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Variational discrete variable representation for excitons on a lattice
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We construct numerical basis function sets on a lattice, whose spatial extension is scalable from single
lattice sites to the continuum limit. They allow us to compute small and large bound states with comparable,
moderate effort. Adopting concepts of discrete variable representations, a diagonal form of the potential term
is achieved through a unitary transformation to Gaussian quadrature points. Thereby the computational effort
in three dimensions scales as the fourth instead of the sixth power of the number of basis functions along each
axis, such that it is reduced by two orders of magnitude in realistic examples. As an improvement over standard
discrete variable representations, our construction preserves the variational principle. It allows for the calculation
of binding energies, wave functions, and excitation spectra. We use this technique to study central-cell corrections
for excitons beyond the continuum approximation. A discussion of the mass and spectrum of the yellow exciton
series in the cuprous oxide, which does not follow the hydrogenic Rydberg series of Mott-Wannier excitons, is
given on the basis of a simple lattice model.
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I. INTRODUCTION

The properties of elementary excitations in solids can often
be understood in a continuum approximation. A prominent
example are bound electron-hole pairs in semiconductors, the
excitons.1 Mott-Wannier2,3 excitons with large radius, found
in materials such as silicon or gallium arsenide, are in first
but rather good approximation described in terms of hydrogen
atoms.

For smaller exciton radius, comparable with the lattice
constant, deviations from the hydrogen-like properties occur.
Central-cell corrections become important, which account for
the possibility of finding electron and hole in the same unit
cell and include nonparabolic dispersions and modifications
of the 1/r-Coulomb potential.4 A prototypical material is
the cuprous oxide Cu2O, which receives constant attention
in the search for an excitonic Bose-Einstein condensate.5,6 It
features an interesting property: The mass of the “yellow” 1 s

excitons (2.6m0, where m0 is the free electron mass) is larger
than the sum of the electron (1.0m0) and hole mass (0.7m0)
(Ref. 7). The mass enhancement, after all by 50%, indicates
the breakdown of the continuum approximation.

It is our intention to study central-cell corrections for
excitons starting from a microscopic lattice model. In the
present paper we restrict ourselves to a simple two-band model.
Despite its limitations the discussion will provide us with a first
understanding and set the reference for future work. Improved
studies (e.g., with the inclusion of realistic ab initio band
structures, and extensions to biexcitons and exciton-exciton
scattering) are under current investigation.

The study of excitons provides motivation for the devel-
opment of numerical methods for few-particle systems on
lattices. For small exciton radius, eigenstates can be obtained
from a “plain” lattice calculation, where the numerical wave
function is restricted to a finite number of lattice sites. With
maximal distance L between electron and hole, wave function

values at (2L + 1)3 lattice sites must be stored in memory
for a three-dimensional (3D) problem. As a consequence of
the L3 scaling the resource consumption of such calculations
increases rapidly with the exciton radius. Already for a radius
of, say, ten lattice sites we must deal with about 106 wave
function values. Excited states are obtained with even higher
effort. For biexcitons with four particles, the scaling is ∝ L9.

The above numbers indicate that a different approach
is needed. In the present work we introduce a variational
lattice formulation of discrete variable representations (DVR)
developed for molecular physics and theoretical chemistry
applications.8–11 The wave function is represented in a product
basis of sine functions, whose spatial width is a free parameter
that is varied to minimize the energy and thus optimize the
numerical wave function. For small basis function width, this
approach reduces to a plain lattice calculation. Allowing the
basis function width to grow the transition to the continuum
limit is addressed with constant effort which is independent of
the wave function radius.

For a decisive reduction of the computational effort we
rely on the DVR idea of using Gaussian quadrature for the
potential term in the Hamilton operator. With N basis functions
along each coordinate axis in 3D, a straightforward variational
calculation in the sine basis requires all N2

tot potential matrix
elements between the Ntot = N3 basis functions. These matrix
elements have to be calculated and then used in each
application of the Hamilton operator. With the DVR, the
potential term is represented by a diagonal matrix and thus
requires only Ntot matrix elements. Since the kinetic energy
is separable in appropriate coordinates, the total effort scales
only as N4 = N

4/3
tot instead of N6 = N2

tot. For N = 100, the
effort is reduced by a factor of the order 10 000.

We deviate in two points from the standard DVR formula-
tion. First, we use a lattice function basis. Second, we adapt
the DVR construction to circumvent its single drawback, the
violation of the variational principle through the Gaussian
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approximation of the potential. In our formulation, the DVR
strictly obeys the variational principle. This is important
because it allows for the determination of the optimal basis
function width through energy minimization. Since we do not
know the wave function size (e.g., the excitonic lattice Bohr
radius) in advance, the selection of a suitable basis function
width would otherwise be difficult and error prone. With these
two modifications, our approach covers the entire range of
small bound states occupying few lattice sites through the
intermediate regime up to the limit of large weakly bound
states in the continuum.

The paper is organized as follows. In Sec. II we introduce
the exciton lattice model for the present investigation, and
derive the central relation between exciton mass and kinetic
energy. In Sec. III the variational sine basis is defined, the
variational DVR is explained and applied to two test examples.
In Sec. IV we study central-cell corrections for small radius
excitons using results from variational DVR calculations for
the lattice model. After a discussion of the yellow exciton
series in the cuprous oxide, we summarize our findings in
Sec. V.

II. EXCITON MODEL

We study 3D excitons within a simple two-band model on
a cubic lattice, with a cosine dispersion

Ee/h(k) = h̄2

a2me/h

∑
i=x,y,z

(1 − cos aki)

= h̄2k2

2me/h

− h̄2a2
(
k4
x + k4

y + k4
z

)
24me/h

+ · · · , (1)

for the conduction (Ee) and valence (Eh) band. Instead of
the electron mass me and hole mass mh, we will also use the
reduced (mr ) and total (M) electron-hole mass

m−1
r = m−1

e + m−1
h , M = me + mh. (2)

The parameter a, with physical dimension “length”, deter-
mines the typical exciton radius below which central-cell
corrections are significant. It could be identified as the
lattice constant for realistic band dispersion, but should be
considered as an effective model parameter in the present
simple treatment, similar to Ref. 4.

