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Doping driven small-to-large Fermi surface transition and d-wave superconductivity
in a two-dimensional Kondo lattice
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We study the two-dimensional Kondo lattice model with an additional Heisenberg exchange between localized
spins. In a first step, we use mean-field theory with two order parameters. The first order parameter is a
complex pairing amplitude between conduction electrons and localized spins that describes condensation of
Kondo (or Zhang-Rice) singlets. A nonvanishing value implies that the localized spins contribute to the Fermi
surface volume. The second-order parameter describes singlet pairing between the localized spins and competes
with the Kondo-pairing order parameter. Reduction of the carrier density in the conduction band reduces the
energy gain due to the formation of the large Fermi surface and induces a phase transition to a state with
strong singlet correlations between the localized spins and a Fermi surface that comprises only the conduction
electrons. The model thus shows a doping driven change of its Fermi surface volume. At intermediate doping
and low temperature, there is a phase where both order parameters coexist, which has a gapped large Fermi
surface and dx2−y2 superconductivity. The theory thus qualitatively reproduces the phase diagram of cuprate
superconductors. In the second part of this paper, we show how the two phases with different Fermi surface
volume emerge in a strong-coupling theory applicable in the limit of large Kondo exchange. The large Fermi
surface phase corresponds to a “vacuum” of localized Kondo singlets with uniform phase, and the quasiparticles
are spin-1/2 charge fluctuations around this fully paired state. In the small Fermi surface phase, the quasiparticles
correspond to propagating Kondo singlets or triplets whereby the phase of a given Kondo singlet corresponds to
its momentum. In this picture, a phase transition occurs for low filling of the conduction band as well.
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I. INTRODUCTION

The existence and shape of the Fermi surface and its
change with the hole concentration δ in the CuO2 planes
appears be one of the central issues in the physics of cuprate
superconductors. In the overdoped compound Tl2Ba2CuO6+x ,
magnetoresistance measurements,1 angle-resolved photoe-
mission spectroscopy (ARPES),2 and quantum oscillation
experiments3 show a situation that is reminiscent of that in
heavy fermion compounds: Despite the participation of the
strongly correlated Cu3d orbitals in the states near the Fermi
energy the Fermi surface agrees well with LDA band structure
calculations, which take the Cu3d electrons as itinerant,
quantum oscillation experiments show the validity of the Fermi
liquid description with an enhanced band mass. The only
moderate mass enhancement in the cuprates thereby seems nat-
ural given the large Cu3d-O2p exchange constant W ≈ 1 eV,
which would give a very high nominal Kondo temperature.

In the underdoped compounds, the situation is more in-
volved. ARPES shows Fermi arcs4 that, however, are probably
just the visible part of hole pockets centered near (π

2 , π
2 ). This

is plausible because the sharp drop of the ARPES weight of
the quasiparticle band upon crossing the noninteracting Fermi
surface, which must be invoked to reconcile the Fermi arcs
with the hole pocket scenario, is actually well established
in insulating cuprates such as Sr2Cu2O2Cl2 (Ref. 5) and
Ca2CuO2Cl2,6 where this phenomenon has been termed the
remnant Fermi surface. Meng et al. reported the observation
of the previously unresolved dark side of the hole pockets in
underdoped Bi2(Sr2−xLax)CuO6 by ARPES.7 Their conclu-
sions subsequently were criticized8 and the issue still seems
controversial.9

Moreover, both the Drude weight in La2−xSrxCuO4

(Refs. 10 and 11) and YBa2Cu3Oy (Ref. 11) as well as
the inverse low-temperature Hall constant in La2−xSrxCuO4

(Refs. 11–14) and YBa2Cu3Oy (Ref. 11) scale with δ and
the inferred band mass is constant throughout the underdoped
regime and, in fact, even the antiferromagnetic phase.11 This
is exactly the behavior expected for hole pockets. On the
other hand, for δ � 0.15, the Hall constant in La2−xSrxCuO4

changes rapidly, which suggests a change from hole pockets
to a large Fermi surface.12 Quantum-oscillation experiments
on underdoped YBa2Cu3O6.5 (Refs. 15–18) and YBa2Cu4O8

(Refs. 19 and 20) show that the Fermi surface has a cross
section that is comparable to δ/2 rather than (1 − δ)/2 as in the
overdoped compounds. Here, it should be noted that the mere
validity of the Fermi liquid description as demonstrated by the
quantum oscillations is conclusive evidence against the notion
of Fermi arcs: The defining property of a Fermi liquid is the
one-to-one correspondence of its low-lying states to those of
a fictitious system of weakly interacting fermionic quasiparti-
cles, and the Fermi surface of these quasiparticles is a constant
energy contour of their dispersion and, therefore, necessarily
a closed curve in k space. On the other hand, the quantum
oscillations can not be viewed as evidence for hole pockets
either in that both the Hall constant21 and thermopower22

have a sign that would indicate electron pockets. Thereby,
both the Hall constant and the thermopower show a strong
temperature dependence and, in fact, a sign change as a
function of temperature. This sign change is observed only
at temperatures where superconductivity is suppressed by a
high magnetic field. At the same time, neutron scattering
experiments on YBa2Cu3O6.6 in the superconducting state
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show pronounced anisotropy in the spin excitations spectrum
below 30 meV and at low temperatures.23 This indicates an as
yet not fully understood anisotropic state, possibly to a nematic
state with inequivalent x and y directions in the CuO2 plane.
Such a nematicity has also been observed in scanning tunneling
microscopy experiments on Bi2Sr2CaCu2O8+δ (Ref. 24) and
will modify the Fermi surface in some way, which may
explain the unexpected sign. More recently, Sebastian et al.
concluded from an analysis of the second harmonic in quantum
oscillations in underdoped YBa2Cu3O6+x that the Fermi
surface consists only of a single pocket.25 Since this would
rule out the possibility of coexisting holelike and electronlike
Fermi surface sheets,26 and since it is hard to imagine that
the sole Fermi surface sheet of a hole-doped compound is
electronlike, this result would imply that the Fermi surface
actually is a hole pocket and that the sign of the Hall constant
and thermopower does not reflect the nature of the carriers
but is determined by some other mechanism. By adopting this
point of view, the picture of hole pockets centered near ( π

2 , π
2 )

with an area ∝δ would give a simple and consistent description
of ARPES, normal-state Drude weight and Hall constant,
and quantum-oscillation experiments in the underdoped state.
Combined with the results for the overdoped compounds, this
would imply that as a function of δ the cuprates undergo
a phase transition between two states with different Fermi
surface volume, whereby the Cu3d electrons contribute to the
Fermi surface volume in the overdoped compounds but drop
out of the Fermi surface volume in the underdoped regime.

Interestingly, the superconducting transition in the cuprates
itself seems to be accompanied by a Fermi surface change
as well. Namely, ARPES shows that the quasiparticle peaks
near (π,0), which are hardly distinguishable in the normal
state, become very intense and sharp in the superconducting
state.27,28 This looks as if coherent quasiparticles around (π,0)
exist only in the superconducting state and, in fact, seem to
jump into existence right at the superconducting transition.29

A possible interpretation would be that the superconducting
transition occurs between a hole-pocket-like Fermi surface,
which does not extend toward (π,0), to a gapped large Fermi
surface, which naturally has some portions near (π,0).

Transitions where the correlated electron subsystem con-
tributes to the Fermi surface volume or not are not unfamiliar
in heavy fermion compounds. An example is the metamagnetic
transition in CeRu2Si2 where the Ce 4f electrons, which
contribute to the Fermi surface in zero magnetic field, seem
to drop out of the Fermi volume as the magnetic field is
increased.30 In CeRh1−xCoxIn5, the Ce 4f electrons change
from localized for x � 0.40 to itinerant for x � 0.50 as
the lattice constant decreases due to substitution of Rh by
the smaller Co.31 Similarly, the localized Ce 4f electrons
in CeRh2Si2,32 CeRhIn5,33 and CeIn3 (Ref. 34) can be
made itinerant by pressure. It seems that, in the case of
the metamagnetic transition, the magnetic field breaks the
Kondo singlets between Ce 4f spins and conduction electrons,
whereas in the other cases, the decrease of the hybridization
strength between 4f and conduction electrons makes the
formation of Kondo singlets unfavorable.

