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The Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized-gradient-approximation (MGGA) and its
revised version, the revTPSS, are implemented self-consistently within the framework of the projector-
augmented-wave (PAW) method, using a plane wave basis set. Both TPSS and revTPSS yield accurate atomization
energies for the molecules in the AE6 set, better than those of the standard Perdew-Burke-Ernzerhof (PBE)
generalized-gradient-approximation. For lattice constants and bulk moduli of 20 diverse solids, revTPSS performs
much better than PBE, and on average as well as PBEsol and Armiento-Mattsson (AM05), GGAs designed for
solids. The latter two overestimate the atomization energies for molecules to an unacceptable degree. However,
the revTPSS presents only a slight improvement over PBEsol for the prediction of cohesive energies for solids,
and some deterioration with respect to PBE. We also study the magnetic properties of Fe, for which both TPSS
and revTPSS predict the right ground-state solid phase, the ferromagnetic body-centered-cubic (bcc) structure,
with an accurate magnetic moment.
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I. INTRODUCTION

In the last decades, Kohn-Sham (KS) density functional
theory (DFT)1–3 has proven to be a very powerful tool in
condensed matter physics and quantum chemistry. The key
ingredient within KS-DFT, the exchange-correlation energy
Exc as a functional of the electron spin densities n↑(r) and
n↓(r), must be approximated. Semilocal approximations (e.g.,
Refs. 4–7) of the form

Exc[n↑,n↓] =
∫

d3rnεxc(n↑,n↓,∇n↑,∇n↓,τ↑,τ↓) (1)

require only a single integral over real space and so are
practical even for large molecules or unit cells. In Eq. (1)
n↑ and n↓ are the electron densities of spin ↑ and ↓, respec-
tively, ∇n↑,↓ the local gradients of the spin densities, τ↑,↓ =∑

k |∇ψk↑,↓|2/2 the kinetic energy densities of the occupied
KS orbitals ψkσ of spin σ , and εxc the approximate exchange-
correlation energy per electron. All equations are in atomic
units.

The semilocal approximations include three rungs of the
so-called Jacob’s ladder in DFT:8 local spin density approxi-
mation (LSDA), generalized gradient approximation (GGA),
and meta-GGA (MGGA). The lowest rung, the LSDA,1,4

uses only the densities n↑ and n↓ as ingredients, is exact
for a uniform electron gas, and predicts reasonable but too-
short lattice constants for solids, good surface energies for
simple metals (but with substantial error cancellation between
exchange and correlation), and molecular atomization energies
that are unacceptably high. Compared to the LSDA, GGAs
with standard5 or diminished9 gradient dependences include
additional semilocal information, the gradients of the spin
densities. With the advent of GGAs,5,10–17 density functional
theory has become popular not only in solid state physics,
but also in quantum chemistry. However, the accuracy of
the commonly used GGAs is still limited. For example, the

nonempirical Perdew-Burke-Ernzerhof (PBE) GGA5 predicts
reasonable but too-long lattice constants, surface energies that
are better than LSDA for exchange alone and correlation alone
but worse for their sum, and improved atomization energies
to an error level of about 10 kcal/mol. Since the commonly
used GGAs in general overcorrect the lattice constant with
respect to LSDA, recent years have seen the emergence of
“GGAs for solids” with diminished gradient dependences
[e.g., AM05 (Ref. 18) and PBEsol (Ref. 19)] which typically
predict good lattice constants and surface energies, but rather
poor atomization energies.

The MGGA is a natural way to improve accuracy further
by making use of additional semilocal information (e.g., the
Laplacian of the density ∇2nσ or the kinetic energy densities
τσ ). Usually, MGGA functionals include either the Laplacian
of the density20–22 or the kinetic energy density.6,7,23–27 Some
of them, however, include both ∇2nσ and τσ .17,28,29 There
are two reasons for the inclusion of τσ as an alternative (or
additional) inhomogeneity parameter to ∇2nσ . First, τσ arises
naturally in the Taylor expansion of the exact spherically
averaged exchange hole near the electron it surrounds.30

Second, the use of τσ provides a simple and straightforward
way to make a correlation functional exactly one-electron
self-interaction free.31 By using the kinetic energy density
τ as an extra ingredient, MGGAs can distinguish between
single-orbital-shape regions and orbitally overlapped regions.
In a single-orbital-shape region, z = τw/τ = 1, where τw =
|∇n|2/8n is the von Weizsäcker kinetic energy density, while
z = 0 for the uniform electron gas where orbitals are highly
overlapped. It has been proven strictly32 that 0 � z � 1 for
all systems. Computationally, MGGAs are not much more
expensive than LSDA or GGA.33,34 In computations for
molecules containing transition-metal atoms, the Tao-Perdew-
Staroverov-Scuseria (TPSS)6 MGGA is only 30% slower34

than PBE.
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By respecting two paradigms,6 the uniform electron gas
for condensed matter physics and the hydrogen atom for
quantum chemistry, the nonempirical TPSS MGGA predicts
lattice constants that are only a little shorter and a little
more accurate than those of PBE, good surface energies, and
very good atomization energies.6,33 Because self-consistent
implementations were not available in condensed matter codes
and perhaps due to its lattice-constant errors, TPSS has not
been so widely adopted. By restoring the second-order gradient
expansion for exchange over a wide range of densities as the
PBEsol19 GGA did, and by respecting the paradigms of both
condensed matter physics and quantum chemistry as the TPSS6

did, the newly proposed revised TPSS (revTPSS)7 unites the
advantages of PBEsol and TPSS, giving good lattice constants,
as well as good surface and atomization energies. The revTPSS
has already been implemented non-self-consistently in VASP,7

BAND,7 and GPAW,35 and self-consistently in GAUSSIAN.7

Although rather accurate MGGA total energies and energy
differences can often be found non-self-consistently using
LSDA or GGA orbitals, MGGA self-consistency is needed for
accurate and efficient MGGA forces and force-based geometry
optimizations.

We recently applied self-consistent revTPSS to the problem
of adsorption of a CO molecule on transition metal surfaces.36

We found that, unlike all tested GGAs, the revTPSS meta-GGA
provides a good simultaneous prediction of the bulk lattice
constant and surface energy of the metal, on the one hand, and
of the adsorption energy on the other.

There is a second but more empirical and computationally
more expensive way to preserve the good solid-state perfor-
mance of the PBEsol GGA while improving the description
of atoms and molecules: by hybridizing the PBEsol exchange
with the exact exchange in a global37 or range-separated38

way. Other GGA’s for solids, such as Ref. 18, could also be
hybridized. Hybrid functionals will not be discussed further
here.

This paper is organized as follows. Section II presents
the self-consistent implementation of the TPSS and revTPSS
MGGAs within the projector augmented wave (PAW) method.
Section III provides computational details. The results for the
atomization energies of the molecules in the AE6 set, the
lattice constants, bulk moduli, and cohesive energies of a test
set of 20 solids, and the magnetic moment of Fe and Ni, are
given in Sec. IV. Virial stresses as a test of self-consistency are
examined at the beginning of Sec. IV B. Finally, conclusions
are drawn in Sec. V.

