eq. (3.7) then reduces to

Nxy = Z0
σyy

σxx

d

dεF

τ0(εF )〈
v2

y

〉
SF

〈
v2

x

∂vy

∂ky

− vxvy

∂vy

∂kx

〉
SF

, (3.9a)

Nyx = −Z0
σxx

σyy

d

dεF

τ0(εF )〈
v2

x

〉
SF

〈
v2

x

∂vy

∂ky

− vxvy

∂vy

∂kx

〉
SF

. (3.9b)

If one stays with a momentum-dependent relaxation time
τk, then it is possible to improve on the relaxation-time
approximation by changing the definition (3.1) into Ziman’s
expression20,27

1/τZiman
k = N (εF )

〈
q(k,k′)

(
1 − vk · vk′

|vk| |vk′ |
)〉

S ′
F

. (3.10)

Ziman’s improvement of the relaxation-time approximation
becomes exact if the Fermi surface is isotropic, meaning that
εk is only a function of |k| and q(k,k′) is only a function of
k · k′.
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FIG. 1. Band filling at which the dispersion relation (4.5) has
a Van Hove singularity at the Fermi level, as a function of lattice
distortion.

IV. COMPARISON

We turn now to a comparison of the Nernst effect in
the relaxation-time approximation with the exact solution of
the linearized Boltzmann equation. For this comparison, we
need to specify an elastic-scattering rate Q(k,k′) = δ(εk −
εk′)q(k,k′) and a dispersion relation εk.

For the scattering, we take a random impurity potential with
range ξ . By increasing ξ relative to the Fermi wavelength, we
can study the transition from isotropic scattering to (small-
angle) forward scattering. We model the impurity potential by

FIG. 2. (Color online) Dependence of the Nernst coefficient
on the distortion ε of the square lattice at a fixed band filling
nband = 0.875 for three different values of the range ξ of the scattering
potential. The three panels show how the exact solution of the
linearized Boltzmann equation (solid) starts out very close to the
relaxation-time approximation (dotted) for nearly isotropic scattering,
and then becomes progressively different as small-angle scattering
begins to dominate.

a sum of Gaussians, centered at the random positions r i of the
impurities,

U (r) =
∑

i

Ui exp

(
−|r − r i |2

ξ 2

)
. (4.1)

The amplitude Ui is uniformly distributed in [−δ,δ]. The
correlator is

〈U (r)U (r ′)〉 = π

6
δ2ξ 2nimp exp

(
−|r − r ′|2

2ξ 2

)
, (4.2)

⇒ 〈|U (k)|2〉 = 1

12
δ2ξ 4nimp exp

(
−1

2
ξ 2|k|2

)
, (4.3)

where nimp is the two-dimensional impurity density (number of
impurities per area per layer). The resulting elastic-scattering
rate (in the Born approximation) becomes

q(k,k′) = γ0 exp

(
−1

2
ξ 2|k − k′|2

)
,

(4.4)

γ0 = πδ2ξ 4nimp

6h̄
.

Values of ξ/a of order unity are to be expected in the cuprates
for scattering by impurities between the CuO2 planes, when ξ

is of the order of the interplane distance.
For the dispersion relation, we follow a recent study of

the Nernst effect in hole-doped cuprates10 by taking the

FIG. 3. (Color online) Dependence of the Nernst coefficient on
the range ξ of the scattering potential for an undistorted square
lattice (ε = 0). Two values of the band filling are shown in the
upper and lower panel. The three curves in each panel correspond
to the exact solution of the linearized Boltzmann equation (solid), the
relaxation-time approximation (dotted), and Ziman’s improvement
on the relaxation-time approximation (dash-dotted).
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FIG. 4. (Color online) Same as Fig. 3, but now showing the
dependence on the distortion ε of the square lattice for a fixed range
ξ = 0.75a of the scattering potential.

tight-binding dispersion of a distorted square lattice with first
(t1), second (t2), and third (t3) nearest-neighbor hopping:

E(k) = −2t1[(1 + ε) cos kx + (1 − ε) cos ky]

− 2t3[(1 + ε) cos 2kx + (1 − ε) cos 2ky]

+ 4t2 cos kx cos ky. (4.5)

The lattice constant is a and k is measured in units of 1/a.
The C4 symmetry is distorted by the anisotropy parameter ε,
preserving reflection symmetry in the x and y axes.

We use ratios of hopping parameters t2/t1 = 0.32, t3/t2 =
0.5, and we compare two values of the band-filling fractions
nband = 1.156 and 0.875. (Band fillings are measured relative
to a half-filled band.) The corresponding Fermi energies at
ε = 0 are EF = 0 and EF ≈ −0.97 t1, respectively, and are
adjusted as ε is varied to keep nband fixed. For both of these band
fillings, the Van Hove singularity is below the Fermi level, see
Fig. 1, but it is closest for nband = 0.875. We therefore expect a
larger Nernst effect for that band filling than for nband = 1.156.

The Nernst coefficient is plotted in units of

N0 = t1a
4Z0

h̄γ0
= π2k2

BT

3h̄2

t1a
4

γ0
. (4.6)

We show only Nxy since Nyx is related by

Nxy(ε) = −Nyx(−ε). (4.7)

We compare three results for the Nernst coefficient:
(i) The exact solution of the linearized Boltzmann equation,

from Eq. (2.27).
(ii) The momentum-dependent relaxation-time approxima-

tion, from Eq. (3.7).
(iii) Ziman’s improvement on the relaxation-time approxi-

mation, from Eq. (3.10).
We have found that there is little difference be-

tween the momentum-dependent and momentum-independent
relaxation-time approximations [Eqs. (3.7) and (3.9)], so we
only plot the former. Results are shown in Figs. 2–4.

Figure 2 shows that the relaxation-time approximation
agrees well with the exact solution for nearly isotropic
scattering (ξ � a). With increasing ξ , small-angle scattering
begins to dominate, and the relaxation-time approximation
breaks down for ξ � 0.4a. The breakdown occurs earlier for
positive than for negative ε, which can be understood by
considering the anisotropic curvature of the Fermi surface.32

In Fig. 3, we see that Ziman’s improved approximation
remains reliable over a somewhat larger range of ξ . Still,
for a modestly large ξ = 0.75a, Ziman’s approximation has
also broken down completely, see Fig. 4, giving the wrong
magnitude and sign of the Nernst coefficient.

V. CONCLUSION

In conclusion, we have shown that the relaxation-time
approximation is not a reliable method to calculate the
Nernst effect in the combined presence of band and scattering
anisotropies. The deficiencies are qualitative; even the sign of
the effect can come out wrong. Of course, the relaxation-time
approximation remains a valuable tool to assess the effects of
band anisotropy in the case of isotropic scattering.

We have based our comparison on parameters relevant for
the cuprates,10 but we have only considered one possible mech-
anism (single-band elastic quasiparticle scattering) for the
Nernst effect in cuprate superconductors. Other mechanisms
(ambipolar diffusion, inelastic scattering, superconducting
fluctuations) would require separate investigations.6 It is hoped
that the general framework provided here will motivate and
facilitate work in that direction.
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