It has been pointed out long ago by Doniach that there
may be a competition between the Kondo effect and the

Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction, which
then leads to a phase transition to a magnetically ordered phase
if certain parameters in the system are varied.35 More recently,
Senthil et al. have investigated this question in the context
of heavy-fermion compounds and discussed a transition to a
magnetically ordered state that is accompanied by a Fermi
surface transition from large to small as the strength of the
Kondo coupling is varied.36

In the cuprates, one might expect another reason for a Fermi
surface transition, namely, the depletion of the mobile carriers,
i.e., holes in O2p orbitals. It is self-evident that the gain in
energy due to formation of a common Fermi sea of mobile
O2p holes and localized Cu3d spins must tend to zero when the
density of mobile carriers vanishes. More precisely, one might
expect the band filling to play a substantial role when the width
of the occupied part of the conduction band becomes smaller
than the width of the Kondo resonance at the Fermi level. Since
the Cu3d-O2p exchange constant is large and the band filling
small, this situation may well be realized in the cuprates. As
the density of holes in O2p orbitals is reduced, one would thus
expect that at some point the localized spins drop out of the
Fermi surface so as to optimize their mutual superexchange
energy instead. Due to the near two dimensionality of the
cuprates, however, the transition is not to a magnetically
ordered state, but to a spin liquid with strong nearest-neighbor
singlet correlations instead of true antiferromagnetic order.

Cuprate superconductors are frequently described by a
single-band Hubbard model or the t-J model. Whereas a
Kondo-lattice-like Hamiltonian can be derived by lowest-order
canonical perturbation model from the so-called d-p model for
the CuO2 plane,37 these single-band models are obtained in a
subsequent step, which is valid in the limit of large Kondo
coupling between O2p and Cu3d electrons, so that the Kondo
singlet (Zhang-Rice singlet) extends over little more than only
one plaquette. Yet, these models should show a Fermi surface
transition as well if they are equivalent to the CuO2 plane.
Exact diagonalization studies of the t-J model have indeed
shown that the Fermi surface at hole dopings �15% takes the
form of hole pockets,38–40 the quasiparticles have the character
of strongly renormalized spin polarons throughout this doping
range,41–43 and the low-energy spectrum at these doping levels
can be described as a Fermi liquid of spin-1/2 quasiparticles
corresponding to the doped holes.44 A comparison of the
dynamical spin and density correlation function at low45,46

(δ < 15%) and intermediate and high (δ = 30–50%) hole
doping moreover indicates47 that, around optimal doping, a
phase transition to a state with large Fermi surface takes place
in the t-J model. A study of the electronic self-energy in the
single-band Hubbard model has indicated that such a transition
takes place there as well.48 Contrary to widespread belief, such
hole pockets can be completely consistent with the Luttinger
theorem for the single-band Hubbard model.48

To study the issue of the Fermi surface transition further,
we performed a Hartree-Fock treatment of a two-dimensional
Kondo lattice with an additional Heisenberg exchange between
localized spins. This is presented in Sec. II. Interestingly, it
turns out that such a transition not only exists but is generically
accompanied by dx2−y2 superconductivity in the mobile carrier
system, which might provide an explanation for the phase
diagram of the cuprates. In simplest terms, superconductivity
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occurs because the coherent Kondo pairing between d spins
and c electrons “transfers” the singlet pairing between the
localized d spins to the mobile c-electron system.

Since a mean-field treatment may not really be expected
to be valid in the limit of large superexchange W between
localized and conduction electrons, which is the region of
physical interest for the cuprates, we also show how the two
phases with small and large Fermi surface may be understood
in the limit of large W . The small Fermi surface phase is
discussed in Sec. III and is similar to the lightly doped
Mott insulator as discussed in Ref. 49. The phase with large
Fermi surface is discussed in Sec. IV, closely following
Refs. 50 and 51. Section V discusses the possibility of a
phase transition between small and large Fermi surface within
the strong-coupling theory, and Sec. VI gives a summary and
discussion.

II. MEAN-FIELD THEORY

We study a Kondo lattice model that consists of a single
metallic conduction band, described by the fermionic operators
c
†
i,σ , and a lattice of localized spins, described by d

†
i,σ .

The lattice sites, labeled by i, form a simple cubic lattice
and there is one localized spin and one s-like conduction
orbital in each unit cell. A similar model with two O2p-like
conduction orbitals per unit cell can be derived by canonical
transformation for the CuO2 plane.37 We augment the model
by a direct Heisenberg exchange between nearest-neighbor
localized spins. A similar model for the CuO2 plane has been
studied previously.52 To make more easy contact with the CuO2

planes, we consider the operators c
†
i,σ and d

†
i,σ to create holes

rather than electrons. We denote the density of holes in the
conduction band by δ; the total densisty of holes/unit cell thus
is 1 + δ. The Hamiltonian reads as

H = Ht + HW + HJ ,

Ht = t
∑
〈i,j〉

∑
σ

c
†
i,σ cj,σ ,

(1)

HW = W
∑

i

(
�Sd,i · �Sc,i − nc,ind,i

4

)
,

HJ = J
∑
〈i,j〉

(
�Sd,i · �Sd,j − nd,ind,j

4

)
,

where

�Sc,i = 1
2 c

†
i,α �σα,βci,β,

(2)
nc,i = c

†
i,αci,α,

with �σ the vector of the Pauli matrices and analogous
definitions hold for �Sd,i and nd,i . The model is to be considered
in the sector of the Hilbert space where all d orbitals are singly
occupied.

In a first step, we drop the d-d exchange HJ . We use the
identity

�Sd,j · �Sc,j − nd,jnc,j

4
= −1

2
S
†
j Sj ,

(3)
S
†
j = c

†
j,↑d

†
j,↓ − c

†
j,↓d

†
j,↑,

and apply the Hartee-Fock approximation

S
†
j Sj ≈ 〈S†

j 〉Sj + S
†
j 〈Sj 〉 − 〈S†

j 〉〈Sj 〉. (4)

Whereas the original Hamiltonian conserves the number of d

holes at each site, this does not hold true for the mean-field
Hamiltonian, which is clearly a severe drawback of the theory.
Although the present decoupling scheme is different from that
used by Senthil et al.36 the theories can be converted into
each other in the case J = 0 by performing a particle-hole
transformation for the d electrons.

There are two side conditions to be obeyed: one for the
total hole number Nh, and the other one for the number of
d holes Nd , which must be equal to N , the number of d

sites in the system. We enforce these by Lagrange multipliers
μ and λ, respectively, and, by introducing the vector v

†
k,σ =

(c†k,σ ,d−k,σ̄ ), we obtain the Fourier transformed Hamiltonian

H − μNh − λNd

=
∑
k,σ

v
†
k,σ Hk,σ vk,σ − 2Nεd + 2Nμ + N

	2
cd

2W
, (5)

where Nh (Nd ) are the operators for the total number of holes
(number of d-like holes), N is the number of sites, and

Hk,σ =
(

εk − μ −sign(σ )	cd

2 ,

−sign(σ )	cd

2 εd − μ

)
,

(6)
	cd = W 〈Sj 〉,
εd = λ + 2μ. (7)

The real parameter 	cd describes coherent singlet formation
between the conduction electrons and the localized spins. The
essence of the Kondo effect is the quenching of the magnetic
moments, which means a localized spin at site i forms a singlet
with a conduction electron (this would be the Zhang-Rice
singlet in the case of cuprate superconductors). The phase
of this local singlet then is, in principle, undetermined and
the above mean-field decoupling describes a state where this
phase is uniform over the whole system.

Next, being the expectation value of two creation and
annihilation operators, 	cd has some similarity to a super-
conducting order parameter. Since the pairing is not between
time-reversed states, however, the resulting ground state is not
superconducting. This will be apparent from the fact that it
has a well-defined Fermi surface. The Hamiltonian can be
diagonalized by the transformation

γ
†
k,1,σ = ukc

†
k,σ + sign(σ )vkd−k,σ̄ ,

(8)
γ
†
k,2,σ = −sign(σ )vkc

†
k,σ + ukd−k,σ̄ ,

and we obtain the two quasiparticle bands

E±,k = 1

2
(εk + εd ± Wk) − μ,

Wk =
√

(εk − εd )2 + 	2
cd ,

(9)

uk =
(

1

2
− εk − εd

2Wk

)1/2

,

vk =
(

1

2
+ εk − εd

2Wk

)1/2

.
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In the equation for vk, it is assumed that 	cd > 0. The self-
consistency equation for 	cd becomes

1 = W

N

∑
k

1

Wk

sinh
(

βWk
2

)
cosh

(
βWk

2

) + cosh
[
β

(
εk+εd

2 − μ
)] . (10)

Next, it is straightforward to show that

2N − Nd + Nc =
∑
k,σ

2∑
ν=1

γ
†
k,ν,σ γk,ν,σ , (11)

where Nd (Nc) are the operators for the number of c-like
(d-like) holes. If we demand that Nd = N , the operator Nh of
the total hole number becomes

Nh =
∑
k,σ

2∑
ν=1

γ
†
k,ν,σ γk,ν,σ (12)

so that we have a large Fermi surface, which comprises the
localized d holes. This, however, will hold only if there is
exactly one localized spin per d site. When 	cd is zero, the
c holes and d holes are decoupled and the condition Nd = N

puts a dispersionless d band right at μ, i.e., εd = μ. The Fermi
surface then is that of the decoupled c holes and accordingly
has a volume that does not comprise the d holes.

