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The inhomogeneous Hubbard model is investigated in one and two dimensions by using lattice density-
functional theory (LDFT). The ground-state energy E = T + W is regarded as a functional of the single-particle
density matrix γ , where T [γ ] represents the kinetic and crystal-field energy, and W [γ ] the interaction energy.
Besides the known functional T [γ ] we propose a simple scaling approximation to the interaction energy W [γ ],
which is based on exact results for the Hubbard dimer and on a scaling hypothesis within the domain of
representability of γ . As applications we consider the Hubbard model on one- and two-dimensional bipartite
lattices. Several ground-state properties are determined including the kinetic and Coulomb energy, density
distribution, nearest-neighbor bond order, and charge gap. Comparison with exact Lanczos diagonalizations
shows that LDFT with the scaled dimer approximation to W [γ ] yields a quite accurate description of the
interplay between correlations and charge redistributions, from weak to strong coupling regimes, and for all band
fillings. Goals and limitations of the present approach are discussed.
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I. INTRODUCTION

In the course of the past few decades, density-functional
theory (DFT) has become one of the most successful ap-
proaches to study the physics of the many-body problem.
The main revolutionary concept behind DFT, as discovered
by Hohenberg and Kohn, is to consider the electronic density
distribution ρ(−→r ) instead of the wave function as the fun-
damental variable of the many-body problem.1 In particular
the energy E of any electronic system is expressed as a
functional of ρ(−→r ) by splitting it into two main groups of
terms. The first one depends explicitly on the system under
study through the external potential Vext(−→r ) acting on the
electrons. This typically involves the ion-electron potential
and any other external fields. The second type of contribution
describes intrinsic properties of the electronic system, namely,
the kinetic energy T [ρ] and the interaction energy W [ρ]. These
are universal functionals of ρ(−→r ) in the sense that they are
independent of the considered external potential describing
a specific system. The ground-state properties can then be
found by implementing a variational procedure with respect to
ρ(−→r ), for example, as in the Kohn-Sham scheme.2 The DFT
formulation enjoys general validity and has been successfully
applied to an incredibly large variety of physical problems,
well-beyond the initial scope of the inhomogeneous electron
gas.3,4

Recently, several investigations have been performed by
applying the concepts of DFT to strongly correlated electrons
on a lattice, which are described by means of many-body
models such as the Anderson model, the Hubbard model,
and related Hamiltonians.5–7 The study of lattice Hamilto-
nians in the framework of DFT defines an interesting open
problem which seems particularly challenging from various
perspectives. On the one side, understanding the physics
of strongly correlated electronic systems constitutes a very
important theoretical issue. Only very few exact analytical
results are available8–12 and accurate numerical calculations
are very demanding.13–15 Taking into account the general

validity of the concepts of DFT and the remarkable success
of its applications to conventional materials, it is reasonable
to expect that DFT should provide a new valuable insight into
the physics of strong correlations. This presupposes that sound
approximations to the interaction- and kinetic-energy func-
tionals are obtained, which remain reliable at all interaction
regimes. On the other side, from the perspective of DFT in
the continuum, it is well known that the usual local-density
and generalized-gradient approximations to the exchange
and correlation energy-functional2–4,16 fail systematically to
describe strong interactions in narrow bands. This is the case,
for example, in problems involving a separation of charge
and spin degrees of freedom or showing correlation-induced
localization.15,17 Therefore, it is also important to understand
the reasons behind these drawbacks in order to improve the
applicability of DFT to more complex strongly interacting
systems. The information inferred from DFT studies of
lattice Hamiltonians could thus provide new insights into
the properties of the universal kinetic- and interaction-energy
functionals.

Among the previous DFT investigations of lattice mod-
els one should mention the determination of band gaps
in semiconductors,18 the study of the role of off-diagonal
elements of the density matrix and the noninteracting v

representability in a strongly correlated system,19 and the
development of energy functionals of the density matrix with
applications to the Hubbard and Anderson models.20 More
recently, an exchange and correlation energy-functional of the
site occupations has been derived on the basis of the Bethe-
ansatz solution of the one-dimensional Hubbard model.21