II. SELF-CONSISTENT IMPLEMENTATION
OF MGGA WITHIN THE PROJECTOR

AUGMENTED-WAVE METHOD

In the Kohn-Sham (KS) auxiliary noninteracting system,
electrons move in an effective potential (where, for the sake of
simplicity, spins are suppressed in the expressions):

veff(r) = vext(r) + vH([n]; r) + vxc([n]; r). (2)

Here vext(r) is the external potential,

vH([n]; r) = δEH[n]

δn(r)
=

∫
d3r ′ n(r′)

|r − r′′| , (3)

is the Hartree potential, and

vxc([n]; r) = δExc[n]

δn(r)
, (4)

is the exchange-correlation potential. For exchange-
correlation functionals which only involve the density n,
its gradient ∇n, and its Laplacian ∇2n, an evaluation of
the exchange-correlation potential can be easily performed.2

However, the problem of deriving a potential becomes less
clear cut for the τ -dependent MGGA since the kinetic energy
density τ is not known as an explicit functional of the
electronic density. In the following, we will only focus on the
self-consistent implementation of the τ -dependent MGGAs
(e.g., TPSS6 and revTPSS7).

There are two approaches39 to deriving potentials from
the MGGA exchange-correlation energies: (i) the optimized
effective potential (OEP) method,40,41 which yields a local
and multiplicative exchange-correlation potential (the same
for all the orbitals), and (ii) the ansatz proposed by Neumann
et al.42 Because of its simplicity and because forces are readily
available, we prefer the latter route. Method (ii) consists of
making the total energy stationary with respect to orbital
variations and yields a differential operator rather than a
local, multiplicative KS potential. In this case, the expression
vMGGA

xc (r)ψn(r) is replaced by

vMGGA
xc (r)ψn(r)

= δEMGGA
xc

δn
ψn →

[
∂eMGGA

xc

∂n
− ∇ ·

(
∂eMGGA

xc

∂∇n

)]
ψn

− 1

2
∇ ·

{
∂eMGGA

xc

∂τ
∇ψn

}
, (5)

where eMGGA
xc = nεMGGA

xc is the exchange-correlation energy
density of a given MGGA. The resulting differential operator
for vMGGA

xc (r) is

vMGGA
xc (r) →

[
∂eMGGA

xc

∂n
− ∇ ·

(
∂eMGGA

xc

∂∇n

)]
− 1

2
∇ ·

{
∂eMGGA

xc

∂τ
∇

}
= vGGA

xc (r) − 1

2
∇ · {μxc(r)∇}, (6)

where

vGGA
xc (r) =

[
∂eMGGA

xc

∂n
− ∇ ·

(
∂eMGGA

xc

∂∇n

)]
, (7)

is of the usual form associated with GGAs,2 and

μxc(r) = ∂eMGGA
xc

∂τ
. (8)

is an additional contribution specific to τ -dependent MGGAs.
Clearly, to arrive at a self-consistent implementation of the
τ -dependent MGGAs, it is necessary to derive the functional
forms of ∂eMGGA

xc /∂n, ∂eMGGA
xc /∂∇n, and ∂eMGGA

xc /∂τ . (See
Appendices A and B for the TPSS and revTPSS MGGAs.)

This approach was first proposed in Ref. 42 for the
implementation of the BRx89 exchange functional.28 The
approximation of Eq. (5) results in a differential operator that
deviates from the conventional (in real space) multiplicative
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Kohn-Sham potential (although the operator is not fully nonlo-
cal). Nevertheless, the total energies obtained by this means are
expected to be close to the proper KS result for most practical
purposes. A similar generalized Kohn-Sham approach is
routinely used for hybrid density functionals, where a fraction
of the fully nonlocal Hartree-Fock potential is employed.

In the PAW method of Blöchl,43,44 the one-electron wave
functions or orbitals are expanded in plane waves that see
an ultrasoft pseudopotential, augmented by atom-centered
partial waves. The construction usually begins with a free
neutral reference atom for each element, spherical and spin-
unpolarized due to fractional occupation numbers for orbitals
in open subshells. For this reference atom, the Kohn-Sham
equation (or rather a scalar-relativistic version thereof) is
solved for a set of all-electron partial waves φi(r), each
the product of a radial function and a spherical harmonic
with angular momentum quantum numbers l, m, and en-
ergy quantum number ε. The all-electron partial waves are
generated numerically on a radial grid, for the occupied
orbital energies plus some higher energies chosen to describe
scattering states. For each all-electron (AE) partial wave φi(r),
an unnormalized pseudo (PS) partial wave φ̃i(r) is constructed
so that it coincides with φi(r) outside a radius rl

c, and is
smoothed inside as in Eq. (57) of Ref. 44. The core radius rl

c is
usually chosen to be approximately half the nearest-neighbor
distance. Frozen core orbitals and unfrozen valence orbitals

are then selected, where the latter will be allowed to respond
to changes in the configuration or environment of the atom.
Furthermore a local pseudopotential is constructed to describe
the l quantum numbers that are not accounted for in the
partial wave basis. The pseudopotential is then “unscreened” to
produce a bare electron-ion pseudopotential, which transfers
without modification from one approximation for Exc[n] to
another.45

The AE valence orbital ψn is derived from the pseudo-(PS)
orbital ψ̃n by means of a linear transformation

|ψn〉 = |ψ̃n〉 +
∑

i

(|φi〉 − |φ̃i〉)〈p̃i |ψ̃n〉. (9)

The PS orbitals ψ̃n are the variational quantities of the PAW
method and are expanded in plane waves. The index i is
a shorthand for the atomic site R, the angular momentum
numbers L = l,m, and an additional index ε referring to the
reference energy. By construction, the projector functions p̃i

are dual to the PS valence partial waves

〈p̃i |φ̃j 〉 = δij . (10)

In the PAW method, the expectation value of any semilocal
operator Â (e.g., the kinetic energy − 1

2∇2 and the electron
density operator |r〉〈r|) may be written as a plane-wave part
plus a sum of non-plane-wave one-center corrections:46

〈Â〉=
∑

n

fn〈ψ̃n|Â|ψ̃n〉+
Nc∑

n=1

〈
φ̃c

n

∣∣Â∣∣φ̃c
n

〉 +∑
R

⎛⎝ ∑
i,j∈R

ρij 〈φj |Â|φi〉+
Nc,R∑
n∈R

〈
φc

n

∣∣Â∣∣φc
n

〉⎞⎠−
∑
R

⎛⎝ ∑
i,j∈R

ρij 〈φ̃j |Â|φ̃i〉+
Nc,R∑
n∈R

〈
φ̃c

n

∣∣Â∣∣φ̃c
n

〉⎞⎠,

(11)

where ρij is a one-center density matrix, calculated from the
pseudoorbitals as:

ρij =
∑

n

fn〈ψ̃n|p̃i〉〈p̃j |ψ̃n〉. (12)

In Eq. (11), the fn are the occupations of the valence states,
and we have introduced the frozen core approximation in terms
of Nc pseudocore states φ̃c

n, and the corresponding AE core
states φc

n. The PS core states φ̃c
n, together with the PS valence

states φ̃, are determined by Eq. (57) of Ref. 44. Here, only
those parts that are specific to the TPSS and revTPPS MGGA
approximation to the exchange-correlation energy and the
Hamiltonian (the parts that involve the kinetic energy density)
will be discussed.