As already stated for 	cd → 0, we have εd → μ and
inserting this into (10) we obtain the equation for the critical
temperature

1 = W

2N

∑
k

1

εk − μ
tanh

(
βc(εk − μ)

2

)
. (13)

Figure 1 shows Tc as a function of δ.
This is shown both for the true two-dimensional nearest-

neighbor-hopping dispersion and for a conduction band with a
constant density of states in the interval [−4t : 4t]. It is obvious
that Tc → 0 as δ → 0. In the limit of small Tc, we can obtain
a rough approximation by replacing the integrand in (13) by
(|εk − μ| + Tc/2)−1. For the constant density of states, we find
in this way

Tc = 2t e−8t/W
√

δ(2 − δ). (14)

As expected, the energy gain due to the formation of common
large Fermi surface thus goes to zero when the density of
mobile carriers vanishes. For sufficiently low temperature, the
large Fermi surface thus is formed for any carrier concentra-
tion, but if there is a competing term in the Hamiltonian, there
may be a phase transition at finite doping.

We now introduce the d-d Heisenberg exchange ∝ J . We
decouple the d-d Heisenberg exchange in the same way as the
c-d exchange:

�Sd,i · �Sd,j − nd,ind,j

4
= −1

2
s
†
ij sij ,

s
†
ij = d

†
i,↑d

†
j,↓ − d

†
i,↓d

†
j,↑,

s
†
ij sij ≈ 〈s†ij 〉sij + s

†
ij 〈sij 〉 − 〈s†ij 〉〈sij 〉.

0

 0.01
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FIG. 1. Critical temperature for the onset of the parameter
	cd with the true two-dimensional nearest-neighbor-hopping band
structure (top) and a constant density of states in the interval
[−4t : 4t] (bottom).

Inclusion of this term doubles the dimension of the matrices to
be considered. Introducing vk = (c†k,↑,d−k,↓,c−k,↓,d

†
k,↑), the

Hamiltonian matrix becomes

H =
∑

k

v
†
k Hkvk,

Hk =

⎛
⎜⎜⎝

εk − μ −	cd

2 0
−	cd

2 εd − μ 0 −	ddγk

0 0 −εk + μ −	cd

2
0 −	ddγk −	cd

2 −εd + μ

⎞
⎟⎟⎠ ,

(15)

γk = 1

2
[cos(kx) ± cos(ky)],

	dd = zJ

2
〈sij 〉.

The two parameters 	cd and 	dd now have to be determined
self-consistently. Unlike the on-site order parameter 	cd , the
d-d pairing amplitude is a bond-related quantity and, thus, may
have different sign for bonds along x and y so that we may
have s-like pairing or d-like pairing. These two possibilities
have to be considered separately.

Before studying the full problem, we briefly consider the
case 	cd = 0. In this case, the d and c holes are again
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decoupled and we only have to treat the d-electron system.
The chemical potential μ is determined by the conduction
holes alone and we must have εd = μ. The result will not
depend on δ or W and the temperature dependence is universal
if temperature is measured in units of J . Finally, there is no
difference between γs,d (k) because cos(ky) = − cos(ky + π )
so that the d-like pairing simply corresponds to a shift of the
Brillouin zone by (π,0). The self-consistency equation reads as

	dd = 2J

N

∑
k

γ (k)
sinh[βγ (k)	dd ]

1 + cosh[βγ (k)	dd ]
(16)

and the temperature for the phase transition is T̃c = J/4. The
gap at T = 0 is found to be

	dd = 2J

N

∑
k

|γ (k)| = J · 0.81. (17)

The localized spins acquire a nonvanishing dispersion, which
is unphysical and an artifact of the mean-field approximation.
The problem is somewhat lessened in that the localized elec-
trons at least have no Fermi surface. To see this, we note first
that the dispersion consists of two bands εd ± 	ddγ (k). Since
εd = μ, the lower of these is completely filled. The momentum
distribution function for the d electrons then becomes

nd,k =
∑

σ

〈d†
k,σ dk,σ 〉 = 1 (18)

so that at least the momentum distribution of the d electrons
is consistent with localized electrons.

Next we switch to the full problem of two coupled order
parameters, i.e., 	cd 
= 0 and 	dd 
= 0. All results presented
below have been obtained by numerical solution of the self-
consistency equations on a 400 × 400 lattice with periodic
boundary conditions. Study of the variation with lattice size
shows that this implies a reasonable convergence.

As already mentioned, 	dd may be s like and dx2−y2 like.
This difference will now matter because the relative position
of the lines of zeros in the d-electron dispersion and the Fermi
surface of the c electrons makes a physical difference. To
decide which of the two symmetries is realized, we consider
the free energy per site given by

f (T ,n) = − 1

βN

∑
k

4∑
ν=1

log(1 + e−βEk,ν )

+	2
cd

2W
+ 	2

dd

4J
+ (δ − 1)μ. (19)

Numerical evaluation shows that the s-like state is never
realized. Figure 2 then shows an example of the development
of the two coupled order parameters as J is switched on.

It is quite obvious that increasing 	dd is detrimental to 	cd ,
i.e., the two order parameters are competing. Nonvanishing J

thus may introduce a phase transition at T = 0 as a function of
doping between the two phases. To discuss the phase diagram,
we note first that we can distinguish two regimes: at low doping
the critical temperature Tc for the onset of 	cd will be below
J/4, which is the critical temperature for the onset of 	dd .
This means that, as the temperature is lowered, a nonvanishing
	dd sets in first and 	cd then must develop on the background
of this nonvanishing 	dd . When Tc > J/4, on the other hand,

0

 0.1

 0.2

0  0.05  0.1

Δ

J

Δcd

Δdd

FIG. 2. Development of the two order parameters with increasing
J . The other values are W/t = 1.6, δ = 0.2, and T/t = 0.001.

we first have a nonvanishing 	cd and 	dd develops at lower
temperature. As will be seen next, the two regimes are more
different than might be expected at first sight. For the time
being, we fix W/t = 1.6 and J/t = 0.05. As can be seen in
Fig. 1, the doping where Tc = J/4 then is approximately
δ = 0.3.

Figure 3 then shows the self-consistent 	’s as a function
of temperature for δ = 0.32. Both parameters show a fairly
conventional behavior at the two phase transitions with
the characteristic

√
Tc − T behavior and the same is seen

whenever 	cd sets in at higher temperature.
The situation is quite different for δ < 0.3, as can be seen

in Fig. 4. For most dopings, there is now a small but finite
temperature range where two solutions (	cd 
= 0, 	dd 
= 0)
exist (in addition there are the solutions with 	dd = 0 and
	cd = 0). Calculation of the free energy shows that it is always
the solution with the higher 	cd that has the lower free energy,
i.e., this is the physical state.

To clarify the nature of the phase transition, we fix 	cd ,
determine all other parameters (μ,εd,	dd ) self-consistently,
and evaluate the free energy f as a function of 	cd . Points
on the resulting curve f (	cd ), which are stationary with

0

 0.1

 0.2

0  0.005  0.01  0.015  0.02

Δ

Temperature

Δdd x 5

Δcd

FIG. 3. Temperature dependence of the two order parameters for
W/t = 1.6, J/t = 0.05, and δ = 0.32.