A. Lattice model

The lattice Hamilton operator is given as the sum

H = Te + Th + U, (3)

of the kinetic energy of the electron

Te = h̄2

2a2me

⎛
⎜⎝6 −

∑
i = x,y,z

δ = ±1

∑
r

c
†
r+δei

cr

⎞
⎟⎠, (4)

the kinetic energy of the hole

Th = h̄2

2a2mh

⎛
⎜⎝6 −

∑
i = x,y,z

δ = ±1

∑
r

h
†
r+δei

hr

⎞
⎟⎠, (5)

and the attractive Coulomb interaction

U =
∑
rr′

U (r − r′)c†rcrh
†
r′hr′ , (6)

between both, with

U (r) =
{− e2

εa|r| if r �= 0,

−V e2

εa
if r = 0.

(7)

In these expressions, c
(†)
r and h

(†)
r denote fermionic operators

for an electron or hole at lattice site r. The lattice sites are
indexed by integer numbers, that is, ri ∈ Z (this explains the
appearance of the parameter a in the Coulomb interaction).
The unit vector along each axis is denoted by ei . The Hamilton
operator in the form given has five parameters, some of which
are redundant as will be seen later: The electron/hole masses
me/h, the (effective) lattice constant a, the dielectric constant
ε, and the local Coulomb factor V . While ε characterizes
the long-range part of Coulomb interaction, the parameter V

describes the relative strength of electron and hole interaction
in the same unit cell. It should be V > 1 since |U (0)| >

|U (r �= 0)|.

B. Separation of center-of-mass motion

The exciton wave function can be written as

|ψ〉 =
∑
rr′

ψ(r,r′)c†rh
†
r′ |vac〉, (8)

where |vac〉 denotes the semiconductor ground state with filled
valence and empty conduction band. We are interested in wave
functions with definite exciton momentum h̄K. Translational
invariance requires

ψ(r + R,r′ + R) = eiaK·Rψ(r,r′), (9)

which allows for separation of the center-of-mass motion
through the ansatz

ψ(r,r′) = eiake ·r+iakh·r′
φ(r − r′). (10)

Every combination ke + kh = K is allowed, and any two
choices are related by a unitary transformation.

The wave function of relative electron-hole motion φ(r)
obeys the effective one-particle Schrödinger equation

Eφ(r) = 3h̄2

a2mr

φ(r) − h̄2

2a2

∑
i = x,y,z

δ = ±1

(
eiaδke ·ei

me

+ e−iaδkh·ei

mh

)

×φ(r + δei) + U (r)φ(r). (11)

In general, this equation is complex. For the simple cosine
dispersion assumed here, however, the choice

me

mh

= sin ake · ei

sin akh · ei

(for i = x,y,z), (12)
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that is,

ake · ei = arctan
sin aki

cos aki + mh

me

, akh · ei = arctan
sin aki

cos aki + me

mh

, (13)

leads to a Schrödinger equation Eφ = H̃φ with the real Hamilton operator

H̃φ(r) = h̄2

2a2mr

⎧⎪⎨
⎪⎩6φ(r) −

∑
i = x,y,z

δ = ±1

[
1 + 2mr

M
(cos aKi − 1)

]1/2

φ(r + δei)

⎫⎪⎬
⎪⎭ + U (r)φ(r). (14)

For small |K| � π/a, we can expand the cosine and square
root in H̃ to second order, to find the Hamilton operator for
low momentum states

H̃� = h̄2|K|2
2M

+ h̄2

2a2mr

∑
i=x,y,z

[
1 − mra

2

2M
K2

i

]
Ti + U (r),

(15)

where, similar to Eqs. (4) and (5), the kinetic energy operators
Tiφ(r) = 2φ(r) − φ(r + ei) − φ(r − ei) are used.

For K = 0, the total mass M drops out of the Hamilton
operator H̃�. In this respect the lattice problem resembles the
continuum problem, in so far as only the reduced mass mr

determines the K = 0 eigenstates and energies. Differences
may however arise at finite K.

We can now perform the continuum limit for H̃�, by
letting the effective lattice constant a → 0 for fixed values
of the other parameters. In this limit, the wave function
goes over into a continuous function φc(ar) = φ(r). The
kinetic energy operator reduces to the the derivative operator
Ti/a

2 → −∂2/∂r2
i , and V drops out. We obtain the continuum

Hamilton operator

H̃c = h̄2

2M
|K|2 − h̄2

2mr

∇2 − e2

εr
, (16)

the Hamilton operator of a hydrogen-like atom. The eigenener-
gies for K = 0 are En = −RX/n2 with the excitonic Rydberg
RX, and the lowest state wave function radius is the excitonic
Bohr radius aB . Both quantities are given by

RX = mre
4

2h̄2ε2
, aB = h̄2ε

e2mr

. (17)

We choose RX as the unit of energy and aB as the unit of
length for the lattice problem. The exciton wave functions
and energies E/RX at K = 0 are the eigenfunctions and
eigenenergies of the dimensionless Hamilton operator

HX =
(

aB

a

)2 ∑
i=x,y,z

Ti − 2

(
aB

a

)
u(r), (18)

where

u(0) = V, u(r) = 1/|r| for r �= 0. (19)

Only two dimensionless parameters, aB/a and V , oc-
cur. The parameter aB/a distinguishes between the lattice
regime aB/a � 1 with significant central-cell corrections and
the continuum—or Mott-Wannier—regime aB/a 
 1, where
central-cell corrections are absent. In the limit aB/a → ∞

the eigenenergies En of this Hamilton operator approach
the normalized hydrogen values En = −1/n2, independent
of V .

C. Central-cell corrections and the exciton mass

The exciton mass is defined as

M−1
X = ∂2

∂K2
i

E(K)|K=0, (20)

where E(K) denotes the exciton binding energy as a function
of K (because of isotropy of the Hamilton operator the result
is independent of i = x,y,z). From Eq. (15) it follows that

MX = M

1 − 1
2 〈φ0,Tiφ0〉

, (21)

where φ0(r) is the lowest state wave function of HX. Note
that for a (low-energy) bound state 0 < 〈Ti〉 < 1. In general,
MX/M > 1, and the exciton is heavier than electron and
hole combined. In the continuum limit, 〈Ti〉 → 0 as the wave
function becomes larger, and MX = M .

Interestingly, by Eq. (21) the mass enhancement MX/M

depends only on the (normalized) kinetic energy in the lowest
exciton state at K = 0. While this statement is trivially true in
the continuum limit, it is somewhat surprising for the lattice
case. As discussed above, the K = 0 wave function depends
on aB/a and V only. We see again that out of the five basic
parameters of the model only two combinations determine the
importance of central-cell corrections.