Since the kinetic energy density is a semilocal quantity, it
may be decomposed into three parts [analogously to the charge
density in Eq. (18) of Ref. 44]

τ + τc = (τ̃ + τ̃c) + (
τ 1 + τ 1

c

) − (
τ̃ 1 + τ̃ 1

c

)
, (13)

where τ̃ = ∑
n fn

1
2 |∇ψ̃n|2 and τ̃c = ∑Nc

n=1
1
2 |∇φ̃c

n|2 are the
kinetic energy density of the valence PS orbitals and the
pseudocore kinetic energy density [first line of Eq. (11)],
respectively. The quantities τ 1, τ 1

c , and τ̃ 1, τ̃ 1
c are the cor-

responding AE and PS one-center contributions [second and

third lines of Eq. (11), respectively]. τ̃ and τ̃c are expanded in
a plane-wave basis set. All other contributions are represented
on atom-centered logarithmic radial grids. The pseudocore
kinetic energy densities τ̃c and τ̃ 1

c are equivalent to the AE
kinetic energy density τ 1

c outside a matching radius rpc and
continue smoothly onto τ 1

c just inside the matching radius.
Analogously to Ref. 44, the exchange-correlation energy

can be written as

Exc = Exc[ñ + n̂ + ñc,τ̃ + τ̃c] + Exc
[
n1 + n1

c,τ
1 + τ 1

c

]
−Exc

[
ñ1 + n̂ + ñ1

c,τ̃
1 + τ̃ 1

c

]
, (14)

where n̂ is the compensation charge introduced to treat
the long-range electrostatic interactions correctly, and Exc

means that the corresponding quantity is evaluated on the
atom-centered radial logarithmic grids.44 The compensation
charge n̂ could be omitted in Eq. (14) since it has almost no
effect on the results, but we retain it to make the calculation
technically easier (via charge density mixing).

The expression for the Hamilton operator is similar to
Eq. (47) of Ref. 44:

H̃ = −1

2
∇2 + ṽeff + μ̃eff +

∑
(i,j )

|p̃i〉
(
D̂ij + D1

ij − D̃1
ij

)〈p̃j |,

(15)
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where

D1
ij = 〈φi | − 1

2∇2 + v1
eff + μ1

eff|φj 〉
= 〈φi | − 1

2∇2 + v1
eff|φj 〉 + 1

2 〈∇φi |μ1
xc|∇φj 〉, (16)

and

D̃1
ij = 〈φi | − 1

2∇2 + ṽ1
eff|φj 〉 + 1

2 〈∇φi |μ̃1
xc|∇φj 〉. (17)

In the above equation, the effective potential veff is the sum of
the external, Hartree, and vGGA

xc potentials [see Eqs. (2)–(7)],
and the τ -dependent-MGGA specific terms are of the form

μeff = − 1
2∇ · {μxc(r)∇}, (18)

where μxc(r) is given in Eq. (8). Integration by parts has
been applied to obtain the last term in Eqs. (16) and (17).
The ṽeff , D̂ij , v1

eff , and ṽ1
eff are identical to those defined by

Eqs. (43)–(46) of Ref. 44 [except that vxc is replaced by the
vGGA

xc of Eq. (7)]. Thus, compared to the usual PAW GGA
Hamiltonian, three additional terms arise: μ̃xc[ñ + n̂ + ñc,τ̃ +
τ̃c], μ1

xc[n1 + n1
c,τ

1 + τ 1
c ], and μ̃1

xc[ñ1 + n̂ + ñ1
c,τ̃

1 + τ̃ 1
c ].

Due to the introduction of the compensation density n̂ and
the independent constructions for the partial core density ñc

and the partial core kinetic energy density τ̃c in the PAW, the
values of z could be greater than 1 in the first and third terms
of Eq. (14), violating the constraint 0 � z � 1 (Ref. 32). For a
fixed too-large spurious z, derivative discontinuity with respect
to the reduced density gradient s can be introduced into the
revTPSS enhancement factor, leading to severe convergence
problems. Fortunately, thanks to the facts that the formulas
of revTPSS and TPSS do not have singularities for z � 0
and that the effect of the abnormal z on the total energy is
canceled between the first and third terms of Eq. (14) within
the augmentation spheres (exactly, if the partial wave set is
complete), we can regularize z by

zreg = z

[1 + (z/zinf)m]1/m
, (19)

where we choose zinf = 2 and m = 12. The regularized
zreg approaches zinf asymptotically as z → ∞ and therefore
removes the possibility of the discontinuity, while its effect
on the exchange-correlation energy is insignificant since the
difference between z and zreg in the range of 0 � z � 1 is
negligible, as shown in Fig. 1.
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FIG. 1. The difference between z and zreg in the range of
0 � z � 1.

III. COMPUTATIONAL DETAILS

Most calculations presented in this work were performed
with a developmental version of the Vienna ab initio simulation
package (VASP), which includes the TPSS and revTPSS
MGGAs. The parameters of the PAW data sets used in our
calculations are summarized in Table I. These PAW files
contain information about the kinetic energy density needed
by the MGGA’s.

To avoid tedious convergence tests of our results with
respect to the kinetic energy cutoff of the plane-wave basis
set, all calculations, except for the atomization energies of the
molecules in the AE6 test set, were performed at an energy
cutoff of 800 eV. For calculations involving Li, we increased
the energy cutoff to more than 1000 eV (1000 eV for LiCl as
well as LiF and to 1200 eV for Li). The atomization energies
for the AE6 molecules were calculated at an energy cutoff of
1000 eV. We determined the equilibrium lattice constants a0

and bulk moduli B0 by calculating the total energy per unit
cell at 7–12 points in the range V0 ± 7% (where V0 is the
equilibrium unit cell volume for each exchange-correlation
functional), fitting the data to the stabilized jellium equation of
state (SJEOS).47–49 The cohesive energy, defined as the energy
per atom needed to atomize the crystal, is calculated for each
functional from the energies of the crystal at its equilibrium
volume and the spin-polarized symmetry-broken solutions
of the constituent atoms (no fractional occupancies).50 To
generate symmetry breaking, atoms and molecules were
placed in a large orthorhombic box with the dimensions
10 × 11 × 12 Å3. For the Li, Na, Mg, Ca, Sr, Ba, and Rh atoms,
the size of the simulation box was increased to 13 × 14 ×
15 Å3. For polar molecules a dipole correction was applied,
which removes the spurious interactions between repeated
dipoles.

All Brillouin zone integrations for solids were performed
on (16×16×16) �-centered symmetry reduced Monkhorst-
Pack51 k meshes using the tetrahedron method with Blöchl
correction.52 These grids are sure to yield results that are
converged with respect to the k-point sampling density. The
k-point sampling for the atoms and molecules was restricted
to the � point.

Some calculations were also performed with GAUSSIAN,53

for which a selfconsistent TPSS implementation was converted
to revTPSS in Ref. 7. All GAUSSIAN calculations were nonrela-
tivistic. For the VASP calculations, the all-electron PAW partial
waves are solutions of a scalar-relativistic wave equation.

As a test of our numerical implementation of the gradients,
we moved along search directions δψ in the orbital space,
comparing the direct energy change E[ψ + δψ] − E[ψ] to
the first derivative 〈δψ |H − εS|ψ〉 where ε = 〈ψ |H |ψ〉 and
S is the overlap matrix. Within numerical precision we found
exact agreement between the total energy changes and the first
derivatives.