035118-5
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δ=0.29

FIG. 4. Self-consistent solution for 	cd as a function of temper-
ature for various dopings δ. The other values are W/t = 1.6 and
J/t = 0.05.

respect to variations of 	cd , are stationary with respect to
variations of all parameters and therefore are solutions to the
self-consistency equations. The result is shown in Fig. 5. At
high temperature, f (	cd ) has only one extremum, namely, a
minimum at 	cd = 0. As the temperature is lowered, however,
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FIG. 5. Top panel: Self-consistent solution for 	cd as a function
of temperature for δ = 0.25 (see Fig. 4). Bottom panel: Scans of
the free energy as a function of 	cd whereby all other mean-field
parameters have been obtained self-consistently.
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FIG. 6. Self-consistent solutions for 	cd as a function of doping
for T = 0 and different J . The value W/t = 2 (W/t = 1.6) in the
upper (lower) panel of the figure.

one can recognize a “wiggle” in the curve, which develops
into a maximum and a minimum. These correspond to the
two solutions with nonvanishing 	cd . Next, there occurs a
level crossing between the two minima (we thus have a first
order transition), and as the temperature is lowered further, the
maximum for 	cd 
= 0 “absorbs” the minimum at 	cd = 0.
From then on, we have only the minimum with 	cd 
= 0 and
the maximum at 	cd = 0. This behavior can be seen at almost
all dopings below δ̃. It is only very close to δ̃ that there is only
one solution, but the 	cd (T ) curve is very steep as 	cd → 0.
The important finding then is that the temperature-induced
transition between small and large Fermi surface is a first-order
transition in this doping range. This is not surprising in that a
second-order transition involving competing order parameters
may become first order.53

Next we consider the dependence on hole doping δ, in
particular, the question if the Fermi surface transition now
occurs at finite doping even at zero temperature. Figure 6,
which shows the self-consistent solutions for 	cd at T = 0 for
different W/t and J/t , demonstrates that the answer depends
on the magnitude of J/t . For small J , a nonvanishing solution
exists down to δ = 0. In fact, there are two such solutions, but
computation of the free energy shows that only the solution
with the larger 	cd is a minimum and moreover has a lower free
energy than the solution with 	cd = 0. Accordingly, there is no
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FIG. 7. Top panel: Mean-field phase diagram for the parameter
values W/t = 2 and J/t = 0.325. Bottom panel: Difference in
entropy per site between the phases 3 and 4.

phase transition down to δ = 0 for small J/t . If J increases,
however, there is now an extended range of small δ where
no solution with 	cd 
= 0 exists. As can be seen in Fig. 6,
this change occurs in that the maximum and minimum of
f (	cd ) “merge” for some δ. The hourglass shape formed by the
two 	cd (δ) curves immediately below the critical J/t can be
clearly seen in the upper part of the figure. It has been verified,
however, that, for large values of J/t where the transition has
occurred, there is no more solution for low δ. This means that,
for larger J/t , a phase transition does occur and there is a
considerable range of δ where the mean-field theory predicts
a spin liquid (i.e., 	dd 
= 0) with a small Fermi surface.

We proceed to a discussion of the phase diagram whereby
we consider the more interesting case of larger J/t . An
example is shown in Fig. 7, and the band structures for the
various phases are shown in Figs. 8 and 9.

To begin with, we can distinguish four phases. At high
temperature (phase 1), both self-consistent parameters are
zero, which implies that the conduction holes are decoupled
from the localized spins and the localized spins themselves
are uncorrelated. At higher doping and low temperature,
there is a phase with 	cd 
= 0, 	dd = 0 (phase 2). The
band structure (see Fig. 8, top panel) shows that there is
a large Fermi surface with an enhanced band mass. This
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FIG. 8. Top panel: Band structure for phase 2 (T = 0.005, δ =
0.60). The two vertical lines at μ give the Fermi momenta, i.e., the
crossings of the quasiparticle band through μ. Bottom panel: Band
structure for phase 3 (T = 0.005, 	 = 0.25). Other parameter values
are W/t = 2 and J/t = 0.325.

phase most likely corresponds to the overdoped regime in
cuprate superconductors. For low doping and low temperature,
on the other hand, there is a phase with 	dd 
= 0, 	cd = 0
(phase 3). This has strong singlet correlations between the
localized spins and a small Fermi surface, which is centered
at (π,π ) in mean-field theory (see Fig. 8, bottom panel).
This phase likely corresponds to the “pseudogap” phase in
cuprate superconductors. Thereby, the strongest deficiency of
the mean-field theory consists in the neglect of any correlation
between the localized spins and the conduction holes. One
may expect that coupling of the conduction hole pocket
around (π,π ) to the antiferromagnetic spin fluctuations of the
localized spins will create hole pockets centered near ( π

2 , π
2 ). In

any way, however, the Fermi surface does not comprise the d

electrons in this phase. Finally, at intermediate doping and low
temperature, there is a domelike region in the phase diagram in
which both self-consistent parameters are different from zero
(phase 4). Inspection of the band structure in Fig. 9 shows that
phase 4 does not have a Fermi surface, but rather a gap with a
node along the (1,1) direction, i.e., the band structure expected
for a superconductor with dx2−y2 order parameter. The Fermi
momentum along the (1,1) direction coincides with that of the
large Fermi surface, however, so that we have a gapped large
Fermi surface in this phase. Across the phase transition on the
low-doping part of the dome, the Fermi surface thus changes
from a hole pocket centered on (π,π ) to a gapped large Fermi
surface, whereas the transition on the high-doping side of the
dome corresponds to the opening of a dx2−y2 -like gap on the
large Fermi surface. Accordingly, we consider the question
as to whether phase 4 is superconducting. To that end, we
consider the c-like pairing amplitude

	cc = 1

N

∑
k

γ (k)〈c†k↑c
†
−k↓ + c−k↓ck↑〉. (20)
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R. EDER AND P. WRÓBEL PHYSICAL REVIEW B 84, 035118 (2011)

 -4.0

 -2.0

  0.0

  2.0

  4.0

E
k 

- 
μ

 -0.2

 -0.1

  0.0

  0.1

  0.2

E
k 

- 
μ

(0,0) (π,π) (π,0) (0,0)

FIG. 9. Band structure for phase 4 (T = 0.005, δ = 0.45). Entire
bandwidth (top panel) and closeup of the region near μ (bottom
panel). Other parameter values are W/t = 2 and J/t = 0.325.

Figure 10 shows that this is indeed different from zero within
the phase 4. Interestingly, the Hamiltonian does not contain any
attractive interaction between the conduction holes. Rather, the
singlet pairing between the localized spins as described by the
parameter 	dd is transferred to the mobile conduction hole
system by the coherent Kondo pairing amplitude 	cd .

Figure 11 shows the gap and the c-like spectral weight for
several momenta along the (1,0) direction and demonstrates
that the present theory qualitatively reproduces a well-known
anomaly in cuprate superconductors: Whereas the gap size
near (π,0) increases with decreasing Tc (in contrast to what
one expects from BCS theory), the spectral weight decreases to
zero.54,55 At least the behavior in Fig. 11 is easy to understand:
The gap size around (π,0) is determined by 	dd and the c-like
spectral weight by 	cd , which governs the degree of mixing
between c- and d-like bands. Lower Tc implies a lower value
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FIG. 10. Pairing amplitude for conduction holes 	cc as a func-
tion of temperature. Other parameter values are W/t = 2.0 and
J/t = 0.325.
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of 	cd at low T and, since the two parameters compete with
each other, a larger value of 	dd .

To conclude this section, we briefly summarize the results
of the the mean-field theory. The competition between Kondo
coupling and Heisenberg exchange between localized spins
leads to a doping driven phase transition between states with
different Fermi surface volume. The phase for high doping is
characterized by a complex order parameter that describes
coherent singlet pairing between localized and conduction
holes and leads to a Fermi surface volume that includes the
localized spins. The low-doping phase is characterized by an
order parameter that describes singlet correlations between the
localized spins, and there is no coupling between conduction
holes and localized spins. The Fermi surface, thus, is a hole
pocket with a volume that does not include the localized
spins. Interestingly, there is an intermediate phase where both
order parameters coexist. This phase has a gapped large Fermi
surface and shows superconducting correlations between the
conduction holes. These may be interpreted as the singlet
correlations between the localized spins being transferred
to the conduction electrons by the coherent Kondo singlet
formation. This implies that the superconducting transition has
a very different character on the underdoped and overdoped
side of the superconducting dome. Whereas on the overdoped
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side the transition looks fairly conventional, with a gap opening
in the large Fermi surface, on the underdoped side, the
transition corresponds to the sudden emergence of a gapped
large Fermi surface from the high-temperature phase with
a hole pocket. A somewhat discomforting feature of the
transition in the underdoped range is the fact that it is first order.
Lastly, we mention that the criticial temperatures and dopings
in this study are very different from the cuprates, but this can
be hardly a surprise because we are studying a different model
(single-band Kondo lattice rather than Kondo-Heisenberg
model) and mean-field theories can not be expected to produce
quantitatively correct transition temperatures anyway.

