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Heterostructures of spin-orbit coupled materials with s-wave superconductors are thought to be capable of
supporting zero-energy Majorana bound states. Such excitations are known to obey non-Abelian statistics in
two dimensions, and are thus relevant to topological quantum computation (TQC). In a one-dimensional system,
Majorana states are localized to phase boundaries. In order to bypass the constraints of one dimension, a wire
network may be created, allowing the exchange of Majoranas by way of junctions in the network. Alicea et al.
have proposed such a network as a platform for TQC, showing that the Majorana bound states obey non-Abelian
exchange statistics even in quasi-one-dimensional systems.1 Here we show that the particular realization of
non-Abelian statistics produced in a Majorana wire network is highly dependent on the local properties of
individual wire junctions. For a simply connected network, the possible realizations can be characterized by the
chirality of individual junctions. There is in general no requirement for junction chiralities to remain consistent
across a wire network. We show how the chiralities of different junctions may be compared experimentally and
discuss the implications for TQC in Majorana wire networks.
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I. INTRODUCTION

Quantum computation, based on the creative use of the
fundamental resources of quantum mechanics, promises ex-
ponential speed up of several classically intractable computa-
tional problems. However, since quantum states are extremely
susceptible to external perturbations, maintaining their co-
herence in the presence of environmental interactions is the
foremost challenge in any quantum computation architecture.
In the recently proposed scheme of topological quantum
computation (TQC),2,3 the environmental decoherence prob-
lem is confronted by encoding quantum information in an
intrinsically nonlocal way, making it essentially immune to
any local perturbation due to the environment. A growing
class of theoretically predicted quantum many-body states,
characterized by excitations with non-Abelian statistics (non-
Abelian anyons), allow such nonlocal encoding of quantum
information.

Exchange statistics4 is the description of how a many-body
wave function transforms under the unitary transposition
of any pair of quantum particles. The simplest examples
of this transformation are those associated with bosonic
(multiplication by 1) and fermionic (multiplication by −1)
statistics. In (2 + 1) dimensions, where simple permutation of
the coordinates and actual exchange of the quantum particles
are not necessarily equivalent, the bosonic and fermionic
statistics can be generalized to anyonic statistics. In Abelian
anyonic statistics, the many-body wave function can pick up
any phase between 0 and π under pair-wise exchange of the
particles, which are now called anyons. In (2 + 1) dimensions,
if the many-body ground-state wave function happens to be
a linear combination of states from a degenerate subspace, a
pair-wise exchange (braiding) of the particles can also unitarily
rotate the wave function in the ground-state subspace. In this
case, the braiding statistics can be non-Abelian.2,3 The state
rotation produced by braiding may be exploited to manipulate

the quantum information stored in the ground-state manifold,
producing quantum gates that may be used for computation.5–8

Because of the nonlocal storage of information within the
ground-state subspace, TQC using non-Abelian excitations
is intrinsically fault tolerant. This intrinsic fault tolerance at
the hardware level holds considerable promise for the future
success of quantum computation.

Non-Abelian quantum systems in the so-called Ising
topological class3 are characterized by topological excitations
called Majorana fermions. In some topological superconduct-
ing (TS) systems,9 Majorana fermions arise as nondegenerate
zero-energy excitations bound to vortices of the superconduct-
ing order parameter. The second quantized operators, γi , corre-
sponding to the Majorana excitations are Hermitian, γ

†
i = γi .

This is very different from the ordinary fermionic (or bosonic)
operators for which ci �= c

†
i . Therefore, each Majorana particle

can be regarded as its own antiparticle.10 Majorana particles
have been predicted to occur in some exotic many-body
states such as the proposed Pfaffian states in the filling
fraction ν = 5/2 fractional quantum Hall (FQH) system,11

spinless chiral p-wave superconductors/superfluids,12,13 and
non-centrosymmetric superconductors.14,15 Recently, there
have been proposals for manufacturing the necessary condi-
tions for Majorana fermions by constructing heterostructure
systems in which an s-wave superconductor is placed in
proximity to the surface of a three-dimensional (3D) strong
topological insulator (TI)16 or a semiconductor thin film with
Rashba17,18 or Dresselhaus19-type spin-orbit (SO) coupling.