IV. RESULTS AND DISCUSSIONS

A. Atomization energies of the AE6 set

The atomization energy of a molecule D0(M) is defined
as the difference between the sum of the energies of the
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TABLE I. PAW pseudopotentials used in the present work. In the third column, the atomic orbitals treated as a valence are indicated. For
some elements (Li, Mg, Ca, Cu, Sr, Rh, Ag, and Ba), the local part of the pseudopotential was generated by replacing the AE potential of the
reference atom by a soft potential [Eq. (58) of Ref. 44] within the cutoff radius rloc (a.u.), which is provided in the “local” column. Where this
radius is not shown, we show instead the lowest-energy atomic orbital that sees only the local part of the pseudopotential. The cutoff radii rl

c

(a.u.) applied for the generation of the partial waves with angular quantum number l are shown in columns 5–8, with the number Nl of valence
all-electron partial-wave radial functions specified. For Si with l = 0, there are two radial functions with different cutoff radii 1.5 and 1.9.
Ecut(eV) is the default energy cutoff of the plane-wave basis set. As described in Sec. III, we have overridden this default with higher cutoffs.

Nl × rl
c(a.u.)

Name Valence Local s p d f Ecut(eV)

Li Li−AE−GW 1s2s 1.2 3 × 1.2 3 × 1.5 2 × 1.5 433
C C−GW 2s2p 3d 2 × 1.2 2 × 1.5 414
O O−GW 2s2p 3d 2 × 1.2 2 × 1.5 414
F F−GW 2s2p 3d 2 × 1.2 2 × 1.5 418

Na Na−pv−GW 2p3s 3d 2 × 2.2 2 × 2.0 259
Mg Mg−pv−GW 2p3s 1.5 2 × 2.0 3 × 1.6 404
Al Al−d−GW 3s3p 4f 2 × 1.9 2 × 1.9 2 × 1.9 241
Si Si−d−GW 3s3p 4f 1.5 × 1.9 2 × 1.9 2 × 1.9 246
Cl Cl 3s3p 3d 2 × 1.9 2 × 1.9 262
Ca Ca−pv 3p4s 1.7 2 × 3.0 2 × 3.0 2 × 3.0 120
Cu Cu−GW 3d4s 1.5 2 × 2.2 2 × 2.2 2 × 1.9 417
Ga Ga−d−GW 3d4s4p 4f 2 × 2.0 3 × 2.3 3 × 2.0 370
Ge Ge−d−GW 3d4s4p 4f 2 × 2.3 2 × 2.3 2 × 2.2 310
As As−GW 4s4p 4f 2 × 2.1 2 × 2.1 2.1 209
Sr Sr−sv 3s3p4s 2.2 2 × 2.5 2 × 2.5 2 × 2.5 226
Rh Rh−sv−GW 4s4p4d5s 1.6 3 × 1.5 2 × 1.8 2 × 2.15 1 × 2.3 320
Pd Pd−pv 4p4d5s 4f 2 × 2.4 2 × 2.1 2 × 2.4 251
Ag Ag−f−GW 4d5s 1.4 2 × 2.5 2 × 2.6 2 × 2.4 2 × 2.6 250
Ba Ba−sv 5s5p6s 2.5 2 × 2.8 2 × 2.7 2 × 2.7 187

constituent atoms ε0(X) and the energy of the molecule ε0(M)

D0(M) =
∑
X

nXε0(X) − ε0(M), (20)

where nX is the number of constituent atoms X in the molecule
M . Following Ref. 54, all calculations were performed using
harder PAW potentials54 instead of those given in Table I, with
an energy cutoff of 1000 eV. These harder PAW’s are needed54

for accurate molecular atomization energies. The molecular

geometries were taken from Ref. 55. For the analysis of the
results, the following statistical quantities will be used: the
mean error (ME), the mean absolute error (MAE), the mean
relative error (MRE, in percent), and the mean absolute relative
error (MARE, in percent).

Table II lists the atomization energies of the AE67,55

molecules for different functionals from VASP and GAUSSIAN.
The GAUSSIAN results were calculated using the aug-cc-
pV5Z(-gh) basis set, which reduced the atomization energies

TABLE II. Static-nucleus atomization energies of the AE6 molecules (in kcal/mol) from the PBE and PBEsol GGA functionals, and the
TPSS and revTPSS MGGAs, calculated using “harder” PAW potentials (Ref. 54), instead of those given in Table I, at an energy cutoff of
1000 eV, on the standard geometries (Ref. 55), as in Ref. 7. For comparison, the GAUSSIAN results using the aug-cc-pV5Z(-gh) basis set are
also presented. The mean error (ME), mean absolute error (MAE), mean relative error (MRE), and mean absolute relative error (MARE) were
calculated with respect to the experimental results (Ref. 55), where vibrational zero-point energy (Ref. 55) and spin-orbit effects (Ref. 56) have
been removed. V: VASP; G: GAUSSIAN. (1 kcal/mol = 0.04336 eV.)

Molecule PBEV PBEG PBEsolV TPSSV TPSSG revTPSSV revTPSSG Expt.

SiH4 313.2 313.5 323.2 333.7 334.0 338.1 338.6 322.8
SiO 195.8 196.3 204.6 186.9 187.0 185.7 185.9 192.7
S2 115.4 114.9 123.9 109.8 108.6 110.3 109.0 102.8
C3H4 720.9 721.1 749.0 707.5 707.8 703.9 704.6 705.1
C2H2O2 662.6 663.1 694.8 633.4 633.8 630.1 630.6 634.0
C4H8 1167.1 1167.7 1217.4 1154.8 1155.8 1152.5 1154.1 1149.4
ME 11.3 11.6 34.3 3.2 3.4 2.3 2.7
MAE 14.6 14.7 34.3 5.3 5.3 6.3 6.2
MRE(%) 3.2 3.2 8.1 1.3 1.2 1.3 1.2
MARE(%) 4.2 4.2 8.1 2.4 2.2 2.8 2.6
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of C2H2O2 by about 2 kcal/mol for PBE, TPSS, and revTPSS,
compared to the smaller basis set 6-311 + G(3df,2p) used
for the AE6 set in Ref. 7. Except for C2H2O2, the basis set
effects on the GAUSSIAN AE6 results are insignificant. With this
larger basis set, the agreement between VASP and GAUSSIAN

is excellent, with the largest difference of 1.6 kcal/mol for
the revTPSS atomization energies of C4H8. The excellent
agreement is a strong indication that the two independent
implementations of revTPSS in GAUSSIAN and VASP are
consistent and correct. Furthermore, it also demonstrates that
the regularization of z [Eq. (19)] introduced only in VASP does
not change the relative energetics. The VASP values in Table II
show that PBEsol overestimates the atomization energies to an
unacceptable degree (with an MAE of 34.3 kcal/mol), which
is largely reduced for the PBE GGA to a reasonable value of
14.6 kcal/mol, and further reduced for the TPSS and revTPSS
Meta-GGA’s to 5.3 and 6.3 kcal/mol, respectively.

B. Lattice constants, bulk moduli, and cohesive
energies of solids

The true force on a nucleus or the true stress on a unit cell
is a derivative of the total energy with respect to a geometry
parameter, and is zeroed out by minimization of the total
energy with respect to geometry. By the variational principle,
this force is not sensitive to small deviations of the density
from full self-consistency. The Hellmann-Feynman force on
a nucleus is the electrostatic force due to the charge density
of electrons and other nuclei. The virial stress57 is similarly
computed from the orbitals at a single geometry. Pulay
corrections arising from derivatives of the basis functions
are to be included when the basis functions change with
the geometry. The Hellmann-Feynman/virial values are much
more sensitive to deviations from full self-consistency than
the true values are. For the small unit cells considered here,
it is practical to optimize the geometry by minimizing the
energy or by zeroing out the Hellmann-Feynman forces and
virial stresses. But for large unit cells the latter approach is
more practical. This is the reason why full self-consistency
is important. To test that the virial stress tensor is correctly
implemented for MGGA’s, we used it to calculate the lattice
constants for three solids (Al, C, and MgO). Table III shows
that the lattice constants obtained this way agree very closely
with those found by fitting the energy to an equation of state
(EOS), for the PBE, TPSS, and revTPSS functionals. Similarly,
the bond lengths of selected diatomic molecules, found by
zeroing out the Hellmann-Feynman forces on the nuclei, were
the same as those found by total energy minimization. These
tests confirm that the self-consistency of MGGA’s has been
implemented successfully.