Based on the simple cosine dispersion, Eq. (21) is too
crude to give accurate results for actual materials, but it
can provide us with reasonable estimates. Consider for
simplicity a 3D wave function given as a product of ex-
ponentials φ(x) ∝ exp(−a|x|/aB ) along each axis (the es-
timates are independent of dimension). Then, 〈Tx〉 = 2 −
2/ cosh(a/aB ), or MX/M = cosh(a/aB). For aB = a, we have
MX/M ≈ 1.5, but already for aB = 4a it is MX/M ≈ 1.03
close to 1. Basically we see that central-cell corrections
on the exciton mass are important for rather small, yet
mobile, excitons. We expect that their properties depend
strongly on the local Coulomb interaction V in Eq. (7).
Furthermore, the stronger the binding the larger the mass
enhancement.

Equation (21) holds for any form of the interaction potential
U (r), but it fails in the most general case of different electron
and hole dispersion. It has been derived as early as in
Ref. 12—where it was noted to explain the immobility of
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Frenkel excitons with high binding energy—but we feel that
the explanation given here is simpler.

III. METHOD

In a straightforward computational approach numerical
eigenfunctions of a lattice Hamilton operator such as in
Eq. (14) are restricted to a cubic box [1,L]3 of finite extension.
This requires storage of wave function values at L3 lattice
sites. The Hamilton operator is given by a sparse matrix, which
allows for fast computations with iterative diagonalization13

or spectral algorithms.14

As discussed in the introduction, the problem with such
plain lattice calculations is the growth of the numerical
Hilbert space with L3, which prevents calculations for weakly
bound or excited states with large radius. Approaching the
continuum limit the effort diverges although the wave function
converges to a well-behaved continuous function. On the other
hand, calculations in the continuum limit require some wave
function representation at the beginning, since the natural
space discretization through the lattice is missing.

We address these issues with a variational basis of sine
functions. On the lattice, the one-dimensional (1D) basis
functions are

�n(x) =
{√

2
L+1 sin

(
πnx
L+1

)
if 1 � x � L,

0 otherwise .
(22)

The index n runs from 1 to the maximal value L. See Fig. 1
for a graphical presentation. From the 1D functions, 3D
basis functions are obtained as tensor products �lmn(r) =
�l(x)�m(y)�n(z). Note that for notational convenience, we
count x from 1 to L. In the numerical calculations, where
the potential is strongest at the origin, we work on the cube
[−L,L]3.

The �n(x) are orthonormal, with scalar product

〈�m,�n〉 =
L∑

x=1

�m(x)�n(x) = δmn, (23)

but they are not complete since they vanish outside of the
interval [1,L]. Bound state wave functions, which decay for
large |x| typically exponentially, can be represented accurately
for sufficiently large L. In our variational calculations we allow
the parameter L to grow for minimization of the approximation
error.

0 5 10 15 20
x

-0.4

-0.2

0

0.2

0.4

0.6

φ n(x
)

0 5 10 15 20
x

-0.4

-0.2

0

0.2

0.4

0.6

χ i(x
)1

2

3

4
5

1 2 3 4 5 6

FIG. 1. (Color online) First few basis and cardinal functions
for the sine basis Eq. (22) for L = 21. Left panel: Basis functions
�1(x), . . . ,�5(x) for L = 21. The positions of the lattice sites are
indicated through the circles for the �2(x) curve. Right panel:
Cardinal functions χ1(x), . . . ,χ6(x) for M = 6 sampling points.

The �n(x) have well-defined parity

�n(L + 1 − x) = (−1)n+1�n(x). (24)

The matrix elements of the kinetic energy operator are readily
calculated as

〈�m,T̂ �n〉 =
(

2 − 2 cos
πn

L + 1

)
δmn. (25)

We see that the sine functions are the eigenfunctions of the
lattice “particle in a box” problem, although this is of no
further relevance here. Note that the scaling of the kinetic
energy is 1/L2, instead of 1/L for other functions in a box,
as a consequence of the Dirichlet-like boundary conditions
�n(0) = �n(L + 1) = 0.

The continuum version of the sine basis is obtained from
the lattice construction in the limit L → ∞, if the coordinate
x is scaled accordingly. We fix an interval [0,Lc], and write the
basis functions as �c

n(x) = √
L/Lc�(xL/Lc). For L → ∞,

the basis functions are given by the sine functions

�n(x) =
{√

2
Lc

sin
(

πnx
Lc

)
if 0 � x � Lc,

0 otherwise,
(26)

where x now is a continuous variable ∈ R. The orthonormality
condition reads

∫ Lc

0 �m(x)�n(x) = δmn, and the kinetic energy
follows as −∂xx�n(x) = (πn

Lc
)2�n(x).

We favor the sine basis over alternative choices because
of the simplicity of all relevant expressions, the possibility
of using fast Fourier transforms, and their equivalence to the
established sine-DVR15 in the continuum limit.

A. Discrete variable representation

In a variational calculation, the 1D wave function is given
as a linear combination

φ(x) =
N∑

n=1

φn�n(x), (27)

of a finite number N of the basis functions (or N3 in 3D).
Note that always N � L. In the limit N = L the variational
basis is complete in the box, and the use of the sine basis is
equivalent to a plain lattice calculation. Computational savings
are expected for N � L.

While the kinetic energy is diagonal in the sine function
basis, evaluation of the potential term requires multiplication
of the coefficients {φ1, . . . ,φn} with a dense matrix Vnm =
〈�n(x),V (x)�m(x)〉,

φ̃n =
N∑

m=1

Vnmφm. (28)

Formally, this equation defines the projection Ṽ of V (x)
on the variational Hilbert space spanned by the functions
�1(x), . . . ,�N (x), with

Ṽ φ(x) = φ̃(x) =
N∑

n=1

φ̃n�n(x). (29)

Note that Ṽ , in contrast to V (x), is not a multiplication operator
in the x eigenbasis.
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In Eq. (28), there are N2 matrix elements in 1D, but in
3D the effort grows as N6. The principal idea of the DVR to
prevent this rapid growth is the approximate evaluation of the
potential term at the sampling points of a Gaussian quadrature
rule.9 This is possible if the basis functions are, essentially,
polynomials in the position operator x. For the sine basis, we
have

�n(x) = Pn−1(x̂)�1(x), (30)

with the transformed lattice position

x̂ = cos
πx

L + 1
, (31)

and the Chebyshev polynomials of second kind

Pn(x) = sin[(n + 1) arccos x]

sin[arccos x]
(|x| < 1). (32)

Recall that these polynomials satisfy a three-term recurrence

P0(x) = 1, P1(x) = 2x,
(33)

Pn+1(x) = 2xPn(x) − Pn−1(x).