Following this, one-dimensional (1D) versions of these
systems have been proposed.20–22 In one dimension it is not
necessary to have vortex states for Majorana fermions to occur.
Instead, Majoranas appear as zero-energy modes trapped at
the phase boundaries between topologically superconducting
(TS) and nontopological superconducting (NTS) phases of the
system. In effect, these would be practical realizations of a
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1D lattice model shown earlier by Kitaev23 to contain such
Majorana fermion end states. It is somewhat problematic for
TQC applications that braiding operations are unavailable in
one dimension. Although in principle the Majorana bound
states may be moved by gating the system to allow expansion
and contraction of the topological regions,1 there is no room
for the Majoranas to pass around one another in one dimension.
This problem has been resolved by Alicea et al.1 by the
introduction of a so-called T-junction in a network of quantum
wires, which allows one to exchange the end-state Majorana
modes using a junction of three quantum wire segments.
In this way, their proposal makes a step from a locally
one-dimensional system to a globally two-dimensional one,
in which braiding is now possible.

The non-Abelian statistics of Majorana fermions on a
quantum wire network on a superconducting substrate is not
obvious given that the original arguments for non-Abelian
statistics in p-wave superconductors relied on the Berry
phase accumulated from taking a Majorana fermion around
a vortex.13 In their work, Alicea et al. have shown1 how
non-Abelian statistics arises in the wire network by approx-
imately mapping the system to a 1D lattice model similar
to the one considered by Kitaev.23 We reproduce this result
in a more general setting, and show that the form of the
braiding statistics actually implemented during an exchange
of Majorana bound states within a wire network is dependent
upon local characteristics of the wires and their junctions.

We begin in Sec. II by formulating the problem of
exchanging a pair of Majorana fermions in a fashion that is
independent of the underlying wire network. First, we show
that given a pair of Majorana operators the signs acquired
by them during an adiabatic exchange must be unique and
consistent with non-Abelian statistics. In other words, if γ1

and γ2 are the two Majorana fermions being exchanged, then
the result of such an exchange is γ1 → λγ2, γ2 → −λγ1 and
λ2 = 1. The result can be described in terms of a braid matrix
written as U = eπλγ1γ2/4. The braid matrix U associated with
a given exchange operation will be shown to be uniquely
determined from the microscopic parameters of the quantum
wire network. By reversing the trajectory of the exchange
operation the sign of λ is also reversed. In the remainder
of the paper, we elucidate the above in the context of a
quantum wire network. We show in Sec. III that the phase
acquired by the Majorana fermions when they are exchanged
through a junction is determined by a local characteristic of
the junction (the junction chirality) that is independent of the
exact path taken by the Majoranas, as well as the locations of
the TS and NTS regions. We discuss the implications of this
characteristic (and particularly the possibility that it will be
different for different junctions within the same network) in
Sec. IV A before extending our analysis to multiply connected
junctions in Sec. IV B. There we see that in addition to the
chirality of junctions there is another representation-invariant
quantity relevant to the braiding of Majoranas (i.e., the phase
acquired when a Majorana is transported around a loop in
the network). This “loop factor” completes the description
of the transformations produced by Majorana motion in wire
networks. Our analysis appeals only to the general necessity
for consistency in the effects of Majorana motion, as well
as a few simple assumptions about the network set forth in

Sec. III. With these assumptions satisfied, the results apply
to any network of 1D wires supporting Majorana fermions at
phase boundaries.

II. MAJORANA FERMION EXCHANGE IN THE
HEISENBERG REPRESENTATION

The topologically degenerate subspace of states of a system
of topological nanowire segments proximity coupled to a
superconductor may be manipulated via an adiabatically
time-varying Hamiltonian. Such operations result in changes
of expectation values of the various observables composed of
products of Majorana fermion operators. These expectation
values can be computed equivalently in both the Schrodinger
and the Heisenberg representations. Therefore the non-Abelian
statistics generated by braiding operations can be studied
by analyzing the time-dependent Majorana operator γj (t) =
U †(t)γjU (t) in the Heisenberg representation. Here U (t) is the
unitary time-evolution operator.