In the rest of this work, we will compute lattice constants by
minimizing the total energy (fitted to an equation of state47–49)
with respect to the lattice constant. We will use self-consistent
densities, although the effect of using, say, the LSDA den-
sity instead of the self-consistent one would be small.58

Tables IV–VI give the lattice constants, bulk moduli, and
cohesive energies obtained using the LSDA, GGAs (PBE,
PBEsol, and AM05), and MGGAs (TPSS and revTPSS) for a
set of 20 cubic solids. The experimental lattice constants have
been corrected to static-lattice values by subtracting the zero-
point anharmonic expansion (ZPAE),7,38 and the experimental
bulk moduli presented in Table V have been corrected for
the zero-point phonon effects (ZPPE).38,58 We have used the
calculated full quasiharmonic phonon spectrum wherever it
was available from Ref. 38. Full phonon-spectrum estimates
for about 60 solids will be available soon.59 The experimental
cohesive energies were corrected for the zero-point vibration
energy.38,47

As usual, the LSDA functional underestimates the lattice
constants while PBE overestimates them by roughly the
same amount in terms of MAE. Among all the considered
functionals, revTPSS delivers the best lattice constants, on
average, with an MAE of 0.032 Å. This is slightly better than
the performance of PBEsol and AM05, the GGAs designed for
solids. TPSS predicts slightly too long lattice constants with
an MAE of 0.043 Å, though still better than those of PBE.

For the elements of group IA (Li and Na) and group IIA (Ca,
Sr, and Ba), revTPSS corrects the underestimations of LSDA
and PBEsol and yields lattice constants of similar quality as
PBE and TPSS. The lattice constant of Al does not seem
to be very sensitive to the choice of exchange-correlation
functionals. LSDA yields the largest absolute error (0.035 Å)
for Al, while for all other functionals the absolute error
is <0.02 Å. For the elements of group IVA with diamond
structure (C, Si, and Ge), the trend previously found for LSDA,
GGAs, and the TPSS MGGA (see Refs. 38 and 60) applies
to the revTPSS as well: The overestimation of the revTPSS
lattice constants with respect to the experiment increases with
the nuclear charge Z, from 0.005 Å for C, to 0.018 Å for
Si, and then to 0.038 Å for Ge. For the lattice constants
of the transition-metal elements, revTPSS is comparable to
PBEsol. It yields good equilibrium lattice constants for 4d and
5d elements with absolute relative errors smaller than 0.5%,
but underestimates the lattice constant for the 3d elemental
metal Cu (with an absolute relative error of 1.0%). For the
series of IA-VIIA and IIA-VIA compounds (LiF, LiCl, NaF,
NaCl, and MgO), revTPSS performs slightly better than TPSS,
but still overestimates the lattice constants, by up to 2.1%
(for NaF). As observed earlier, the AM05 functional gives
too-long lattice constants for some of these ionic solids,

TABLE III. PBE, TPSS, and revTPSS lattice constants a0 (in Å) of Al, C, and MgO obtained by fitting the energy-volume data to the
stabilized jellium equation of state (EOS) and by relaxing (REL) the unit cell size and shape to zero out the virial stresses.

EOS−PBE REL−PBE EOS−revTPSS REL−revTPSS EOS−TPSS REL−TPSS

Al 4.035 4.034 4.005 4.005 4.008 4.007
C 3.569 3.569 3.558 3.558 3.568 3.567
MgO 4.261 4.260 4.240 4.237 4.244 4.241
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TABLE IV. Static-lattice lattice constants, a0 (Å), of 20 solids. The experimental values in the last column are obtained by subtracting the
zero-point anharmonic expansion (ZPAE) from the experimental zero-temperature values. The experimental values of Ca, Sr, and Ba are from
Ref. 7, and the rest from Ref. 38.

Solids LSDA PBE PBEsol AM05 TPSS revTPSS Expt.

Li 3.362 3.431 3.426 3.450 3.448 3.440 3.453
Na 4.051 4.198 4.170 4.209 4.239 4.215 4.214
Ca 5.332 5.518 5.448 5.482 5.522 5.504 5.553
Sr 5.791 6.027 5.916 5.972 6.028 6.007 6.045
Ba 4.770 5.030 4.894 4.969 5.009 4.986 4.995
Al 3.983 4.035 4.011 4.001 4.008 4.005 4.018
Cu 3.522 3.633 3.565 3.563 3.580 3.559 3.595
Rh 3.759 3.831 3.781 3.774 3.805 3.785 3.794
Pd 3.844 3.942 3.876 3.870 3.904 3.884 3.876
Ag 4.002 4.145 4.050 4.051 4.086 4.052 4.062
C 3.533 3.569 3.552 3.548 3.568 3.558 3.553
SiC 4.332 4.378 4.355 4.352 4.366 4.357 4.346
Si 5.405 5.468 5.432 5.434 5.453 5.439 5.421
Ge 5.631 5.768 5.680 5.685 5.729 5.682 5.644
GaAs 5.615 5.752 5.665 5.672 5.718 5.680 5.640
LiF 3.913 4.070 4.007 4.039 4.050 4.029 3.972
LiCl 4.968 5.151 5.063 5.119 5.121 5.109 5.070
NaF 4.506 4.705 4.632 4.679 4.710 4.680 4.582
NaCl 5.467 5.695 5.603 5.678 5.701 5.667 5.569
MgO 4.170 4.261 4.223 4.229 4.244 4.240 4.189
ME −0.082 0.051 −0.012 0.009 0.035 0.014
MAE 0.082 0.060 0.035 0.036 0.043 0.032
MRE(%) −1.73 1.10 −0.24 0.19 0.73 0.29
MARE(%) 1.73 1.29 0.73 0.75 0.90 0.68

TABLE V. Bulk moduli, B0 (GPa), of 20 solids. The experimental values in the last column are obtained by subtracting the zero-point
phonon effects (ZPPE) from the experimental zero-temperature values. The experimental values of Ca, Sr, and Ba are from Ref. 58, and the
rest from Ref. 38.

Solids LSDA PBE PBEsol AM05 TPSS revTPSS Expt.