The orthonormality of the basis functions Eq. (23) provides
the discrete orthogonality relation

δmn = 〈�m(x),�n(x)〉 = 〈Pm(x̂)�1,Pn(x̂)�1〉

= 2

L+ 1

L∑
x=1

sin2 πx

L+ 1
Pm

(
cos

πx

L+ 1

)

×Pn

(
cos

πx

L+ 1

)
, (34)

for the Chebyshev polynomials.
The sampling points of Gaussian quadrature for the Cheby-

shev polynomials are the M roots

x̂k = cos
πk

M + 1
, 1 � k � M, (35)

of the polynomial PM (x̂). The roots are distinct, and −1 <

x̂k < 1. Note the slight technical complication that x̂k is given
as a transformed position according to Eqs. (30) and (31). In
original lattice coordinates we have xk = k(L + 1)/(M + 1).

Since the variational wave function φ(x) in Eq. (27) is a
linear combination of the first N basis functions, its construc-
tion through Eq. (30) involves polynomials of maximal degree
N − 1. The wave function is thus uniquely specified through
the values

ξk =
N∑

n=1

φnPn−1(x̂k), (36)

at M sampling points x̂k for every M � N . Note that in general
xk /∈ Z, such that φ(xk) itself is not defined.

The DVR assumes that instead of multiplication with the
dense matrix Vmn as in Eq. (28) the potential term can also
be evaluated through the simpler multiplication of the wave
function values ξk with the potential values V (ξk) at M = N

sampling points, that is,

ξ̃k =
N∑

n=1

φ̃nPn−1(x̂k) ≈ V (x̂k)ξk. (37)

Recall that φ̃n are the coefficients of the wave function Ṽ φ(x)
in the sine basis from Eq. (28).

Equation (37) is exact in the full Hilbert space (i.e., for
M = N = L), where it just states that the potential acts
as a multiplication operator in the position eigenbasis [i.e.,
(V φ)(x) = V (x)φ(x)]. In general, it is an approximation
because the projection Ṽ of the potential operator onto
the variational Hilbert space is no longer a multiplication
operator. Since Gaussian quadrature with N points is exact for
polynomials of maximal degree 2N − 1, the approximation is
expected to become accurate for sufficiently large M , N .

The benefits of the approximation Eq. (37) are two-fold:
First, the potential is now given by a diagonal operation, with
N3 instead of N6 effort. Second, instead of the matrix elements
Vnm only the function values V (xk) are needed. The major
drawback is that the approximation violates the variational
principle.

B. Variational discrete variable representation

The DVR uses as many sampling points as basis functions
(i.e., M = N ). It has been noted16,17 that the accuracy of
the approximation Eq. (37) can be improved by using larger
M > N . The question then is how large M has to be chosen
(e.g., for a singular potential where Gaussian quadrature
encounters difficulties). A nice result, which seems to have
been missed in the literature, provides a complete answer:
Independent of the potential, M = 2N − 1 suffices for the
exact evaluation of the potential term in the DVR fashion of
Eq. (37).

The crucial observation is that the projected potential Ṽ acts
on the wave function in the same way as a polynomial in x̂

VP (x̂) =
2N−1∑
n=1

Vn1Pn−1(x̂), (38)

of maximal degree 2N − 2, with coefficients given by

Vn1 = 〈�n(x),�1(x)V (x)〉
= 2

L + 1

〈
sin

πnx

L + 1
sin

πx

L + 1
,V

〉
. (39)

This follows from comparison of matrix elements in
the subspace basis �1(x), . . . ,�N (x). We first note
that Vmn = 〈�m(x),V (x)�n(x)〉 = 〈Pm(x̂)Pn(x̂)�2

1(x),V (x)〉.
The product Pm(x̂)Pn(x̂) is a polynomial of maximal degree
2N − 2, which is a linear combination of P0(x̂), . . . ,P2N−2(x̂).
It thus suffices to compare the 2N − 1 matrix elements
〈Pn(x̂)�2

1(x), . . .〉 for 0 � n � 2N − 2. By definition
of VP (x̂), we have 〈Pn(x̂)�2

1(x),VP (x̂)〉 = Vn+1,1 =
〈Pn(x̂)�2

1(x),V (x)〉, using the orthogonality Eq. (34) of
the Pn(x̂) for the first equality. This concludes the argument.

Since the true projected potential Ṽ can be replaced
identically by the polynomial VP (x̂) for calculations with the
variational wave functions, the potential term can be evaluated
exactly through Gaussian quadrature. To a wave function
φ(x) we associate the polynomial φP (x̂) = ∑N

n=1 φnPn−1(x̂),
such that φ(x) = φP (x̂)�1(x). Acting with the potential term
VP (x̂) now gives another polynomial VP (x̂)φP (x̂) of maximal
degree 3N − 3. From this, the polynomial φ̃P (x̂) of the new
wave function must be obtained, again of maximal degree
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N − 1. In total, we deal with polynomials of maximal degree
4N − 4. Since a Gaussian quadrature with M sampling points
is exact for polynomials of maximal degree 2M − 1, the choice
M = 2N − 1 guarantees that the expression

ξ̃k = VP (xk)ξk, (40)

is exact. We can thus evaluate the potential term exactly by
using twice as many sampling points as basis functions, and the
values VP (x̂k) instead of the potential function values V (xk).
This provides us with the efficiency benefits of the DVR and
preserves the variational principle.

C. Implementation

Let us now explain how we use the variational DVR
(VDVR) in practice. First note that the wave function coef-
ficients φn and the values ξk at the sampling points are related
through an orthogonal transformation with the matrix

Unk = λkPn−1(x̂k) =
√

2

M + 1
sin

πnk

M + 1
,

(41)

with λk =
√

2

M + 1
sin

πk

M + 1
.

A direct calculation shows that U+U = UU+ = 1. The origin
of this matrix is that it contains the eigenvectors of x̂ in the
basis �1(x), . . . ,�M (x) as the columns. It is

λkξk =
N∑

n=1

Unk�n. (42)

Note that for M > N only a rectangular N × M submatrix of
Unk is used. Note further that only L basis functions exist on
the interval [1,L], such that M = min{2N − 1,L}.