In this section we will show that in a general supercon-
ducting system an exchange of one pair of Majorana fermions
γ1 and γ2 in the Heisenberg representation is described by
a non-Abelian braid matrix U (τ ) = eıφe±πγ1γ2/4, where τ is
a time after the exchange is complete. Such a non-Abelian
unitary transformation leaves all Majorana fermions other
than γ1,2 unchanged. The transformation U interchanges γ1

and γ2 with a relative − sign such that γ1(τ ) = γ2(0) and
γ2(τ ) = −γ1(0) or γ1(τ ) = −γ2(0) and γ2(τ ) = γ1(0). Below
we show how an exchange of Majorana fermion modes will
lead to such a relative − sign in a general setting.

A. Uniqueness and reversibility of exchange transformation

We start by describing the process of exchanging a pair
of Majorana fermions in terms of the underlying BCS
Hamiltonian in the Heisenberg representation. Consider first
a Hamiltonian HBCS which has a pair of Majorana solutions
γ1 and γ2. Since γj are zero energy Majorana solutions they
commute with the Hamiltonian ([HBCS,γj ] = 0) and they
are self-adjoint (γ †

j = γj ). In order to exchange the pair of
Majoranas it is necessary to vary HBCS(t) adiabatically in time
in a certain time interval [0,τ ]. The Hamiltonian is taken to be
static before and after this interval. Thus, one can describe the
states before t < 0 and after t > τ by eigenstates of HBCS(0)
and HBCS(τ ). Moreover for exchange operations, we will re-
quire that the Hamiltonian at the end of the operation HBCS(τ )
be the same as that at the beginning HBCS(0) = HBCS(τ ). Since
the evolution was adiabatic, zero-energy Majorana operators
at times t < 0 evolve into zero-energy operators at time t > τ

such that [γj (t),HBCS(t)] = [γj (τ ),HBCS(0)] = 0 for t > τ . If
the time variation of the Hamiltonian is such that it physically
exchanges the positions of the localized Majorana solutions in
the time interval [0,τ ], then it follows that

γ2(τ ) = s1γ1(0), γ1(τ ) = s2γ2(0), (1)

where s1,2 are constants. As a result of the application of the
adiabatically time-varying Hamiltonian HBCS(0 < t < τ ), the
Majorana operators will evolve according to the Heisenberg
equation of motion γ̇j (t) = ı[HBCS(t),γj (t)]. The solution to
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this equation can be written formally in terms of a unitary
operator U (t) as

γj (t) = U †(t)γj (0)U (t), (2)

where U (t) is the time-ordered exponential U (t) =
T e−ı

∫ t

0 dτHBCS(τ ). From Eq. (2), it is clear that γj remains
Majorana for the entirety of the time evolution [i.e., γj (t)† =
γj (t)]. Considering the square of Eq. (2) we find that γj (τ )2 =
1 since γj (0)2 = 1. Applying this relation to the Majorana
transformation equation [Eq. (1)], we find that s2

j = 1, so
sj = ±1. It follows from Eq. (2) that γ1,2(τ ), and therefore
s1,2, can be uniquely determined from the relevant BCS
Hamiltonian. Using arguments analogous to the ones used
above, one can show that if the trajectories are reversed [i.e., by
replacing HBCS(t) by HBCS(τ − t)] the values of s1 and s2 are
interchanged. Thus the exchange operation can be described
in terms of a unique unitary operator U (τ ) which we will refer
to as the braid matrix such that

s1γ1(0) = U (τ )†γ2(0)U (τ ),
(3)

s2γ2(0) = U (τ )†γ1(0)U (τ ),

with the time-reversed braid matrix being described by Ũ (τ ) =
U †(τ ).

B. Non-Abelian statistics

The above argument only shows that sj = ±1. However,
as discussed above, non-Abelian statistics implies a relative −
sign between the final Majorana fermions such that s1s2 = −1.
In this paragraph, we show by contradiction that this follows
from the conservation of the fermion parity symmetry obeyed
by the BCS Hamiltonian. Suppose U = U (τ ) is the unitary
operator that exchanges a pair of Majorana fermions γ1 and
γ2. Suppose, for the sake of argument, that γ1,γ2 do not pick
up a (relative) − sign under U . U then transforms the neutral
fermion operator d† = γ1 + ıγ2 into U †d†U = ±ıd. Consider
now the action of U on the ground state of HBCS = HBCS(0) =
HBCS(τ ). Since γj commute with the Hamiltonian HBCS, so
do d†,d and the number operator d†d. Thus the ground state
can be taken to be a simultaneous eigenstate of d†d and HBCS.
Furthermore if |�〉 is a ground state so are d|�〉 and d†|�〉.
From here it is straightforward to see that the ground state
has a twofold degeneracy: namely the empty state |0〉 and
|1〉 = d†|0〉. Applying d† to U |0〉, where |0〉 is the empty state,
we see that d†U |0〉 = Ud|0〉 = 0, so