Time-dependent effects have also been investigated.22 An
alternative to these approaches is provided by lattice density-
functional theory (LDFT) which considers the single-particle
density matrix γ as the basic variable.23–26 An extension
of the Hohenberg-Kohn theorem has been derived by using
Levy’s correlation-energy functional.27 In this way the ground-
state energy is expressed as the functional E[γ ] of the
density matrix.23 Moreover, a variational scheme allows one
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to determine the ground-state energy Egs and γgs from the
minimization of E[γ ]. In contrast to Hohenberg-Kohn-Sham’s
DFT, which approximates both the kinetic and Coulomb
energy through the so-called exchange and correlation func-
tional Exc[ρ(−→r )], a simple exact expression for the kinetic
energy T [γ ] of the electrons in the lattice is available
in LDFT. However, a closed expression for the Coulomb-
energy functional W [γ ] remains unknown. In Ref. 24 an
approximation to W has been derived for the homogeneous
Hubbard model by using exact dimer results and by taking
advantage of the scaling properties of W [γ ]. Although the
accuracy of the applications to a variety of systems has been
very encouraging,24–26 the previous functionals can only be
used in periodic lattices showing a uniform density distribution
(i.e., γii = 〈n̂i〉 = Ne/Na for all i). This is a serious limitation,
since charge transfers and inhomogeneities are known to play
an important role in many physical problems such as high-
TC superconductivity, alloys, magnetic impurities in metals,
etc.28–30 In fact, it is the ability to cope with inhomogeneous
density distribution that gives the true measure of the quality
of a DFT approach.1

In order to investigate this problem we have recently
calculated the interaction energy W [γ ] of the Hubbard model
on a variety of inhomogeneous one-dimensional (1D) and
two-dimensional (2D) lattices as a function of the orbital
occupation γii and nearest-neighbor bond order γij .31 This
study shows that the functional dependence of W [γ ] is nearly
independent of the system size and band filling provided that
W is scaled between its weakly and strongly correlated limits
and that γij is scaled within the domain of representability
of the density matrix.31 It is the purpose of this paper to
exploit the scaling properties of W [γ ] in order to derive a
simple explicit approximation to W in the Hubbard model.
As applications of the theory, several representative examples
of 1D and 2D bipartite lattices are considered by varying
systematically the strength of the crystal fields and Coulomb
interactions.

The remainder of the paper is organized as follows. In
Sec. II we present the theoretical background about the
model and the formulation of LDFT. Section III introduces
an explicit approximation to the interaction energy W [γ ] as
a function of the single-particle density matrix γ , which is
suitable for calculations on arbitrary bipartite lattices. This
approximation is based on exact analytical results for the
Hubbard dimer and a scaling hypothesis on the functional
dependence of W within its domain of representability. In
Sec. IV the method is applied to 1D and 2D finite lattices with
periodic boundary conditions and the results are discussed. The
LDFT calculations are systematically compared with exact
Lanczos diagonalizations,32 in order to assess the accuracy
of the approximation to W . Finally, we close in Sec. V by
presenting a summary of conclusions and some interesting
future perspectives.

II. DENSITY-FUNCTIONAL THEORY ON A LATTICE

To be explicit we focus on the inhomogeneous Hubbard
model on bipartite lattices, which is expected to capture the
main interplay between electron delocalization, correlations,

and charge-density redistributions in narrow-band systems.
The Hamiltonian is given by

Ĥ =
∑
i,σ

εi n̂iσ +
∑
〈i,j〉σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↓n̂i↑, (1)

where εi denotes the site-dependent energy levels, tij the
nearest-neighbor (NN) hopping integrals, and U the on-site
interaction.7 As usual, ĉ

†
iσ (ĉiσ ) stands for the creation (anni-

hilation) operator for an electron with spin σ at site i (n̂iσ =
ĉ
†
iσ ĉiσ ). The hopping elements tij define the dimensionality and

structure of the lattice as well as the range of the single-particle
hybridizations. The energy levels εi describe the arrangement
of different elements in the lattice or the effect of external
fields.33 The model parameters εi and tij specify the system
under study and thus play the role given in conventional
DFT to the external potential vext(�r). Consequently, the basic
variable in a density-functional theory of lattice models is the
single-particle density matrix γij with respect to the sites i and
j . This involves not only the diagonal elements γii , which
describe the charge distribution, but also the off-diagonal
elements or bond orders γij , which give a measure of the
degree of electron delocalization. Notice that the dependence
on the off-diagonal elements of γij results from the nonlocality
of the hopping integrals. A similar situation appears in the
continuum, if one considers nonlocal pseudopotential.34

The ground-state energy Egs and density matrix γ
gs
ij are

determined by minimizing the energy functional

E[γ ] = T [γ ] + W [γ ] (2)

with respect to γij . E[γ ] is defined for all density matrices that
derive from a physical state, i.e., that can be written as

γij =
∑

σ

γijσ =
∑

σ

〈�|ĉ†iσ ĉjσ |�〉, (3)

where |�〉 is an N -particle state. A density matrix γ is said
to be pure-state N representable if and only if there is an
N -particle state |�〉 from which γij is derived according to
Eq. (3).35 In this context it is also useful to distinguish the pure-
state interacting v-representable γij , or simply v-representable
γij , which are defined as the density matrices that can be
derived from a ground state of Eq. (1). In other words, a v-
representable γij is equal to γ

gs
ij for some values of εi , tij ,

and U .
The single-particle contributions to the energy are given by

T [γ ] =
∑

i

εiγii +
∑
i �=j

tij γij . (4)