III. STRONG-COUPLING THEORY: SMALL
FERMI SURFACE

The mean-field theory in the preceding section may be
expected to be good for t � W,J although, even there,
relaxing the constraint on the occupation of the d orbital is
problematic. The physical regime of parameters, however, is
rather W � t � J . In fact, a considerable deficiency of the
mean-field treatment lies in the fact that, in the hole pocket
phase, the d and c holes are completely decoupled from one
another, which clearly is unrealistic for large W/t . In the
following sections, we therefore give a description of the two
phases in a strong-coupling picture, which may be expected to
hold best in the limit W/t � 1. The discussion of the small
Fermi surface phase in this section thereby closely follows the
theory for the lightly doped Mott insulator given in Ref. 49.

The essence of the strong-coupling theory is the approxi-
mate diagonalization of the Hamiltonian in a suitably chosen
truncated Hilbert space. To construct this truncated Hilbert
space for the small Fermi surface state, we start from the case
δ = 0 and consider a state |�0〉 of the d-spin system, which
has exactly one electron per site, is invariant under point-group
operations, has momentum zero, and is a spin singlet. These
are the quantum numbers of a vacuum state and indeed |�0〉
will play the role of the vacuum state in our analysis. The only
property of |�0〉 that is relevant for the quasiparticle dispersion
and total energy is the static spin-correlation function

χij = 〈�0|Si · Sj |�0〉. (21)

We consider χij as a given input parameter. We assume it to
be antiferromagnetic and of short range, i.e.,

χij = C0 eiQ·(Ri−Rj )e
− |Ri−Rj |

ζ , (22)

where Q = (π,π ). A more detailed discussion is given in
Ref. 49. It will be seen below that within the framework of
the present theory, only the nearest-neighbor spin correlation
χ10 has any relevance for the results.

Next, we define the following operators, which add a
conduction hole to the system:

â
†
i,↑ = 1√

2
(ĉ†i,↑N̂i↓ − ĉ

†
i,↓S+

i ),

b̂
†
i,1,↑ = 1√

2
(ĉ†i,↑N̂i↓ + ĉ

†
i,↓S+

i ), (23)

b̂
†
i,2,↑ = ĉ

†
i,↑N̂i↑.

Here capital (small) letters are used for localized (conduc-
tion) holes ĉi,σ = ci,σ (1 − nσ̄ ) and N̂i,σ = Ni,σ (1 − Nσ̄ ). The
operators in Eq. (23) add a conduction hole to the system,
thereby changing the z component of the total spin by +1/2
and producing either a local singlet (â†

i,↑) or one of the two

components of a local triplet (b̂†i,1,↑ and b̂
†
i,2,↑). Analogous

operators that change the z component of the total spin
by − 1

2 are easily constructed. By using these operators,
we can now write down the basis states of the truncated
Hilbert space as

2(Nν+Nμ+Nλ)/2

(
Nν∏
ν=1

â
†
iν ,σν

)⎛
⎝ Nμ∏

μ=1

b̂
†
iμ,1,σμ

⎞
⎠ (

Nλ∏
λ=1

b̂
†
iλ,2,σλ

)
|�0〉.

(24)

It is thereby understood that all sites (iν,jμ,kλ) are pairwise
different from each other, which means that no two oper-
ators are allowed to act on the same site. The states (24)
have singlets and triplets at specified positions and we will
treat these as spin- 1

2 fermions with a hard-core constraint,
which is the key approximation of the theory. Fermions are
the only meaningful description for these particles because
operators of the type (23), which refer to different sites,
anticommute. Since 〈�0|âi,↑â

†
i,↑|�0〉 = 〈�0|b̂i,1,↑b̂

†
i,1,↑|�0〉 =

〈�0|b̂i,2,↑b̂
†
i,2,↑|�0〉 = 1

2 , the states (24) are approximately
normalized. The issue of the normalization of the states has
been discussed in detail in Ref. 49, where it was concluded that
this normalization will be a good approximation in the limit of
short spin-correlation length ζ , which means the case of a spin
liquid, which is the case of interest, e.g., in the underdoped
cuprates. A more detailed discussion of this issue and others
is given in the Appendix.

As already stated, we treat the singlets and triplets as
fermionic quasiparticles, i.e., the states (24) are represented
by states of Fermionic spin- 1

2 quasiparticles

⎛
⎝ N̂ν∏

ν=1

a
†
iν ,σν

⎞
⎠

⎛
⎝ N̂μ∏

μ=1

b
†
iμ,1,σμ

⎞
⎠

⎛
⎝ N̂λ∏

λ=1

b
†
iλ,2,σλ

⎞
⎠ |�0〉. (25)

Operators in the quasiparticle Hilbert space then are defined
by demanding that their matrix elements between the states
(25) are identical to those of the physical operators between
the corresponding states (24).

We illustrate this by setting up the quasiparticle Hamilto-
nian. Straightforward calculation gives the following matrix
elements in the physical Hilbert space:

〈�0|âj,↑Ht â
†
i,↑|�0〉 = −tij

(
1

8
+ χij

2

)
,

〈�0|b̂j,1,↑Ht â
†
i,↑|�0〉 = −tij

(
1

8
− χij

6

)
,

〈�0|b̂j,2,↑Ht â
†
i↑|�0〉 = −tij

(
1

4
√

2
− χij

3
√

2

)
,

〈�0|b̂j,1,↑Ht b̂
†
i,1,↑|�0〉 = −tij

(
1

8
+ χij

2

)
,
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〈�0|b̂j,2,↑Ht b̂
†
i,1,1↑|�0〉 = −tij

(
1

4
√

2
+ χij

3
√

2

)
,

〈�0|b̂j,2,↑Ht b̂
†
i,2,↑|�0〉 = −tij

(
1

4
+ χij

3

)
. (26)

They represent the decomposition of hopping into events of
annihilation and creation of singlets and triplets. The hopping
term Ht for the quasiaparticles thus takes the form

Ht =
∑
i,j

∑
σ

v†i,σ Tij vj,σ , (27)

where

v†i,σ = (a†
i,σ ,b

†
i,1,σ ,b

†
i,2,σ ) (28)

and

Tij = tij

⎛
⎜⎜⎝

1
4 + χij

1
4 − χij

3

√
2
(

1
4 − χij

3

)
1
4 − χij

3
1
4 + χij

√
2
(

1
4 + χij

3

)
√

2
(

1
4 − χij

3

) √
2
(

1
4 + χij

3

)
1
2 + 2χij

3

⎞
⎟⎟⎠ .

(29)

We thereby have to keep in mind the hard-core constraint
between the quasiparticles. In addition, it has been assumed
that nearby quasiparticles do not modify the matrix ele-
ments describing the propagation of a given quasiparticle
substantially. Again, this will be justified in the limit of short
spin-correlation length ζ . The key simplification is that, in our
restricted Hilbert space, the Kondo-coupling term HW takes
the simple form

HW = −3W

4

∑
i,σ

a
†
iσ aiσ + W

4

∑
i,σ

2∑
n=1

b
†
i,n,σ bi,n,σ . (30)

In the strong-coupling limit W/t � 1, we thus expect to
obtain something like one lower and two upper Hubbard bands
separated by an energy of order W .

It remains to represent HJ in the new basis. Straightforward
computation gives the following matrix elements in the
physical Hilbert space:

〈�0|âi,↑( Si · Sj )â†
i,↑|�0〉 = 0,

〈�0|b̂i,1,↑ (Si · Sj )â†
i,↑|�0〉 = χij

6
,

〈�0|b̂i,2,↑ (Si · Sj )â†
i,↑|�0〉 = χij

3
√

2
,

〈�0|b̂i,1,↑ (Si · Sj )b̂†j,1,↑|�0〉 = 0, (31)

〈�0|b̂i,2,↑ (Si · Sj )b̂†i,1,↑|�0〉 = χij

3
√

2
,

〈�0|b̂i,2,↑ (Si · Sj )b̂†i,2,↑|�0〉 = χij

6

so that the d-d exchange for the quasiparticles takes the form

HJ = zJχ10

∑
i

∑
σ

v†i,σKvi,σ + zNJχ10

2
, (32)

where χ10 denotes the nearest-neighbor spin-correlation func-
tion and

K =

⎛
⎜⎜⎝

−1 1
3

√
2

3

1
3 −1

√
2

3√
2

3

√
2

3 − 2
3

⎞
⎟⎟⎠ . (33)

The additional constant is the contribution from the spin
background whereby the correction due to the z broken
bonds per quasiparticle is accounted for in the first term. The
exchange term also has matrix elements of the type

〈�0|b̂i,1,↑b̂j,1,↑ (Si · Sj ) â
†
i,↑â

†
i,↑|�0〉 = 1

16
+ χij

12
. (34)

Their contribution to the total energy will be ∝δ2 and we will
neglect these.