U |0〉 = κ|1〉 = κd†|0〉, (4)

where κ is a proportionality constant. The time-dependent BCS
Hamiltonian HBCS(t) is symmetric under the unitary fermion
parity operator P which transforms fermions ψ†(r) as P :
ψ†(r) → −ψ†(r). Thus the initial ground state |0〉 must be
an eigenstate of P which has eigenvalues ±1 (since P 2 = 1).
This is referred to as the ground state having even or odd parity.
Since P commutes with the BCS Hamiltonian HBCS(t) at all
times, it must also commute with the unitary time evolution
U . However d† anticommutes with the fermion parity operator
P . This leads to a direct contradiction with Eq. (4), ruling out
the possibility s1s2 = 1. Therefore s1s2 = −1, establishing in
general the relative − sign for non-Abelian statistics.

Thus there are two possibilities for the result of an adiabatic
exchange,

γ1 → λγ2 and γ2 → −λγ1, (5)

where λ = ±1. This operation can be compactly represented
in the Majorana space as

U = eıφeπλγ1γ2/4, (6)

as claimed. Here the sign in the exponent is determined by the
path of the adiabatic exchange. The Abelian phase φ cannot
be determined by considering only the operator dynamics
and requires consideration of the ground-state wave function.
As discussed in the previous subsection, this braid matrix is
uniquely determined by the Hamiltonian.

III. T-JUNCTION EXCHANGE

Consider a junction of three wire segments (A, B, and C)
as pictured in Fig. 1. Initially (at time t = 0), a portion of the
upper left segment (A) is prepared in the topological regime,
resulting in two Majorana end states labeled at the points a′ and
a. The procedure to exchange these ends through the junction
takes place in three steps, with step j completed at time t = tj ,
and t3 = τ . For a clockwise exchange gates are activated (1)
to extend the topological superconducting phase into segment
C. The gates are then deactivated in segment A, resulting in
a contraction of the topological region into segment C. This
procedure is repeated (2) to move the topological region into
segment B, then (3) back into A. In this process, the two
ends of the topological region have been exchanged. As noted
above [Eq. (5)], the resulting transformation must have the
form {γa′(τ ) = λγa(0),γa(τ ) = −λγa′(0)}, where λ = ±1. We
shall demonstrate this fact for the most general form of the
junction, and show that the effect of an exchange through the
junction is the same for Majoranas with the topological and
with the nontopological phase in the region between them. In
the process, we shall also show that the unitary transformation
enacted by an exchange through the junction is independent
of the overall sign chosen in the definition of any Majorana
state.

A. General Majorana manipulations

In order to determine λ, we will examine more closely the
steps taken in a clockwise exchange. We base this analysis on
the following three assumptions about the motion of Majoranas
in the wire network:

(1) All regions of the wire beside the Majoranas have unique
ground states for both the topological and non topological
phase. That is, aside from the Majoranas at the phase
boundaries, there are no zero modes in the system.

(2) The process of altering the phase boundaries is carried
out adiabatically, so that when a topological region is extended
or contracted from location x to location y, the action of the
time evolution operator in Eq. (2) is such that the Majorana
zero-mode operator at the end of the topological region
is transported according to γy(t) = Eyxγx(0) for extension,
and γy(t) = Cyxγx(0) for contraction, where Eyx and Cyx are
functions of x and y such that E2

yx = 1 and C2
yx = 1 (see Fig. 2).

(3) The process is reversible, implying that Exy = Cyx .
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FIG. 1. (Color online) This series of figures shows the interchange
of two Majorana bound states at the ends of a (solid) topological
region through the activation and deactivation of the wire segments
surrounding the junction. Nontopological regions are indicated by
dashed lines. Arrows indicate the motion (expansion or contraction)
at each step. At the end of step 3, the system has returned to the
configuration shown at the beginning of step 1, but the endpoints
have been exchanged.