Li 15.1 13.8 13.7 13.2 13.3 13.4 13.9
Na 9.2 7.8 7.8 7.5 7.3 7.5 7.7
Ca 19.4 17.5 17.9 17.8 17.6 17.9 18.7
Sr 14.5 11.1 12.9 11.7 10.7 10.9 12.5
Ba 10.6 8.8 9.4 8.7 8.4 8.7 9.4
Al 83.7 77.3 81.9 86.0 85.6 85.7 82
Cu 187.4 138.0 166.0 164.0 162.4 173.8 145
Rh 315.6 256.4 295.0 296.5 281.9 296.1 272.1
Pd 226.3 169.4 205.2 203.4 195.4 209.7 198.1
Ag 138.5 90.9 118.9 114.5 110.0 120.5 110.8
C 465.8 433.2 450.2 452.0 430.3 439.5 454.7
SiC 229.5 212.8 221.9 222.1 217.2 221.5 229.1
Si 97.0 90.0 92.8 91.9 92.0 93.0 100.8
Ge 70.5 59.4 65.8 64.5 60.2 65.0 77.3
GaAs 75.1 60.5 69.9 68.3 64.8 66.8 76.7
LiF 86.7 66.9 72.2 66.4 66.2 68.9 76.3
LiCl 41.5 31.7 35.4 31.4 33.4 34.0 38.7
NaF 61.5 45.2 48.8 43.1 42.9 44.0 53.1
NaCl 31.2 23.6 26.0 22.0 22.4 24.1 27.6
MgO 172.1 149.5 157.6 154.3 155.0 155.5 169.8
ME 8.845 10.514 −0.257 −1.754 −4.867 −0.890
MAE 10.068 10.521 6.209 7.393 7.942 8.664
MRE(%) 9.30 −10.52 −1.93 −5.64 −7.65 −4.26
MARE(%) 10.77 10.61 5.69 8.94 9.65 9.04
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TABLE VI. Static-lattice cohesive energies in eV/atom of 20 solids. For Rh the decrease in the GGA’s cohesive energies by 0.03–0.04 eV
compared to previously published values38,54 is related to our putting the 4s electrons in the valence and not in the core. The experimental
values for Ca, Sr, and Ba are from Ref. 61, plus a small correction for zero-point vibration energy from Table V of Ref. 47. The rest of the
experimental data, which have also been corrected for zero-point vibration energy, are from Ref. 38.

Solids LSDA PBE PBEsol TPSS revTPSS Expt.

Li 1.810 1.605 1.677 1.631 1.637 1.658
Na 1.256 1.082 1.154 1.135 1.155 1.119
Ca 2.220 1.917 2.117 2.027 2.068 1.86
Sr 1.893 1.609 1.808 1.750 1.822 1.73
Ba 2.246 1.871 2.109 2.017 2.094 1.91
Al 4.038 3.438 3.817 3.478 3.570 3.431
Cu 4.545 3.474 4.027 3.787 4.121 3.524
Rh 7.563 5.688 6.642 5.776 6.155 5.783
Pd 5.016 3.714 4.435 3.981 4.379 3.938
Ag 3.642 2.516 3.078 2.733 3.034 2.985
C 9.011 7.714 8.275 7.246 7.312 7.545
SiC 7.457 6.401 6.876 6.189 6.255 6.478
Si 5.348 4.559 4.940 4.435 4.504 4.685
Ge 4.628 3.716 4.144 3.642 3.783 3.918
GaAs 4.095 3.148 3.555 3.120 3.259 3.337
LiF 4.945 4.322 4.474 4.223 4.228 4.457
LiCl 3.835 3.364 3.518 3.362 3.391 3.586
NaF 4.384 3.826 3.959 3.736 3.740 3.970
NaCl 3.503 3.097 3.223 3.104 3.137 3.337
MgO 5.863 4.973 5.299 4.941 4.930 5.203
ME 0.642 −0.121 0.234 −0.107 0.006
MAE 0.642 0.144 0.253 0.173 0.206
MRE(%) 16.50 −3.68 5.97 −1.99 1.22
MARE(%) 16.50 4.23 6.52 4.70 5.73

similar to TPSS and revTPSS, while PBEsol gives reasonable
estimates.58

Errors in the theoretical lattice constant with respect to the
experiment translate into comparatively large discrepancies in
the bulk moduli B0. (The calculated bulk moduli are quite sen-
sitive to the equilibrium volume.) As usual an underestimation
of the lattice constants shows a one-to-one correlation with an
overestimation of the bulk moduli. Thus LSDA overestimates
the bulk moduli while PBE underestimates them (see Table V).
revTPSS yields the MAE of 8.664 GPa, slightly larger than
7.942 GPa, the MAE of TPSS. Among all the considered
functionals, PBEsol gives the smallest MARE, 5.69%. Note,
however, that the individual bulk moduli have experimental
uncertainties up to 5 or 10%.58

Table VI shows that LSDA strongly overestimates the cohe-
sive energies. The PBE cohesive energies are underestimated
with respect to the experiment, but with a reasonable MAE,
0.144 eV. PBEsol, as expected, overestimates the cohesive
energies with a MAE of 0.253 eV (i.e., between those of LSDA
and PBE). The experimental uncertainty is up to 0.08 eV (Si)
(Ref. 58). revTPSS underestimates the cohesive energies for
all the insulators and semiconductors considered here, while
overestimating for all the metals except Li. Unfortunately,
the revTPSS and TPSS do not improve, but actually worsen
the cohesive energies compared to PBE. This is not what
one might expect considering the performance of these
MGGAs for the atomization energies of the molecules in the
AE6 set.

For a given functional, there is generally good agreement
between our PAW results and the full potential linearized
augmented plane wave (FLAPW) results of Ref. 60, as
expected54 for carefully converged calculations.

C. Magnetic moment of solids Fe and Ni

It is well known that the PBE GGA corrects a qualitatively
wrong prediction of LSDA for the solid phase of Fe. LSDA pre-
dicts for Fe that the ground state is nonmagnetic face-centered
cubic instead of the experimentally observed ferromagnetic
body-centered cubic.62,63 Table VII shows that both TPSS
and revTPSS have lower total energies at each equilibrium
lattice constant for bcc Fe than for fcc Fe, and therefore predict
the right ground state. Furthermore, the magnetic moments of
TPSS and revTPSS for bcc Fe and fcc Ni are close to the PBE
values and in good agreement with the experimental results.
However, Table VII also shows that the lattice constants from
TPSS and revTPSS are too short while the bulk moduli are too
large compared to the experimental results. .

In our Table VII, we have also included PBEsol GGA
results. We find that PBEsol correctly makes the magnetic
bcc phase of Fe more stable than the nonmagnetic fcc phase.
However, Söderlind and Gonis66 found that it incorrectly
makes the nonmagnetic hcp phase very slightly more stable
than the magnetic bcc phase, by about 0.01 eV/atom.
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TABLE VII. Lattice constant a0 (in Å), bulk modulus B0 (in GPa), and magnetic moment M0 (in μB ) for ferromagnetic bcc Fe, nonmagnetic
fcc Fe, and ferromagnetic fcc Ni. δE0 (in eV) is the difference between total energies per atom of fcc Fe and bcc Fe at each equilibrium lattice
constant. A negative δE0 indicates that the ground state is fcc.

LSDA PBE PBEsol TPSS revTPSS Expt.

Fe (bcc) a0 2.747 2.829 2.782 2.803 2.794 2.853(2.861)a

B0 250.4 178.9 216.7 200.3 204.5 168b

M0 1.97 2.18 2.11 2.19 2.20 2.20b

Fe (fcc) a0 3.359 3.423 3.376 3.410 3.393
δE0 −0.10 0.17 0.07 0.22 0.22

Ni (fcc) a0 3.428 3.520 3.463 3.481 3.465 3.508(3.516)a

B0 254.5 195.6 229.3 222.3 233.4 186c

M0 0.56 0.62 0.60 0.63 0.65 0.61a

aReference 44.
bReferences 64 and 65.
cReference 61.