Next we consider the hole count. The number of localized
holes always is N , the number of sites in the system, whereas
a self-evident expression for the number of conduction holes
is

Nc =
∑
k,σ

(a†
k,σ ak,σ + b

†
k,1,σ bk,1,σ + b

†
k,2,σ bk,2,σ ). (35)

This will give rise to a Fermi surface, the volume of which
corresponds to the doped holes but does not include the d-
electrons.

The resulting quasiparticle band structure is shown in
Fig. 12. For a low density of quasiparticles, it will be a
reasonable approximation to neglect the hard-core constraint
because the probability that two particles occupy the same site
and thus violate the constraint is small.

The Fermi surface then takes the form of a hole pocket
centered at Q = (π,π ). For a semiquantitative discussion, we
may use second-order perturbation theory for the dispersion
ε1,k of the lowest quasiparticle band around Q. This gives

Ek = −3W

4
+

(
1

4
+ χ10

)
εk − 3

W

(
1

4
− χ10

3

)2

ε2
k. (36)
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FIG. 12. Dispersion of the quasiparticle bands for the phase with
small Fermi surface. Parameter values are W/t = 4, J/t = 4, and
χ10 = −0.28. The dashed line is the dispersion of the lowest band as
obtained by second-order perturbation theory.
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The band minimum is at (0,0) for χ10 > − 1
4 and at (π,π )

otherwise. The third term on the right-hand side favors a χ10

that is positive, and the contribution from the spin background
favors a negative χ10.

By introducing κ = k − Q or κ = k, depending on whether
the minimum of the dispersion is at k = (π,π ) or k = (0,0),
we find

ε1,k = c0 + c1κ
2,

c0 = −3W

4
∓ 4t

(
1

4
+ χ10

)
− 48t2

W

(
1

4
− χ10

3

)2

, (37)

c1 = ±t

(
1

4
+ χ10

)
+ 24t2

3W

(
1

4
− χ10

3

)2

,

and the ground-state energy per site becomes

e0 = c0δ + c1πδ2 + 2Jχ10. (38)

This can now be used to search for a minimum of e0 as a
function of χ10. It turns out that, for most parameter values,
this expression favors a χ10 that is as negative as possible. We
thus set χ10 = −0.33, the value realized in the ground state of
the Heisenberg antiferromagnet. This is obviously the absolute
lower bound for the nearest-neighbor spin-correlation function
that can be realized by any wave function.

IV. STRONG-COUPLING THEORY: LARGE
FERMI SURFACE

The strong-coupling description of the phase with a large
Fermi surface has been given in Refs. 50 and 51 (see, also,
Ref. 56 for a different derivation) and here we sketch the
derivation only roughly. We start again by defining the vacuum
state for the theory, which now reads as

|�0〉 = 2−N/2
∏

i

(c†i,↑d
†
i,↓ − c

†
i,↓d

†
i,↑)|0〉. (39)

This is a product of local singlets and is the ground state of
the model for t/W = J/W = 0 and a hole doping of δ = 1.
Acting with the hopping term Ht onto (39) produces charge
fluctuations, i.e., states of the type

c
†
j,σ ci,σ |�0〉. (40)

In this state, both cells i and j have a total spin of 1/2, which
is carried by the unpaired d-hole spin. We now identify the
quasiparticle states of a single unit cell i as follows:

|0〉 → 1√
2

(c†i,↑d
†
i,↓ − c

†
i,↓d

†
i,↑)|0,

a
†
i,↑|0〉 → d

†
i,↑|0〉,

a
†
i,↓|0〉 → d

†
i,↓|0〉, (41)

b
†
i,↑|0〉 → c

†
i,↑c

†
i,↓d

†
i,↑|0〉,

b
†
i,↓|0〉 → c

†
i,↑c

†
i,↓d

†
i,↓|0〉.

In this representation, the state (40) becomes

− 1
2 sign(σ ) b

†
j,σ a

†
i,σ̄ |0〉. (42)

Just as (39), the state (40) is an eigenstate of HW with
eigenvalue −(N − 2) 3W

4 . To keep track of this large energy

change, we ascribe an energy of 3W/4 to each of the
quasiparticles so that the representation of HW becomes

HW = 3W

4

∑
i,σ

(a†
i,σ ai,σ + b

†
i,σ bi,σ ). (43)

The particles are created and annihilated in pairs and by
subsequent application of the hopping term they also can
propagate individually. The procedure to be followed then
is entirely analogous as above: We consider a quasiparticle
Hilbert space, the basis of which is formed by states of the
type (

Na∏
ν=1

a
†
iν ,σν

)(
Nb∏

μ=1

b
†
jμ,σμ

)
|0〉. (44)

As was the case for the small Fermi surface phase, we assume
that the quasiparticles obey a hard-core constraint, i.e., all
sites iν and jμ are pairwise different from each other. The
corresponding states in the Hilbert space of the physical Kondo
lattice are

2−(N−Na−Nb)/2 (−1)N1

(
Na∏
ν=1

ciν ,σ̄ν

)(
Nb∏

μ=1

(− c
†
iμ,σμ

))|�0〉,

(45)

where

N1 =
Na∑
ν=1

δσν,↓. (46)

Again, we construct operators for the quasiparticles by
demanding that the matrix elements of operators between the
quasiparticle states (44) are equal to those of the physical
operators between the corresponding Kondo-lattice states (45).
We thus obtain the Hamiltonian (see Ref. 51 for details)

H = 1

2

∑
k,σ

[(
−εk + 3W

2

)
a
†
k,σ ak,σ +

(
εk + 3W

2

)
b
†
k,σ bk,σ

]

−1

2

∑
k,σ

sign(σ ) εk (b†k,σ a
†
−k,σ̄ + H.c.), (47)

where εk = 2t[cos(kx) + cos(ky)] denotes the dispersion re-
lation for the conduction holes. If we assume that the
density of quasiparticles is low, which will hold true in
the limit of large W/t and close to δ = 1, it will again
be a reasonable approximation to relax the hard-core con-
straint. The Hamiltonian then can be diagonalized by the
ansatz

γk,1,σ = ukbk,σ + vksign(σ )a†
−k,σ̄ ,

(48)
γk,2,σ = −sign(σ )vkbk,σ + uka

†
−k,σ̄ ,

and, introducing 	 = 3W/2, we obtain the quasiparticle
dispersion

E±(k) = 1

2

[
εk ±

√
ε2

k + 	2
] ≈ ±3W

4
+ εk

2
± ε2

k

4	
, (49)
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where the second line holds in the limit W/t � 1. The operator
of total hole number is given by

Nh = 2N +
∑
k,σ

(b†k,σ bk,σ − a
†
k,σ ak,σ )

=
∑
k,σ

2∑
μ=1

γ
†
k,μ,σ γk,μ,σ . (50)

The first line follows from the fact that the vacuum state (39)
contributes 2N holes, and that each holelike (electronlike)
quasiparticle increases (decreases) the number of holes by one.
The second line shows that the lower of the two quasiparticle
bands is filled such that the Fermi surface has a volume that
corresponds to conduction holes and localized spins, i.e., this
state has a large Fermi surface. The apparent contribution of
the localized spins to the Fermi surface can be understood as
follows: At a conduction hole density of 1 per unit cell, the
state resulting from the above construction has a total hole
number of 2 per unit cell. At the same time, the state has
an energy gap of order 3W/2, the energy required to break
two singlets. As far as the hole number and Fermi surface
(or, rather, absence of a Fermi surface) are concerned, this
state therefore is completely equivalent to a band insulator,
provided the localized spins contribute to the total hole number.
And since the quasiparticles introduced by changing δ are
spin-1/2 fermions, the Fermi surface at lower conduction-hole
density is the same as that of a doped band insulator and
the localized spins apparently contribute to the Fermi surface
volume. This is therefore simply the consequence of the fact
that the quasiparticles are spin-1/2 fermions.