The equations within Assumption 2 should be taken as
the definitions of functions Eyx and Cyx . The Majorana at the
endpoint x at time 0 has evolved to be proportional to the
Majorana at the new endpoint y at time t . Eyx and Cyx record
the remaining sign in the case that the topological region has
been expanded or contracted, respectively.25

For consistency in expanding within the same segment, we
require that

Ezx = EzyEyx, (7)

so long as either points x and y, or points y and z are in
the same segment. Likewise, the requirement that Majorana

x y

)0()( xyxy t

0
t

x y
0
t

)0()( xyxy ct

FIG. 2. (Color online) These diagrams show the definitions of Eyx

and Cyx as the effect of expansion (top) or contraction (bottom) of a
topological region on the Majorana bound state at the interface.

fermions remain properly normalized leads to Exy = ±1 and
Cxy = ±1.

Without these assumptions, it is impossible to consistently
perform braiding operations through the junction. If additional
zero modes (beside the Majoranas being manipulated) existed
in the system, adiabatic motion (i.e., motion described by the
adiabatic theorem) would be impossible because it requires
that time scales are much longer than the inverse of the gap.
Put another way, it is not possible to map ground states to
one another unambiguously if there is an additional zero
mode in the system. This would lead to essentially random
determination of the state of the system whenever a localized
zero mode was passed by a Majorana bound state.

Assumption 1 prevents this situation from occurring. If
Assumption 2 is taken into account, the adiabatic theorem
requires that ground states of the system prior to the evolution
are mapped to ground states of the system after the evolution.

Note that Assumption 1 does not preclude the possibility
of localized fermion bound states, but requires that such states
are affected deterministically by the passage of a Majorana.
What is more, it requires that the effect of passing a Majorana
over such localized states is the same independent of whether
a topological region is being contracted or expanded.

B. Local vacuum channel

The combined state of two Majoranas at points x and y (i.e.,
the eigenstate of the operator ıγyγx , is known as their fusion
channel). If x and y are at the endpoints of a topological
(or nontopological) region, this fusion channel determines the
fermion parity of that region in the following sense:

As the region is contracted, the Majoranas at the endpoints
will begin to interact with one another, splitting the energy
degeneracy as their wave functions overlap. This interaction
takes the general form,

H = −i�(n,t)(x,ε)γx−εγx, (8)

where �(n,t) is the coupling constant for two Majoranas with a
topological (t) or nontopological (n) region between them. We
define the local vacuum channel vx for two Majoranas by

v(n,t)
x = lim

ε→0
sgn

(
�(n,t)(x,ε)

)
, (9)

where x − ε is always further from the junction than x. vx

then indicates the fusion channel at x that leaves the completely
contracted region in the ground state. If the Majoranas were not
in this state, then there will be a leftover fermionic quasiparticle
remaining when the Majoranas are eliminated. Note that the
contraction of a given segment will result in a quasiparticle
or not independent of the location at which the contraction
is performed. This is because fermion parity is conserved
during the evolution (see Sec. II B). The state with a leftover
quasiparticle always has a different parity than the ground
state, which is unique by Assumption 1. However, vx may still
be a function of x due to the gaugelike nature of the sign choice
for γx .

Consider the situation in which two Majoranas at points x−
and x are endpoints of the same small topological region and
are transported to points y− and y closer to the junction (x−
indicates a point infinitesimally further from the junction than
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x). First the right side of the region is expanded from x to y,
then the left side is contracted from x− to y−. Assumptions
1 and 2 together with fermion parity conservation imply that
if the system started in a state such that elimination of the
topological region would leave the system in an excited state
when the elimination happens at x, the same must be true if
the region is eliminated at y. Likewise, if the system began
in the ground state of the Majorana interaction Hamiltonian
(8) at x, it must end in the ground state of the corresponding
Hamiltonian at y. Therefore,

Cy−x− = vt
xv

t
yCxy, (10)

if points x and y are on the same segment, and

Cyx− = −vt
xv

t
yCxy− , (11)

if points x and y are on different segments. The minus sign
here occurs due to the fact that γy and γy− anticommute, and
y− is further from the junction than y. If x and y are endpoints
of different topological regions, then the same arguments lead
to

Cx−y− = vn
xv

n
yCyx, (12)

if x and y are on the same segment and

Cy−x = −vn
xv

n
yCx−y, (13)

if x and y are on different segments.