V. CONCLUSION

In this work, the TPSS and revTPSS MGGAs were
implemented self-consistently within the framework of the
PAW method using a plane-wave basis set. We assessed the
performance of TPSS and revTPSS MGGAs for the prediction
of structural properties of solids (equilibrium lattice constants,
bulk moduli), and thermochemical properties of solids and
molecules (cohesive energies, atomization energies). For this
purpose, the AE6 set of molecules and a representative test set
of 20 materials comprising ionic, semiconducting, and metallic
systems were chosen.

By restoring the second-order gradient expansion for
exchange over a wide range of densities as the PBEsol19

GGA did, and by respecting the paradigms of both condensed
matter physics and quantum chemistry as the TPSS6 did,
revTPSS7 predicts lattice constants and bulk moduli for the
20 solids as good as PBEsol and atomization energies for
the molecules of the AE6 set comparable to TPSS. However,
unexpectedly, revTPSS (and TPSS) only slightly improve the
cohesive energies over PBEsol for our 20 solids on average,
and are less accurate than PBE for this property. Another
interesting observation is that revTPSS underestimates the
cohesive energies for all the insulators and semiconductors
considered here while overestimating for all the metals
except Li. The errors of revTPSS (and PBEsol) cohesive
energies and bulk moduli are especially large for the transition
metals Cu, Rh, and Pd (but not Ag), where PBE typically
works better. Both TPSS and revTPSS predict the correct
ground-state solid phase for Fe, the ferromagnetic body-
centered-cubic (bcc) structure, with an accurate magnetic
moment.

Neither our meta-GGA cohesive energies nor our conclu-
sions about them are the same as those of Ref. 7. The revTPSS
cohesive energies of Ref. 7 were computed for the metals by
the all-electron code BAND, and for the insulators by a mix of
BAND and older non-self-consistent VASP calculations. Some
of the BAND cohesive energies of Ref. 7 were not converged,
and the VASP cohesive energies of Ref. 7 were based on an older
and less-complete implementation of revTPSS. In particular,
the revTPSS cohesive energies reported in Ref. 7 were too
high for Al, SiC, Si, Ge, LiCl, NaCl, and MgO.

The exact density functional for the exchange-correlation
energy is, of course, fully nonlocal, and fully nonlocal
approximations are known to be needed in certain situations
(long-range van der Waals attraction, and sharing of electrons
over stretched bonds). But semilocal functionals are more com-
putationally efficient. The highest-level semilocal functional,
the meta-GGA, has the potential to treat correctly effects that
cannot be so treated in LSDA or GGA, and probably has
sufficient complexity to permit further refinement beyond the
revTPSS form.
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APPENDIX A: TPSS AND REVTPSS META-GGAS
FOR EXCHANGE

Although TPSS and revTPSS have been implemented
self-consistently in several codes, the required derivatives
(Appendexes A and B) have not been published until now. The
revTPSS exchange functional for a spin-unpolarized system
can be written as

ErevTPSS
x [n] =

∫
d3rerevTPSS

x =
∫

d3reLDA
x F revTPSS

x (p,z),

(A1)

where erevTPSS
x is the exchange energy density of revTPSS and

eLDA
x = −(3/4π )(3π2)1/3n4/3 is the exchange energy density
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of a uniform electron gas at density n. The two dimensionless
inhomogeneity parameters are

p = |∇n|2/[4(3π2)2/3n8/3] = s2, (A2)

the square of the reduced gradient s, and

z = τW/τ, (A3)

where

τW = |∇n|2/8n, (A4)

is the von Weizsäcker kinetic energy density and τ = ∑
σ τσ .

Here the kinetic energy density of electrons with spin
σ (σ = ↑,↓) is defined, in terms of the occupied Kohn-Sham
orbitals ψkσ (r), as

τσ (r) =
occup∑

k

1

2
|∇ψkσ (r)|2. (A5)

The revTPSS enhancement factor for exchange is

F revTPSS
x (p,z) = 1 + κ − κ/(1 + x/κ), (A6)

with

x = (s1 + s2 + s3 + s4 + s5 + s6)/s7, (A7)

where s1 = [ 10
81 + cz3

(1+z2)2 ]p, s2 = 146
2025 q̃2

b , s3 =− 73
405 q̃b√

1
2 ( 3

5z)2 + 1
2p2, s4 = 1

κ
( 10

81 )2p2, s5 = 2
√

e 10
81 ( 3

5z)2,

s6 = eμp3, and s7 = (1 + √
ep)2. Here q̃b = 9

20 (α − 1)/

[1 + bα(α − 1)]1/2 + 2
3p with α = τ−τW

τ unif = 5
3p(z−1 − 1),

where τ unif = 3
10 (3π2)2/3n5/3 is the Thomas-Fermi kinetic

energy density. In revTPSS, κ = 0.804, c = 2.35204,
e = 2.1677, b = 0.4, and μ = 0.14.

Let y stand for n,|∇n|, or τ . The derivatives of F revTPSS
x

with respect to y can be written as

∂F revTPSS
x

∂y
= (1 + x/κ)−2 ∂x

∂y
, (A8)

where

∂x

∂y
= 1

s7

(
∂s1

∂y
+ ∂s2

∂y
+ ∂s3

∂y
+ ∂s4

∂y
+ ∂s5

∂y
+ ∂s6

∂y

)
− x

s7

∂s7

∂y
,

(A9)

∂s1

∂y
= cpz2(3 − z2)

(1 + z2)3

∂z

∂y
+

[
10

81
+ cz3

(1 + z2)2

]
∂p

∂y
, (A10)

∂s2

∂y
= 292

2025
q̃b

∂q̃b

∂y
, (A11)

∂s3

∂y
= − 73

405

{√
1

2

(
3

5
z

)2

+ 1

2
p2

∂q̃b

∂y

+
q̃b

(
9
25z ∂z

∂y
+ p

∂p

∂y

)
2
√

1
2

(
3
5 z

)2 + 1
2 p2

}
, (A12)

∂s4

∂y
= 2

κ

(
10

81

)2

p
∂p

∂y
, (A13)

∂s5

∂y
= 4

√
e

10

81

(
3

5

)2

z
∂z

∂y
, (A14)

∂s6

∂y
= 3eμp2 ∂p

∂y
, (A15)

∂s7

∂y
= 2

√
e(1 + √

ep)
∂p

∂y
, (A16)

and

∂q̃b

∂y
= 3

4

1 + (α − 1)b/2

[1 + bα(α − 1)]3/2

×
[

(z−1 − 1)
∂p

∂y
− p

z2

∂z

∂y

]
+ 2

3

∂p

∂y
. (A17)

Here ∂p

∂n
= − 8

3n−1p, ∂p

∂|∇n| = 2p

|∇n| ,
∂p

∂τ
= 0, ∂z

∂n
= −z/n,

∂z
∂|∇n| = 2z

|∇n| , and ∂z
∂τ

= −z/τ .
Therefore,

∂erevTPSS
x

∂n
= vLDA

x F revTPSS
x + eLDA

x

∂F revTPSS
x

∂n
, (A18)

∂erevTPSS
x

∂∇n
= eLDA

x

∂F revTPSS
x

∂|∇n|
∇n

|∇n| , (A19)

and

∂erevTPSS
x

∂τ
= eLDA

x

∂F revTPSS
x

∂τ
, (A20)

where vLDA
x = − 1

π
(3π2n)1/3.

The exchange energy for a spin-polarized system may be
evaluated from the exchange functional for a spin-unpolarized
system using the spin-scaling relation67

Ex[n↑,n↓] = Ex[2n↑]/2 + Ex[2n↓]/2. (A21)

And the derivatives of the exchange energy density of the
spin-polarized system with respect to nσ ,|∇nσ |, and τσ can be
obtained accordingly.