As a side remark, we mention the eigenfunctions χk(x) =∑M
n=1 Unk�n(x) of x̂ in the Hilbert space spanned by

�1, . . . ,�M , the cardinal functions. They can be used to
represent φ(x) = ∑M

k=1 λkξkχk(x) directly through the values
ξk at the sampling points. Typical cardinal functions are
depicted in Fig. 1. For the maximal value M = L, χk(x) = δxk

is the lattice δ function localized at the single site x = k.
We here recover the plain lattice calculation. We will not use
cardinal functions explicitly in this work.

We can now proceed as follows for the evaluation of the
potential term: Obtain the values ξk from the coefficients φn

through transformation with Unk [Eq. (42)], then multiply each
ξk with VP (x̂k) according to Eq. (40), and transform back to
the new coefficients φ̃n. That is,

φ̃n =
M∑

k=1

Unk VP (x̂k)
N∑

m=1

Umkφm, (43)

or more concisely φ̃ = UVP U+φ where the matrix VP ≡
[VP (x̂k)δjk]jk is diagonal. Note that, in contrast to the standard
DVR, we consider the φn instead of the ξk as the primary
objects in the calculation since it simplifies the formulation
and calculation for M > N (cf. Ref. 17).

The 1D Hamilton operator in the (V)DVR formulation is
given by

HVDVR = UVP U+ + T , (44)

with the diagonal N × N kinetic energy matrix T from
Eq. (25), the diagonal M × M potential matrix VP , and the
rectangular N × M transformation matrix U .

The extension to 3D is straightforward. The Hamilton
operator retains the form of Eq. (44). The kinetic energy is
the sum Tx + Ty + Tz and remains diagonal, and the diagonal
potential matrix has now N3 entries. The transformation
matrix is a tensor product U (3) = U ⊗ U ⊗ U , which acts as
ξijk = ∑

lmn UilUjmUknφlmn.
The multiplication with the U (3) matrix is best done

sequentially. Since in the tensor products each matrix applies
only along a single axis, every multiplication requires N4

operations. The matrices V and T are diagonal, and require
N3 operations. The total operation count is thus of the order
N4 instead of N6. A certain overhead for the additional
transformations is present. With a more detailed counting we
find that already for N = 10 the effort is reduced by a factor of
3 in comparison to a non-DVR evaluation of the potential term.
For N = 100, the reduction is by a factor of 360: A calculation
that takes ten minutes with the (V)DVR would take two and a
half days without. The numbers become even more favorable
if we use a fast Fourier transform (FFT) for the multiplication
with U (3).

D. Calculation of VP (xk)

The potential enters Eq. (40) through the M = 2N − 1
matrix elements VP (x̂k). They are obtained from the Vn1 in
Eq. (39) through transformation with Unk as

VP (x̂k) =
2N−1∑
n=1

Pn−1(x̂k)Vn1 = 1

λk

2N−1∑
n=1

UnkVn1. (45)

In practical applications the evaluation of the scalar product
in Eq. (39), which requires summation over L (or L3) lattice
sites, is not desirable. If the potential is given by a smooth
function V (x) we can use Gaussian quadrature instead. With
Ng � M sampling points, we obtain the approximation

VP (xk) � 1

λk

M∑
n=1

Unk

Ng∑
j=1

U
Ng

nj λ
Ng

j V

(
j

L + 1

Ng + 1

)
, (46)

where U
Ng

nj , λ
Ng

j are defined as in Eq. (41) with Ng replacing
M . This expression essentially describes the projection from
polynomials of maximal degree Ng onto polynomials of
maximal degree M , all given through their values at certain
sampling points. Note that the argument of V (x) is not
necessarily an integer. Therefore, we must know V (x) for
continuous x, not only at the lattice sites. For Ng = M , the
Gaussian approximation reduces to the DVR-like expression

VP (x̂k) � V

(
k

L + 1

M + 1

)
, k = 1, . . . ,M. (47)

The entries of VP in Eq. (44) can be obtained through any
of the expressions Eqs. (45), (46), and (47). In practice, we use
the simplest approximation Eq. (47) for regular potentials [e.g.,
(an-) harmonic oscillators]. For singular potentials, such as the
Coulomb potential, we use Eq. (46) with Ng = 4, . . . ,8N ,
avoiding sampling points at the potential singularity. On
the lattice we treat localized (δ-function) contributions, for
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example, from the V term in Eq. (7), exactly through Eq. (45),
and use again Eqs. (46) and (47) for the remaining long-range
part of the potential.

E. Discussion

An important conceptual difference between the VDVR
and the original DVR formulation is the separation of the
calculation of potential matrix elements through Eq. (45) and
their actual usage in Eqs. (43) and (44). Two sources of error
exist in the DVR: First, the replacement of the full, dense
matrix-vector multiplication Eq. (28) through the diagonal
expression Eq. (37). This error is completely eliminated in
the VDVR Eqs. (40) and (43) through the choice of M =
2N − 1 sampling points. Second, the error incurred through
approximate evaluation of the matrix elements VP (x̂k). This
error can be made smaller through better approximations to
Eq. (45) [e.g., by increasing Ng in Eq. (46)].

In the original DVR, both errors contribute equally. The
obvious way for error reduction is to increase N , which inflicts
a computational overhead on the entire calculation. In the
VDVR, the effort for a better calculation of the VP (x̂k) needs
to be invested only once in Eq. (45) or Eq. (46) before the
actual use of the Hamilton operator Eq. (44), but there is no
reason for increasing M beyond 2N − 1 for the evaluation of
the potential term.

In our opinion this is a central advantage of the formu-
lation chosen here: The calculation of matrix elements of
V (x) is completely independent of the Gaussian quadrature
underlying the diagonal VDVR evaluation of the potential
term. In particular for singular potentials a large number Ng

of sampling points in a Gaussian quadrature Eq. (46) can
be necessary to obtain accurate matrix elements, while the
variational wave function is a good approximation already for
N,M � Ng . It can also be useful to calculate the VP (xk) with
other integration/summation procedures (e.g., adaptive Gauss-
Kronrod integration or specialized routines for functions with
an integrable singularity). In the original DVR, replacing the
V (xk) in Eq. (37) by better matrix elements is not possible,
and increasing N is the only possibility for improvement.