C. Exchange of Majorana endpoints of
a single topological region

At the first step of the exchange process, the Majoranas are
moved from segment A into segment C by first expanding the
topological region to move the Majorana that begins nearest
the junction (at position a) through it to position c′ in segment
C and then contracting the back end of the topological region
through the junction to bring the second Majorana from a′ to
c (Fig. 1). In terms of the Majorana operators, we have

γc′(t1) = Ec′aγa(0),
(14)

γc(t1) = Cca′γa′(0).

At the next step of the process, we use the same procedure to
move from segment C to segment B, leading to

γb′(t2) = Eb′cγc(t1),
(15)

γb(t2) = Cbc′γc′(t1).

Finally, the Majoranas are moved back into segment A, with

γa′(t3) = Ea′bγb(t2),
(16)

γa(t3) = Cab′γb′ (t2).

In total, we have that

γa′(τ ) = Ea′bCbc′Ec′aγa(0),
(17)

γa(τ ) = Cab′Eb′cCca′γa′(0).

Using Eq. (7), we can reduce this to

γa′(τ ) = Ea′a−Ea−bCbcEcaγa(0)

= Ca−a′vt
aχ

tγa(0),

γa(τ ) = CabEbcCca−Ca−a′γa′(0)

= −Ca−a′vt
aχ

tγa′(0), (18)

where we have defined

χt = vt
aEa−bCbcEca, (19)

and used Eq. (11) to permute the indices in the second equation.
Note that χt is defined uniquely for the junction, since

vt
aEa−bCbcEca = vt

bEb−cCcaEab = vt
cEc−aCabEbc,

which can be shown using Assumption 3 and Eq. (11).
Furthermore, due to Eq. (7) χt is independent of the locations
of points a, b, and c. It is only important to the definition of
χt that each of these three points be on a different one of the
segments connected by the junction.

D. Exchange of Majorana endpoints of
separate topological regions

Suppose now that the two Majorana bound states that we
wish to exchange begin as endpoints of different topological
regions, as shown in Fig. 3. We begin the exchange process
by contracting the topological region from segment A into
segment C, so that one of the Majorana bound states moves
from point a to point c. We then move the remaining Majorana
across the junction by expanding the other topological region
from point a′ to point b in segment B. This leads to

γc(t1) = Ccaγa(0),
(20)

γb(t2) = Eba′γa′(0).

The time ti here is the time at which step i in Fig. 3 is
completed. We are now faced with something of a dilemma: In
order to move the Majorana from segment C back into segment
A, we must first extend the topological region from point c to
the junction, and then contract it into segment A. During this
process, we bring three topological regions together at the
junction, a step that was unnecessary in the previous type of
exchange.

Due to the ambiguity in which of the three segments the
junction point lies on, we cannot use our previously established
C and E moves to carry out this process. Instead, we avoid the
ambiguity by introducing a new factor G to describe this type
of move (expand into junction and contract away; see Fig. 4).
Then

γa′(t3) = Ga′cγc(t1). (21)

The requirement of proper normalization for γa and γc still
holds, so Ga′c = ±1. Reversibility of the process leads to
Ga′c = Gca′ .

Continuing with the exchange, we contract the topological
region from segment B into segment C, then extend it back
into segment A to bring the remaining Majorana to point a.
That is,

γa(τ = t6) = EacCcbγb(t1). (22)

In total, we have

γa′(τ ) = Ga′cCcaγa(0),
(23)

γa(τ ) = EacCcbEba′γa′ (0).
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FIG. 3. (Color online) This series of figures shows the interchange
of two Majorana bound states at the ends of a (dashed) nontopological
region through the activation and deactivation of the wire segments
surrounding the junction.

By the argument of Sec. II B and given Assumption 1, the two
prefactors above must differ by a − sign. That is, it must be
that

Ga′c = −CcbEba′ . (24)

Because the points a′, b, and c are arbitrary, this equation must
hold whenever all three points are in different segments around
the junction.