A notable feature of the above theory is that it actually
incorporates the kind of broken gauge symmetry that became
apparent already in the mean-field treatment: all single-cell
basis states of the physical system, i.e., the states on the
right-hand side of Eq. (41), are defined only up to a phase
factor. The quasiparticle Hamiltonian (47) then holds true only
if the phases of all states in a given unit cell are equal so
that no net phase enters the Hamiltonian. However, one might
choose, e.g., the phase of the states corresponding to b

†
i,↑|0〉

and a
†
i,↓|0〉 equal to unity and the phase of the singlet state

corresponding to |0〉 to be exp(iφj ). In this case, all matrix
elements in the real-space version of (47) would acquire extra
phase factors. Such a phase-disordered state might be adequate
to describe the Kondo lattice at temperatures lower than the
Kondo temperature but higher than the coherence temperature.
In the mean-field description, we had a condensate of singlets
described by the constant order parameter 	cd ; since the
constraint of localized d holes can not be taken into account
rigorously in mean-field theory, this is probably the best
approximation to an array of phase-coherent Kondo singlets.

It remains to discuss the direct d-d exchange ∝J . In the
vacuum state, the d-d exchange can promote two singlets on
neighboring sites into triplets. The matrix element for this
transition is J/2 so that second-order perturbation theory gives
the correction to the energy site

−N
z

2

3J 2

8W
. (51)

This is ∝J 2/W and thus much smaller than the direct d-d
exchange ∝J in the phase with small Fermi surface [see
Eq. (32)]. This term will be even less important because
this contribution occurs only if both cells are unoccupied by
quasiparticles.

In addition to this contribution of the vacuum, there is also
a contribution of the quasiparticles to the exchange energy
because the spin of the quasiparticles is carried by the d

electron. For example, we have

S+
i = a

†
i,↑aj,↓ + b

†
i,↑bi,↓, (52)

which again can be verified by comparing matrix elements of
the right- and left-hand sides between quasiparticle states and
physical states of the Kondo lattice.

If we relax the hard-core constraint, a straightforward
calculation then gives the contribution to the ground state
expectation value per site from the exchange between quasi-
particles of

〈HJ 〉
N

= −3J

[ (
1

N

∑
k

γkv
2
kf1,k

)2

+
(

1

N

∑
k

γku
2
kf1,k

)2

+ 2

(
1

N

∑
k

γkukvkf1,k

)2 ]
, (53)

where f1,k denotes the ground-state occupation number of
the lower quasiparticle band (we have assumed that the upper
band is completely empty) and γk = 1

2 (cos(kx) + cos(ky)). In

the limit W/t � 1, we have uk → 1, vk →
√

2εk
3W

so that we
have approximately

〈HJ 〉
N

= −3J

(
1

N

∑
k

γkf1,k

)2

. (54)

Corrections to this will be of order J/W .
Whereas the small Fermi surface theory is valid for electron

densities close to n = 1 electron/unit cell, the large Fermi
surface theory is valid for n = 2 electron/unit cell. In the next
step, we will compute the ground-state energy as a function of
the electron density.

V. PHASE TRANSITION IN STRONG COUPLING

In the preceding two sections, we have given a strong-
coupling description of the two phases with large and small
Fermi surface. Our main goal was to elucidate how these
phases can be characterized beyond simple mean-field theory.
Clearly, it would now be desirable to compare the energies
of the resulting ground states and discuss a possible phase
transition between the two. It should be noted from the very
beginning that this will necessarily involve some rather crude
approximations because the quasiparticle Hamiltonians for the
two phases a formulated in terms of fermions with a hard-core
constraint. The considerations in the following section thus
will necessarily have a more qualitative character.

We first consider the dominant term in the Hamiltonian
HW and collect only terms ∝ W . In the phase with the small
Fermi surface, the number of quasiparticles is Nδ and, since
each quasiparticle contributes − 3W

4 [see Eq. (37)], we have
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〈HW 〉 = − 3NδW
4 + 0(W 0). The vacuum for the construction

of the large Fermi surface state [Eq. (39)] contributes an
energy of −N 3W

4 . From the quasiparticle dispersion (49), we
obtain a contribution of −N (1 + δ) 3W

4 + 0(W 0) because the
total number of quasiparticles is N (1 + δ). And, finally, there
is an additional constant term of 2N 3W

4 , which comes from
inverting the two a-fermion operators in the first term on the
right-hand of Eq. (47), so that we obtain 〈HW 〉 = − 3NδW

4 .
To leading order in W , the two phases thus are degenerate,
which is very different from the mean-field treatment. We thus
consider the kinetic energy.

In discussing the kinetic energy, we encounter the problem
that the phase transition necessarily occurs for a doping range
where at least one of the two states with different Fermi
surface volume is far from its vacuum state (these correspond
to δ = 0 for the small Fermi surface state and δ = 1 for
the large Fermi surface state), so that relaxing the respective
hard-core constraint between the quasiparticles will no longer
be justified. To obtain at least qualitative results, we proceed as
follows: We expect that, for a finite density of quasiparticles,
the hard-core constraint leads to a reduction of the total kinetic
energy. For a single-band Hubbard model, we can study this
reduction by exact diagonalization of a small cluster. More
precisely, by defining the ground-state energy of a single-band
Hubbard model with Coulomb repulsion U and n electrons by
E

(n)
0 (U ), we can compute the function

α(n/N ) = E
(n)
0 (U = ∞)

E
(n)
0 (U = 0)

, (55)

where N for the time being denotes the number of sites in the
cluster. This gives the reduction of the kinetic energy due to the
hard-core constraint. By evaluating both energies in the same
4 × 4 cluster, we may expect to cancel out the shell effects,
which inevitably dominate the kinetic energy of a finite cluster.
In the numerical computation of α(n/N ), we have moreover
imposed the additional restriction to use only states with total
spin S = 0.

We have performed this procedure for different forms of the
kinetic energy, i.e., for different values of the hopping integrals
t ′ and t ′′ to (1,1)-like and (2,0)-like neighbors.

Figure 13 then shows the resulting α(δ) for different combi-
nations of t ′ and t ′′. The respective values of t ′ and t ′′ for each
combination are given in Table I. As can be seen from Fig. 13,
α(δ) is relatively independent on the precise form of the kinetic
energy, i.e., it seems to be an almost universal function of
the particle density. α(δ) can be fitted quite well by a simple
quadratic function, which depends on a single parameter

α(δ) = 1 + λδ − (1 + λ)δ2, (56)

where δ = n/N . The fit gives the value λ = −0.2.
We now assume that the same reduction factor remains

valid also for the more complicated Hamiltonians produced
by the above strong-coupling theories. It should be noted that
this can not be completely wrong because the values α(0) = 1
and α(1) = 0 are known and the function may be expected to
be slowly varying near δ = 0 and rapidly varying near δ = 1.

We therefore evaluate the kinetic energy for different
electron densities of the quasiparticles in the states with large
and small Fermi surface by computing the kinetic energy in

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

α(
δ)

δ

t1
t2
t3
t4
t5
t6
t7
t8

FIG. 13. The function α(δ) defined in Eq. (55) evaluated numer-
ically in a 4 × 4 cluster for different forms of the kinetic energy, i.e.,
for different values of the hopping integrals t , t ′, and t ′′. The values of
the hopping integrals for the individual systems are given in Table I.
The line is the function (56).

the absence of the hard-core constraint and then correcting by
the factor α(δ). For the large Fermi surface phase, δ is not the
physical density of the conduction holes, but the density of
quasiparticles

δ̃ = 1

N

∑
k,σ

(a†
k,σ ak,σ + b

†
k,σ bk,σ ). (57)

Let us stress that it is clear from the very beginning that this
procedure must lead to a level crossing for a small value
δc of the physical hole concentration: In the absence of the
correction factor α(δ), the large Fermi surface phase always
has a lower kinetic energy because the renormalization of
the hopping integrals is much weaker in this phase [compare
Eqs. (47) and (29)]. On the other hand, for δ → 0, the density of
the quasiparticles δ̃ ≈ 1 − δ for the large Fermi surface phase
approaches 1, so that the correction factor α(δ̃) approaches 0,
whereas the density of quasiparticles for the small Fermi
surface phase is δ̃ = δ and α(δ̃) is close to 1. This gives a
level crossing even if only the kinetic energy is taken into
account and we moreover expect this level crossing to occur
for small δ.

TABLE I. The values of the hopping integrals for the calculation
of the renormalization of the kinetic energy in Fig. 13. The first
column gives the number by which the dataset is labeled in Fig. 13.