F. Examples

1. Harmonic oscillator

The difference between the variational and nonvariational
DVR is apparent for the (continuum) harmonic oscillator
H = − 1

2∂xx + 1
2x2, with eigenvalues En = n − 1/2 (note that

we start counting with n = 1). In Fig. 2 we show the numerical
result for the energy E1, . . . ,E4 of the four lowest eigenstates
under variation of the parameter Lc. Note that the Gaussian
approximation Eq. (47) for the potential is used. The error
has two sources: The domain truncation error because the
variational wave function vanishes outside an interval of length
Lc, and the basis error from the approximate representation of
the wave function through a finite number of basis functions.
Since the VDVR is variational by construction, the numerical
energies approximate the true energies from above (left
panel). The optimal value is found by minimization of the
respective numerical energy under variation of Lc. The values
in Table I demonstrate the attainable precision. With only

0 10 20
Lc

0

2

4

6

E

0 10 20
Lc

0 10 20
Lc

VDVR
N=10

DVR
N=10

DVR
N=21

FIG. 2. (Color online) Numerical energies of the four lowest
eigenstates of the harmonic oscillator H = −∂xx/2 + x2/2, as a
function of the interval length Lc for the interval [−Lc,Lc]. Shown
are results for the VDVR (left panel) and the DVR (central and
right panel), for N = 10,21 basis functions as indicated. The exact
eigenenergies En = n − 1/2 are indicated by dashed horizontal lines
(note that we start counting with n = 1). The Gaussian approximation
Eq. (47) for the potential matrix elements has been used.

N = 30 the first ten eigenvalues are converged, and even
the 20th eigenvalues E20 is significant with a relative error
below 10−3.

The standard DVR violates the variational principle even in
this simple example (central and right panel in Fig. 2), and it
is not recovered for large N . Nevertheless the DVR provides
meaningful results if the plateau region is identified, where
the DVR energy is almost constant under variation of Lc and
a good approximation to the true energies. But the violation
of the variational principle complicates the application of the
DVR for our purposes since an automatic identification of the
plateau is difficult and error prone. Also, we normally have no
a priori estimate for a suitable Lc since we do not know the
wave function in advance.

2. Hydrogen atom

The second example concerns already the numerical
calculations for the 3D exciton problem. We consider the

TABLE I. Convergence of the numerical energies with the
number of basis states N in a VDVR calculation, for the eigenenergies
E1,E5,E10,E20 of the harmonic oscillator H = −∂xx/2 + x2/2 as in
Fig. 2. The Gaussian approximation Eq. (47) for the potential matrix
elements has been used. Note that the energy minimum is obtained
for different optimal L (not shown), in particular for small N .

N E1 E5 E10 E20

5 0.500 168 5777 5.088 729 909
10 0.500 000 4143 4.510 831 820 11.140 280 90
20 0.500 000 0000 4.500 000 074 9.500 334 454 23.967 851 96
30 0.500 000 0000 4.500 000 000 9.500 000 005 19.516 785 26
40 0.500 000 0000 4.500 000 000 9.500 000 000 19.500 002 54
50 0.500 000 0000 4.500 000 000 9.500 000 000 19.500 000 00
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TABLE II. Convergence of the ground state energy E1 with the
number of basis states N in a VDVR calculation, for the Hamilton
operator (18) in the continuum limit aB/a = ∞ (i.e., a 3D hydrogen
atom). The values in the second column are obtained with the
Gaussian approximation Eq. (47), the values in the third column
from Eq. (46) with Ng = 8N .

N E1 E1 (Ng = 8N )

10 −0.929 313 87 −0.961 649 93
20 −0.973 214 83 −0.990 263 43
30 −0.985 360 03 −0.995 892 47
40 −0.990 598 61 −0.997 819 06
50 −0.993 380 44 −0.998 713 12
60 −0.994 928 41 −0.999 122 87
70 −0.996 057 29 −0.999 382 35
80 −0.996 835 00 −0.999 544 69
90 −0.997 395 75 −0.999 652 55
100 −0.997 814 51 −0.999 727 16
Exact −1.0

dimensionless Hamilton operator Eq. (18) for aB/a 
 1,
where plain lattice calculations become increasingly demand-
ing. In Table II we show the energy of the lowest state
in the continuum limit aB/a = ∞ (i.e., for a 3D hydrogen
atom), obtained with VDVR. The convergence to the exact
value is not as favorable as for the harmonic oscillator (cf.
Table I), as a consequence of the singular potential. The
singularity of the potential increases the error of the Gaussian
approximation Eq. (47). The convergence improves for more
accurate potential matrix elements, obtained with Eq. (46) for
Ng = 8N . Since the additional effort for a better calculation
of the matrix elements is only invested once, prior to the
actual use of the VDVR Hamilton operator in an iterative
diagonalization procedure, the running time of calculations
increases only marginally (about 5%).

A second error source is intrinsic to the sine basis
construction, which has difficulties to resolve the cusp of the
hydrogen wave function at r = 0. Recall that we approach the
continuum limit starting from a cubic lattice. In the continuum
limit, rotational symmetry allows for the separation of radial
and angular coordinates and the choice of a better basis (e.g.,
of Laguerre polynomials). Starting from the lattice, this is
prevented by the reduced lattice symmetry. Convergence of
expansions of a rotationally invariant function with a cusp in
a basis without rotational symmetry is relatively slow. Since
full rational symmetry is restored only in the continuum limit,
there is no easy fix to this problem. For smaller aB/a, away
from the continuum limit, the error is reduced.

Despite these complications, the error with N = 100 is
smaller than 3 × 10−4. The variational Hilbert space has
dimension 106. As a consequence of parity symmetry, only
half of the basis functions along each axis are used, reducing
the necessary effort by a factor of 23 = 8. Making use of the
full lattice symmetry requires manipulation of only ≈ 21 000
states for N = 100 (effectively, 30 per coordinate axis). There
is probably room for improvements of the basis, but we are not
aware of a simple solution to the lattice/continuum symmetry
mismatch problem. With the present construction, we achieve
an error below 10−3 in all quantities and for all parameters,

0 5 10 15 20
aB/a

-2

-1

0

1

2

E
1,

2/R
X

E2

E1

VDVR

VDVR

L=50

L=50
L=30

L=30

FIG. 3. (Color online) Energy of the lowest (E1) and first excited
state (E2) for the Hamilton operator Eq. (18) (with V = 1), as a
function of aB/a. The solid curves are calculated with the VDVR and
N = 30 basis states. The dashed curves have been obtained with a
plain lattice calculation on a cube [−L,L]3 with L = 30,50.

at modest computational effort. For N = 30, . . . ,50, the
dimension of the variational Hilbert space is 125 000 at
maximum without consideration of lattice symmetry. Such
calculations, in double real precision, require less than 25 MB
of computer memory. Implementing the full lattice symmetry
reduces these numbers to 2600 states and about 2 MB of
central storage. Recall that also the running time of a program
is significantly reduced due to the favorable (V)DVR scaling
∝ N4. For the calculations reported here, this level of accuracy
and efficiency is sufficient.