As we have above, we now separate the effect of the
exchange process two factors, one describing motion along
A and one a property of the junction itself. Defining χn by

χn = vn
aEabCbcEca− , (25)
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FIG. 4. (Color online) These diagrams show the definition of Gyx

as the effect on a Majorana bound state of moving it through a junction
that already contains topological region.
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FIG. 5. (Color online) Majoranas at the endpoints of different
topological regions are transformed into Majoranas at the endpoints
of the same topological region by a three-step process. The third step
requires the use of the factor Gba− as in Eq. (21).

we have that

γa′(τ ) = Ea−a′vn
aχ

nγa,
(26)

γa(τ ) = −Ea−a′vn
aχ

nγa′ ,

where we have used Eq. (13) to permute indices where
necessary. As in the case of Majoranas connected by a
topological region, the value of χ is consistent when under
transformations that rotate the three segments (A → B → C),
and antisymmetric under the exchange of any two segments.
As with χt , χn is independent of the points chosen on the three
segments for the representation given by Eq. (25). Because of
these properties, we shall refer to χ as the chirality of the
junction, and show that χ = χn = χt .

In order to see this, it is instructive to consider another pro-
cess, in which two Majoranas connected by a nontopological
region are transformed into two Majoranas connected by a
topological region (Fig. 5). It is shown by this process, as well
as by the arguments leading to Eqs. (11) and (13) that

Gba− = −vn
av

t
bEb−cCca. (27)

When combined with Eq. (24), this gives

CbcEca− = vn
av

t
bEb−cCca. (28)

Using this with Eq. (20) and Eq. (25) shows that χn = χt . That
is, the effective junction chirality is independent of whether the
Majoranas involved in the exchange are endpoints of the same
or different topological regions.

E. Braid transformation

We can combine the two cases for Majorana braiding into
a single notation, writing the unitary time evolution operator
for the entire process as

Uχ (τ ) = e
π
4 Ma−a′vaχγa′γa , (29)
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where M is the sign (either C or E) required to move the
Majorana at a′ to the point a− close to a. va is the vacuum
channel as determined by the local Hamiltonian of the form
(8).

This operator has the advantage of invariance under the sign
ambiguity inherent in the Majorana fermion description. While
the time evolution of a Majorana fermion leads to a definite
result for γ (τ ) = U †

χ (τ )γ (0)Uχ (τ ), it is important to remember
the following caveat about the definition of the Majorana
operators themselves. If γ (t) is a zero-energy operator (in
the sense that [HBCS(t),γj (t)] = 0), then so is γ̃j (t) = νγ (t)
for ν = ±1. This is essentially a phase ambiguity in the
definition of a Majorana fermion [note that a general phase
eiθ is not allowed since γ †(t) = γ (t)]. However, in redefining
any particular Majorana operator involved in the exchange, one
must also change the sign of any vacuum channel, contraction
factor or expansion factor in which that Majorana is involved.
For example, in redefining γa → −γa , one must also change
v(t,n)

a → −v(t,n)
a , Cxa → −Cxa , and Exa → −Exa in order to

maintain consistency with the definition of other Majorana
operators. Because the definition of χn (or χt ) contains factors
involving each Majorana operator twice, χ is invariant under
this transformation. Likewise, if one changed γ ′

a → −γ ′
a , Uχ

as defined above remains invariant because Ma−a′ would also
change sign.

IV. DISCUSSION

A. Comparison of junction chiralities

It is important to note that the chirality of a given junction is
not set a priori by the general analysis considered here. Instead,
it is set by the underlying microscopic parameters and the exact
method by which Majoranas are moved through the junction.
In particular, a junction’s chirality may be altered by a local
defect that binds a fermion in only one of the two phases. Such
a defect causes the Majorana bound states to emit or absorb a
fermion whenever they pass by the defect, changing the sign
of each Majorana. If the defect is located at the junction, it will
be passed three times by the Majoranas during an exchange.

1

aa’

2

a’

b

baε    

3

a’

bacbεε~
c

4

aa’

bacbacu εε~

FIG. 6. (Color online) This series of figures shows the transport
of a Majorana fermion around a loop in a multiply connected wire
network. Each figure indicates the total phase factor acquired in the
motion of the Majorana to that point. Since Gac = −CcbEba the total
phase factor acquired by the Majorana is L = −ẼcbEbc.