Compared to revTPSS, the differences of TPSS for
exchange are in s1 with s1 = [ 10

81 + cz2

(1+z2)2 ]p and ∂s1
∂y

=
2cpz(1−z2)

(1+z2)3
∂z
∂y

+ [ 10
81 + cz2

(1+z2)2 ] ∂p

∂y
as well as in the parameters

(c = 1.59096, e = 1.537, and μ = 0.21951).

APPENDIX B: TPSS AND REVTPSS META-GGAS
FOR CORRELATION

The revTPSS correlation functional for a spin-polarized
system can be written as

ErevTPSS
c [n↑,n↓] =

∫
d3rerevTPSS

c

=
∫

d3rnεrevPKZB
c

[
1 + dεrevPKZB

c z3], (B1)

where

εrevPKZB
c = εP̃BE

c [1 + C(ζ,ξ )z2] − [1 + C(ζ,ξ )]z2εave
c , (B2)

εave
c =

∑
σ

nσ

n
ε̃σ
c , (B3)
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and

ε̃σ
c = max

[
εP̃BE
c (nσ ,0,∇nσ ,0),εP̃BE

c (n↑,n↓,∇n↑,∇n↓)
]
. (B4)

εP̃BE
c is the PBE correlation energy per electron but with the second-order gradient expansion coefficient in its expression

made rs dependent,7,68 β(rs) = 0.0066725(1 + 0.1rs)/(1 + 0.1778rs), where the Seitz radius is rs = (3/4πn)1/3. Its derivatives

with respect to nσ and |∇nσ | can be written as ∂εP̃BE
c

∂nσ
= ∂εPBE

c

∂nσ
|β=β(rs) + ∂εPBE

c

∂β
|β=β(rs)

∂β(rs )
∂rs

∂rs

∂nσ
and ∂εP̃BE

c

∂|∇nσ | = ∂εPBE
c

∂|∇nσ | |β=β(rs), where
∂β(rs )
∂rs

= −0.0778×0.0066725
(1+0.1778rs )2 and ∂rs

∂nσ
= −rs/3n. The function C(ζ,ξ ) has the expression

C(ζ,ξ ) = c1 + c2ζ
2 + c3ζ

4 + c4ζ
6

{1 + ξ 2[(1 + ζ )−4/3 + (1 − ζ )−4/3]/2}4
, (B5)

where the spin-polarization ζ = n↑−n↓
n↑+n↓

, and ξ = |∇ζ |
2(3π2n)1/3 . Here d = 2.8, c1 = 0.59, c2 = 0.9269, c3 = 0.6225, and c4 = 2.1540.

Let y stand for nσ ,|∇nσ |, or τσ . The derivatives of εrevPKZB
c with respect to y can be written as

∂εrevPKZB
c

∂y
= [1 + C(ζ,ξ )z2]

∂εP̃BE
c

∂y
− z2[1 + C(ζ,ξ )]

∂εave
c

∂y
+ z2

(
εP̃BE
c − εave

c

)∂C(ζ,ξ )

∂y

+ 2z
{
C(ζ,ξ )εP̃BE

c − [1 + C(ζ,ξ )]εave
c

} ∂z

∂y
, (B6)

where

∂C(ζ,ξ )

∂y
=

{
2c2ζ + 4c3ζ

3 + 6c4ζ
5

c1 + c2ζ 2 + c3ζ 4 + c4ζ 6
+ 8ξ 2[(1 + ζ )−7/3 − (1 − ζ )−7/3]/3

1 + ξ 2[(1 + ζ )−4/3 + (1 − ζ )−4/3]/2

}
C(ζ,ξ )

∂ζ

∂y

− 4ξ [(1 + ζ )−4/3 + (1 − ζ )−4/3]

1 + ξ 2[(1 + ζ )−4/3 + (1 − ζ )−4/3]/2
C(ζ,ξ )

∂ξ

∂y
. (B7)

For εave
c , we have

∂εave
c

∂nσ

=
∑

η

(
δησ n − nη

n2
ε̃η
c + nη

n

∂ε̃
η
c

∂nσ

)
, (B8)

∂εave
c

∂|∇nσ | =
∑

η

nη

n

∂ε̃
η
c

∂|∇nσ | . (B9)

and
∂εave

c

∂τ
= 0, (B10)

with ∂ε̃
η
c

∂y
= ∂εP̃BE

c (nη,0,∇nη,0)
∂y

δησ if εP̃BE
c (nη,0,∇nη,0) > εP̃BE

c (n↑,n↓,∇n↑,∇n↓) and ∂ε̃
η
c

∂y
= ∂εP̃BE

c (n↑,n↓,∇n↑,∇n↓)
∂y

if εP̃BE
c (nη,0,∇nη,0) <

εP̃BE
c (n↑,n↓,∇n↑,∇n↓). Here ∂ζ

∂nσ
= δσ↑−δσ↓−ζ

n
, ∂ζ

∂|∇nσ | = ∂ζ

∂τ
= 0, ∂z

∂nσ
= −z/n, ∂z

∂|∇nσ | = 1
4nτ

[|∇nσ | + ∇n↑·∇n↓
|∇nσ | ], ∂z

∂τσ
= −z/τ ,

∂ξ

∂nσ
= 1

2(3π2n)1/3 {− 7
3

|∇ζ |
n

+ 4[n↓|∇n↑|2δσ↓−∇n↑·∇n↓(n↑δσ↓+n↓δσ↑)+n↑|∇n↓|2δσ↑]
n4|∇ζ | }, ∂ξ

∂τ
= 0, ∂ξ

∂|∇nσ | = 2n2
↓|∇n↑|δσ↑+2n2

↑|∇n↓|δσ↓−2n↑n↓∇n↑·∇n↓/|∇nσ |
(3π2n)1/3n4|∇ζ | ,

and |∇ζ | = 2[n2
↓|∇n↑|2 − 2n↑n↓∇n↑ · ∇n↓ + n2

↑|∇n↓|2]1/2/n2. Therefore,

∂erevTPSS
c

∂nσ

= dnεrevPKZB
c

[
z3 ∂εrevPKZB

c

∂nσ

+ 3z2εrevPKZB
c

∂z

∂nσ

]
+

(
εrevPKZB
c + n

∂εrevPKZB
c

∂nσ

) [
1 + dεrevPKZB

c z3
]
, (B11)

∂erevTPSS
c

∂∇nσ

=
{
dnεrevPKZB

c

[
z3 ∂εrevPKZB

c

∂|∇nσ | + 3z2εrevPKZB
c

∂z

∂|∇nσ |
]

+ n
∂εrevPKZB

c

∂|∇nσ |
[
1 + dεrevPKZB

c z3
]} ∇n

|∇n| , (B12)

∂erevTPSS
c

∂τσ

= dnεrevPKZB
c

[
z3 ∂εrevPKZB

c

∂τσ

+ 3z2εrevPKZB
c

∂z

∂τσ

]
+ n

∂εrevPKZB
c

∂τσ

[
1 + dεrevPKZB

c z3
]
. (B13)

TPSS has the same formula for correlation as revTPSS, but uses the original PBE correlation energy per electron, where
β = 0.0066725 is rs independent. The parameters in C(ζ,ξ ) used in TPSS are c1 = 0.53, c2 = 0.87, c3 = 0.50, and c4 = 2.26.
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