The real benefits of the VDVR over a plain lattice calcula-
tion become apparent in Fig. 3, where we show the energy of
the lowest and first excited state of HX [Eq. (18)] as a function
of aB/a. We compare the VDVR with N = 30 basis states
per direction to a plain lattice calculation on a cube [−L,L]3

with fixed L = 30. For small aB/a, the wave function radius
is small and the VDVR reduces to the plain lattice calculation.
As the wave function radius grows with aB/a, the domain
truncation error of the plain lattice calculation becomes severe
and renders the results meaningless. In particular excited states
are not accessible. On the other hand, the error of the VDVR is
bounded independently of the actual extension of the wave
function, and the energies converge to the correct values
E1/RX = −1, E2/RX = −0.25 for aB/a → ∞. The error in
this limit can be deduced from Table II.

It should be noted that the optimal L in the VDVR is
different for the lowest state and excited states, reflecting the
larger radius of the latter. It is the advantage of the variational
procedure to adapt itself to these differences.

IV. EXCITONS

According to Eq. (21) and the simple estimate we gave in
Sec. II, central-cell corrections of the exciton mass become
important if the exciton Bohr radius is of the order of the
(effective) lattice constant (i.e., for aB/a � 1). In Fig. 4
we show the exciton binding energy −E/RX and the mass
enhancement MX/M for the lowest exciton state, as obtained
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FIG. 4. (Color online) Exciton binding energy E/RX and mass
enhancement MX/M as a function of aB/a, for different V as
indicated. Results were obtained with a VDVR calculation for
N = 20, . . . ,50 with an error below 10−3 for both quantities.

with the VDVR applied to the Hamilton operator Eq. (18).
As we discussed in Sec. II, these curves depend only on the
parameters V and aB/a.

As expected, −E/RX,MX/M → 1 in the continuum limit
aB/a → ∞, independent of V . Deviations arise for smaller
aB/a. It may be interesting to note that the binding energy
changes more pronouncedly with V , while the mass enhance-
ment, as a function of aB/a, remains similar. The numerical
data show that two opposite situations are possible: A small
binding energy and large mass enhancement for small V and
aB/a, and a large binding energy and small mass enhancement
for large V and moderate aB/a. Physically, the magnitude of
both parameters V , aB/a is related (e.g., to the extension of
Wannier functions for the conduction and valence band). For
reasonable parameters a large exciton mass coincides with a
higher binding energy, and vice versa.

In Fig. 5 we show the typical change of the exciton
spectrum (at K = 0) in comparison to the hydrogenic Rydberg
series En = −RX/n2, which is realized in the continuum limit
aB/a → ∞. Starting from there, the n2-fold degeneracy of the
hydrogen eigenstates is lifted in the lower crystal symmetry.
While the notation in the figure refers to the hydrogen
problem, a group-theoretical classification is possible with
the irreducible representation of the point group Oh of our
lattice model, the symmetry group of a cube.18 The even parity
“s” states (odd parity “p” states) arise from hydrogen states
with angular momentum l = 0 (l = 1), and correspond to one-
dimensional (three-dimensional) irreducible representations.
For the even parity “d” states, the 2l + 1 = 5 dimensional
irreducible representation of the full rotation group splits
into a two- and a three-dimensional representation under the
reduced symmetry of Oh. Numerically we see indeed that
each such state is a doublet of a two and three-fold degenerate
eigenenergy, but the splitting of the order 10−4 is not resolved
in Fig. 7.

The wave functions given in Fig. 6 still resemble hydrogen
wave functions, although their properties (i.e., the binding

s p d
-1.5

-1

-0.5

0

E
/R

X

s p d

n=1

n=2

n=3
n=4

1s 1s

E1/RX=-4.78

4d

2s

2p2s

3s
3s

2p

3p 3d

4s 4p 4s 4p 4d

3p 3d

FIG. 5. (Color online) Spectrum of the exciton model Eq. (18),
for V = 3, aB/a = 2 (left panel) and V = 5, aB/a = 1 (right panel),
calculated with VDVR. Gray dashed lines indicate the Rydberg series
En/RX = −1/n2.

energy or mass) do not. In our simple model, the energy shifts
are induced by the V term in Eq. (7), which affects the “s”
states strongly since the probability |φ(0)|2 of electron and
hole being in the same unit cell is large. The “p, d, . . .” states
are much less affected [for hydrogen states, φ(0) = 0 exactly
for l � 1]. Significant energy shifts thus arise from lifting of
the dynamical degeneracy of the 1/r-Coulomb potential with
respect to the angular quantum number l, and are not associated
with the splitting of states with different magnetic quantum
number m that is predicted by the lower crystal symmetry.
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FIG. 6. (Color online) Wave function φ(x,0,0) for parameters
V = 2.75, aB/a = 0.98 as used for the cuprous oxide in Fig. 7. Shown
is the lowest exciton state (left panels, with linear and logarithmic
ordinate), the second even (top right panel), and the first odd state
(bottom right panel). The circles give the values φ(x,0,0) at the
respective lattice site, the solid red curves show the corresponding
hydrogen wave functions for comparison. Also given is the wave
function radius R.
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FIG. 7. (Color online) Spectrum of the exciton model Eq. (18)
in comparison to experimental values for the yellow (ortho-)exciton
series in cuprous oxide (Refs. 19 and 20). The model parameters
V = 2.75, aB/a = 0.98 are determined from the binding energy and
mass enhancement of the lowest (1s) exciton state. Shown are even
and odd parity states for the yellow (left panel) and green (right panel)
exciton series, and the results of the VDVR model calculation for the
yellow series (central panel). Note the broken energy axis. The gray
dashed lines give the energies −1/n2 of the Rydberg hydrogen series.
The “1G” line in the left/right panel is at identical energy.