Each Majorana would therefore acquire an additional minus
sign during the exchange, changing the effective chirality of
the junction.26

In any case, different junctions within a wire network do not
necessarily have the same chirality. To understand the effect
that this might have on a computational algorithm, consider
the situation in which a pair of Majorana fermions γ2 and γ3

are exchanged clockwise via first one junction with χ = χ1

then through a second junction with χ = χ2. If χ1 �= χ2, one
of these exchanges is effectively a counterclockwise, rather
than a clockwise, braid. In this case, the net effect is no braid
at all, rather than a double braid.

More explicitly, we shall examine the effect of this
manipulation when γ2 forms a qubit with γ1, and γ3 forms
a qubit with γ4. Then the fusion channel of γ1 and γ2 evolves
as

U †
χ1

U †
χ2

iγ1γ2Uχ1Uχ2 = −χ1χ2iγ1γ2. (30)

That is, the γ1, γ2 qubit flips due to this double exchange only
if the chiralities of the two junctions being used are the same.
Likewise, the γ3, γ4 qubit also flips only if χ1 = χ2. Along with
a method of measuring the qubit states (such as the fractional
Josephson effect as proposed in Ref. 1), this double-exchange
test may be used to determine the relative chirality of different
junctions in a wire network.

B. Multiply connected networks

It is also worth noting that while the result of a braiding of
two Majoranas is uniquely determined by the properties of the
underlying wire network, the braid result may be dependent on
the path taken through the wire system. Consider, for instance,
the possibility that segments B and C in the T-junction are
connected via a loop of wire. It would then be possible to
interchange the Majoranas at positions a and a′ in Fig. 1
clockwise by taking them from segment A to segment B
then transporting them around the loop to segment C, and
finally back through the junction into A. The result of this
transportation is

γa′(τ ) = Ea′cẼcb′Eb′aγa(0) = Ca−a′vt
aχLγa(0),

(31)
γa(τ ) = Cac′ C̃c′bCba′γa′(0) = −Ca−a′vt

aχLγa(0),

where L = −ẼcbEbc = −C̃cbCbc, and where the Ẽcb′ indicates
expansion around the loop from b to c, rather than through
the junction. That ẼcbEbc = C̃cbCbc may be shown using
Assumption 2, Eq. (7), and Eq. (11). The result here differs
from Eq. (18) by the “loop factor”L. This factor is independent
of the points b and c used in the definition, as well as being
even under the exchange of segments B and C. L = −1 may
be thought of as indicating the existence of a flux (real or
effective) through the loop in the network.

Consider Majorana fermions at points a′ and a near a loop
in the wire network as pictured in Fig. 6. Transporting the
Majorana around the loop and back to its original position
yields a transformation,

γa(τ ) = Lγa(0). (32)

Since γa′ is unaffected by this process, if L = −1 the fermion
parity operator in the (a′,a) (proportional to ıγa′γa) changes
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sign. This indicates that if there were an odd number of
fermions in the (a′,a) region before the process began, then
there will be an even number afterward and vice versa.
This may appear to contradict the conclusions of Sec. II A;
however, the conclusion that the fermion parity is conserved
in the motion of Majorana fermions was dependent upon the
assumption that HBCS(τ ) = HBCS(0), which is not the case
here. In fact, the loop has switched phase. The extra fermion
parity may therefore be found in the loop, either in a localized
bound state or in the alteration of the ground state of the loop
from even to odd parity if a real external flux is present. In
this sense, L is seen to indicate the presence or absence of an
effective flux through the loop.

C. Applicability

The results of this paper apply to any one-dimensional
wire system supporting Majorana fermions at the bound-
aries between two phases for the system, so long as the

assumptions laid out in Sec. III hold true. The details of the
underlying implementation of such a system (e.g., in semicon-
ductor/superconductor heterostructures with large spin-orbit
coupling1), will determine the values of the factors χ andL that
we have identified here for junctions and loops, respectively.
Our results establish a concrete framework for describing and
tracking the non-Abelian transformations made by moving
Majorana fermions through a quantum wire network.
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