Ht t t ′ t ′′

1 1.00 0.50 0.40
2 1.00 −0.50 0.40
3 1.00 0.50 −0.40
4 1.00 −0.50 −0.40
5 1.00 2.00 2.00
6 1.00 −2.00 2.00
7 1.00 2.00 −2.00
8 1.00 −2.00 −2.00
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FIG. 14. Hole concentration δc where the phase transition from
small-to-large Fermi surface occurs as a function of W/t . The small
Fermi surface is realized for δ < δc.

Figure 14, which shows δc obtained by numerical calcu-
lation as a function of W/t , confirms this. δc decreases with
increasing W/t , which can be understood as a consequence of
the decrease of the bandwidth in the small Fermi surface state
with increasing W/t [compare Eq. (37)].

Finally, the d-d exchange term HJ should be considered,
but since we obtain a phase transition already from the
kinetic energy and since the exchange energy is only a small
correction for physical parameters, we restrict ourselves to
a qualitative discussion. For the small Fermi surface phase,
we have the contribution from the exchange energy of the
localized spins amongst each other, which was 2(1 − 2δ)Jχ10.
The discussion in Sec. III suggested that χ10 is close to the
value for the Heisenberg antiferromagnet, which is a lower
bound for the nearest-neighbor spin-correlation function of
localized electrons. The contribution from exchange between
the quasiparticles [see Eq. (34)] is ∝δ2 and since the kinetic
energy favors a level crossing at small δ (at least for larger
W/t), this contribution is not important. For the large Fermi
surface phase, we first have a contribution from the virtual
pair creation of triplets [Eq. (51)]. Since this is of order J 2/W

and will be suppressed because the density of quasiparticles
is close to 1, this is not important either. Second, we have
the contributions (53) or (54) from the exchange between
the quasiparticles themselves, which is ∝ J . Since there the
impact of the hard-core constraint is hard to estimate, we can
not definitely say which phase is favored by the Heisenberg
exchange; however, this is a small correction anyway.

All in all, we thus expect a phase transition between
the states with small and large Fermi surface also in the
strong-coupling description. With the approximations outlined
above, this transition should occur for any value of J/t , which
is different from the mean-field theory where a minimum
value of J/t was required. Of course, quantitative agreement
between mean-field and strong-coupling theories may hardly
be expected.

VI. CONCLUSION

In summary, the doping-induced transition between phases
with large and small Fermi surface in the two-dimensional

Kondo lattice model augmented by a Heisenberg exchange
between the localized spins has been studied by mean-field
and strong-coupling theories. Mean-field theory produces
a phase diagram that has a rough similarity with that of
cuprate superconductors: For low doping and low temperature,
the localized spins do not contribute to the Fermi surface
volume but form a decoupled spin liquid with pronounced
singlet pairing. The spin liquid corresponds to a bond-related
order parameter 	dd with dx2−y2 symmetry, which describes
singlet pairing between localized spins on nearest neighbors.
This phase likely corresponds to the pseudogap phase in
the cuprates. In mean-field theory, the Fermi surface of the
conduction holes is a pocket around �, which is unphysical due
to the absence of any coupling to the localized spins. One might
conjecture, however, that the coupling to the antiferromagnetic
fluctuations of the spin liquid would create hole pockets near
(±π

2 , ± π
2 ) (see, e.g., Refs. 61 and 62) as possibly observed in

ARPES.4,7 At higher doping and low temperature, the localized
spins do contribute to the Fermi surface volume and thus
create a heavy fermionlike state with a large Fermi surface
and an enhanced band mass. This corresponds to the overdoped
regime in the cuprates and is associated with a complex on-site
order parameter 	cd , which describes coherent local pairing
between conduction electrons and localized spins.

At intermediate doping and low temperature, there is a
phase where both order parameters coexist. This phase appears
to be a dx2−y2 superconductor and has a large Fermi surface
with a dx2−y2 gap. Superconductivity emerges because the
singlet pairing between the localized spins is transferred to
the mobile conduction holes by the coherent Kondo pairing.
All in all, the phase diagram thus shows a certain analogy with
that of the cuprates.

In mean-field theory, the superconducting transition is very
different in the underdoped and overdoped regimes. Whereas
in the overdoped regime we have a conventional second-order
transition with a dx2−y2 -like gap opening on the large Fermi
surface, the transition on the underdoped side corresponds
to the emergence of a gapped large Fermi surface, whereas
the Fermi surface takes the form of hole pockets above the
transition. This may actually be consistent with experiment.29

Mean-field theory moreover finds the transition to be first order
on the underdoped side of the superconducting dome. This is,
on one hand, not really expected for a superconducting transi-
tion, but on the other hand, an example of a first-order transition
involving competing order parameters.53 If the transition really
were first order, an interesting possibility emerges, namely,
if the surface energy between the two degenerate phases
were negative (as is the case in type-II-superconductors),
this would imply a tendency to form inhomogeneous states
in the underdoped region.53 In fact, one peculiar feature of
underdoped cuprates is their granularity.57–59

One experimental feature that is not reproduced by the
present theory is the opening of a gap in an apparent large
Fermi surface at the pseudogap temperature as observed by
Hashimoto et al.60 In the high-temperature phase, the present
mean-field theory predicts a complete decoupling of localized
and conduction holes.

To further elucidate the nature of the states with different
Fermi surface volume and the existence of a phase transition,
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we have also performed a strong-coupling calculation. In
this theory, operators that create the eigenstates of a single
cell from a suitably chosen vacuum state are treated as
effective fermions. The advantage of this procedure is that
the Kondo coupling, which should be the largest energy
scale in the problem, is treated essentially exactly due to the
prediagonalization of a single cell. This theory then also yields
a phase transition between states with different Fermi surface
volume. As opposed to the mean-field theory, the localized and
conduction holes are approximately coupled to a singlet in both
phases, so that the expectation value of the Kondo exchange is
the same for both phases. In the phase with small Fermi surface
realized at low doping, the Kondo singlets, or Zhang-Rice
singlets in the case of cuprates, form the quasiparticles so that
the phase of a given Zhang-Rice singlet is determined by its
momentum k, and it is these momenta that form the small
Fermi surface. In the large Fermi surface phase, the Kondo
singlets have a uniform phase and the momenta that form the
Fermi surface are carried by sites with spin-1/2 and either 3 or
1 holes [whereby the density of sites with 3 holes is ∝ (W/t)2].

In both the mean-field and the strong coupling theories,
there occurs a transition between the two states with different
Fermi surface for low carrier concentration. Another compli-
cation that adds to the experimental complexity, and that has
not been addressed at all in this paper, is a nematic ordering in
the spin liquid plus hole pocket phase.
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APPENDIX

In this Appendix, we want to address various issues related
to the representation of the local singlets and triplets in terms
of spin-1/2 fermion operators. We note first that, for example,
the states â

†
i,↑|�0〉 and â

†
i,↓|�0〉 are orthogonal because their

scalar product is proportional to 〈�0|S+
i |�0〉 = 0. Deviations

from ideal fermion behavior appear in the overlap of states
with two fermions. For example, we have

4〈�0|âi,↑âj,↑â
†
j,↑â

†
i,↑|�0〉 = 1 + 4

3χij ,

4〈�0|âi,↑âj,↓â
†
j,↓â

†
i,↑|�0〉 = 1 − 4

3χij ,

4〈�0|âi,↑b̂j,1,↑b̂
†
j,1,↑â

†
i,↑|�0〉 = 1 + 4

3χij ,
(A1)

4〈�0|âi,↑b̂j,1,↓b̂
†
j,1,↓â

†
i,↑|�0〉 = 1 − 4

3χij ,

4〈�0|âi,↑b̂j,2,↑b̂
†
j,2,↑â

†
i,↑|�0〉 = 1 − 4

3χij ,

4〈�0|âi,↑b̂j,2,↓b̂
†
j,2,↓â

†
i,↑|�0〉 = 1 + 4

3χij .

The factors of 4 on the left-hand side thereby correspond
to the prefactors in Eq. (24). These relations would be
consistent with those for ideal Fermi operators if the spin-
correlation function χij = 0. If χij is short ranged, the local
singlets and triplets thus behave like fermion operators for
most distances. We expect that the same will hold true for
states with more than two fermions, provided that they are
pairwise more distant than the spin-correlation length ζ .
This will be a reasonable assumption in the limit of low
density that we are interested in. Furthermore, the neglected
overlaps (being four-particle overlaps) would create an in-
teraction between the quasiparticles rather than change their
dispersion.
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