To understand the significance of these results for the
cuprous oxide Cu2O, we show a model calculation for the
yellow (ortho-)exciton series in this material in Fig. 7 in
comparison to experimental data from Refs. 19 and 20. The
experimental absorption energies of the odd parity states can be
fitted to a perfect Rydberg series E

ye
n = E

ye
g − R

ye

X /n2, with
E

ye
g = 2.17 eV for the gap energy and R

ye

X = 98.4 meV for
the excitonic Rydberg. With these values, we obtain the left
panel in Fig. 7 for the normalized energies E/RX =̂ (Eye −
E

ye
g )/Rye

X . Obviously, the energies of the even parity states
differ significantly from the Rydberg energies −1/n2.

For the model calculation, we choose the two parameters
V = 2.75 and aB/a = 0.98 according to a fit of the numerical
binding energy and mass enhancement of the lowest (1s)
exciton state, as given in Fig. 4, to the experimental values
E = 139 meV and MX/M = 1.5. Nothing was assumed or
adjusted for higher exciton states. Both parameter values have
a reasonable order of magnitude. Recall that aB/a < 1 is an
indication of significant central-cell corrections.

The central panel in Fig. 7 shows the calculated exciton
spectrum for the above model parameters. The spectrum
is qualitatively correct, and we find excellent quantitative
agreement for the 2s state which reproduces the experimental
energy with an error of only 5%. Deviations occur for higher
even parity states, which shows the limitations of the simplistic
model used here.

The state labeled (1G) in the left panel does not fit into
the model spectrum, and should probably be incorporated into
the green exciton series shown in the right panel in Fig. 7.
Again from a fit of the experimental energies of the odd parity
states to a Rydberg series, resulting in E

gr
g = 2.31 eV and

R
gr

X = 151 meV, the (1G) state is found exactly at the energy
E

gr
g − R

gr

X of the lowest (1s) green exciton state. There is
further experimental evidence about the assignment of states
to the yellow or green exciton series, such as response to strain
and magnetic fields,19,21 but with the present simple model we
are unable to provide further analysis.

V. CONCLUSION

In the present paper we introduce a variational discrete
variable representation for bound states on a lattice and apply it
for a study of excitons with significant central-cell corrections.

In the VDVR wave functions are given in a variational
basis of sine functions. It combines (i) accuracy because of the
use of exact matrix elements and the variational determination
of the optimal basis function width, with (ii) efficiency since
it evaluates the potential term in the DVR spirit through a
diagonal matrix. We adapted the original DVRs in two aspects:
Our construction (iii) fully preserves the variational principle,
and (iv) bridges the gap between lattice and continuum
calculations in a single unified framework.

The example of central-cell corrections for excitons pro-
vides the physical motivation for the present work. From the
simple two-band lattice model adopted here we can mainly
draw qualitative conclusions. In the regime aB � a where
central-cell corrections become important, excitons are still
closer to Mott-Wannier excitons than to Frenkel excitons.
Their properties, however, deviate significantly from the
hydrogen picture—even for excited states where the radius
exceeds the lattice constant.

Despite the simplicity of the two-band model, we can
successfully reproduce the experimental spectrum of the
yellow exciton series in the cuprous oxide Cu2O, even with
quantitative agreement. Only two parameters enter the model
calculation, which are fixed by the binding energy and mass
of the yellow 1s exciton state. That the spectrum of excited
states can be reproduced from two elementary properties of
the lowest exciton state—one being the exciton mass with
no apparent relation to energies of optical transitions—shows
how the use of a lattice model allows us to connect different
properties through a fundamental microscopic description. The
additional experimental information from measurements of the
exciton mass can thus be used in a theoretical interpretation of
the exciton spectrum.

The present model calculation is too simplistic to cover
all relevant aspects of exciton formation. The study of many
important effects, such as the spin-dependent energy splitting
between ortho- and para-excitons or the influence of electron-
hole exchange interaction on the exciton mass,22 has to be
postponed to a forthcoming publication, where we will also
discuss how the large central-cell corrections for yellow
excitons in comparison to the negligible corrections for the
green exciton series are related to the respective valence band
dispersion.

We will consider extensions of the present work in three
directions. First, refinements of the two-band model are
necessary. As a few principal issues, we can list (a) the
inclusion of realistic band structures (e.g., from ab initio
calculations23), (b) full consideration of lattice symmetries,
which is particularly important for the classification of excited
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states,18 (c) improved matrix elements for the short-range
Coulomb interaction, which can be principally obtained from
the Wannier functions of conduction and valence bands, and
(d) the corrections to the dielectric constant for screening at
short distances.24,25 The exciton spin configuration is relevant
in (e) the exchange interaction, leading to a splitting of
exciton states,26 and (f) spin-orbit coupling. For comparison
with experiment it is desirable to allow for (g) external
(magnetic) fields and (h) strain/lattice deformation.21,27 Also
such a refined exciton model can be studied within the
VDVR.

More demanding would be the inclusion of dynamical
screening, which is possible within a Green function formal-
ism. We have discussed elsewhere the use of polynomial bases
for Green function calculations,28 but the combination with
VDVR is not worked out. It would give a polynomial basis
construction both for position and energy. Note that the present
work can be understood as the solution of the Bethe-Salpeter
equation in the special case of a nonfrequency dependent
interaction. We see no urgency to include dynamical screening
into the model, because its effect is less significant than the
corrections listed above.

Second, our derivation of the VDVR generalizes to arbitrary
basis sets of orthogonal polynomials with only minor modifica-
tions. In particular in the continuum limit, where we have more
freedom for the basis choice, such a generalization display its

full strength in comparison to artificial ad hoc discretizations
of position or momentum space. It will be discussed elsewhere.

Third, the VDVR is powerful enough to allow for the
study of biexcitonic systems and exciton-exciton scattering.
Our discussion of the exciton spectrum shows why lattice
models are important for an understanding of small-radius
excitons, and the same is true for interacting two-exciton
systems. A calculation of the central-cell corrections for
exciton scattering lengths is of immediate relevance for Bose-
Einstein condensation.

Bearing in mind that the cuprous oxide is one material
where the search for Bose-Einstein condensation of excitons
is justified, microscopic studies of excitons in this material
always provide us, apart from our genuine interest in excitons
away from the Mott-Wannier limit, with a perspective on the
conditions and limitations of collective exciton behavior. In
this sense, the VDVR technique and the lattice calculations
reported here are one building block for the understanding of
recent and future experiments on the cuprous oxide and similar
materials.
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