The first term in Eq. (4) is the charge-density (CD) energy
ECD[γii], which depends only on the diagonal elements of γ .
The second one is the kinetic energy EK[γij ] associated with
the delocalization of the electrons in the lattice. It depends
on the off-diagonal elements of γ for which tij �= 0, typically
for nearest-neighbor ij . Notice that the present formulation
involves no approximation of the functional dependencies of
ECD and EK. Consequently, all changes in the single-particle
energy T resulting from electronic correlations are taken into
account exactly.
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The second term in Eq. (2) is the interaction-energy
functional. It can be written in terms of the constrained search
minimization27

W [γ ] = min
�→γ

[
U

∑
i

〈�[γ ]|n̂i↑n̂i↓|�[γ ]〉
]

(5)

running over all N -particle states |�[γ ]〉 that satisfy

〈�[γ ]|
∑

σ

ĉ
†
iσ ĉjσ |�[γ ]〉 = γij (6)

for all i and j . It is important to notice that Eq. (6) defines
the set of N -particle states |�〉 within which the minimization
is performed. The N representability of γ ensures that this
set is not empty [see Eq. (3)]. It is this constraint on |�〉,
which depends of course on γ , that establishes the fundamental
functional dependence of the interaction energy W on the
single-particle density matrix. Conceptually, this equation is
different from Eq. (3), which expresses the N -representability
condition on γ . In the present formulation W [γ ] is only defined
for the physically relevant N -representable γ , since otherwise
the minimization set implied in Eq. (5) would be empty.

For repulsive interactions W [γ ] represents the minimum
value of the average number of double occupations that is
compatible with a given density matrix γ , i.e., that corre-
sponds to a given charge distribution and degree of electron
delocalization. W is a universal functional of γ in the sense
that it is independent of the system under study, the latter
being defined by the external parameters εi and tij . However,
W depends on the number of electrons Ne = ∑

i γii , on the
internal structure of the many-body Hilbert space, as defined by
Ne and the number of atoms or sites Na, and on the model used
for the many-body interactions, in the present case Hubbard’s
on-site form. It is often convenient to express W in terms of
the Hartree-Fock energy EHF and the correlation energy EC

as W = EHF + EC. Here we assume that EHF includes the
exchange energy, so that EC represents only the contribution
of correlations.

In this context it is interesting to analyze the dependence of
W [γ ] on the interaction parameter U , since this reveals rigor-
ous constraints to be satisfied by any explicit approximation.
Once the sign of U is defined, it is clear that the minimization
in Eq. (5) and the representability constraints given by Eq. (6)
are independent of U . Therefore, we may write

W [γ ] = U min
�→γ

[∑
i

〈�[γ ]|n̂i↑n̂i↓|�[γ ]〉
]

(7)

for all U > 0, from which the strict linearity of W [γ ] as a func-
tion of U follows. This important property is a consequence
of the fact that the density matrix γ univocally defines all
single-particle contributions. The situation is different in the
DFT of the continuum, since the electronic density n(−→r ) is not
enough to define the kinetic energy unambiguously. Therefore,
the Hohenberg-Kohn or Levy-Lieb functionals reflect the
compromise of minimizing the sum T + W of the kinetic and
Coulomb energies for a given n(−→r ). In the context of lattice
models (in particular for the Hubbard model) there have been
attempts to describe the many-body problem in the spirit of the
continuum DFT, by considering only the orbital occupations
ni = 〈n̂i〉 = γii as fundamental variables.18,21 In this case a

nonlinear dependence of the exchange and correlation (XC)
energy as a function of U/t needs to be assumed, since
the kinetic energy is implicitly added to the interaction term
when constructing the XC functional. Notice that the kinetic
energy of electrons in a lattice cannot be defined by the
diagonal γii alone. For example, γii in a homogeneous system
is independent of i and of U/t . Therefore, γii does not
allow us to discern between weakly and strongly correlated
states. While such occupation-number approaches are formally
correct, the resulting functionals are not universal. In contrast
to the continuum, the kinetic-energy operators corresponding
to different lattices are different. Therefore, the transferability
of local functionals does not seem obvious.

Finally, the variational principle for the ground-state density
matrix γ

gs
ij follows from the relations27

Egs � E[γ ] = T [γ ] + W [γ ] (8)

for all pure-state N -representable γ and

Egs = T [γ gs] + W [γ gs], (9)

where Egs = 〈�gs|Ĥ |�gs〉 stands for to the ground-state
energy. The present formulation of LDFT can be gen-
eralized to arbitrary forms of the two-body interaction
Vijklc

†
i,σ c

†
j,σ ′ck,σ ′cl,σ , for example, to site-dependent Coulomb

repulsion or Anderson impurity models.25,37

III. SCALING APPROXIMATION TO THE
INTERACTION-ENERGY FUNCTIONAL

Once the density-functional variational scheme is estab-
lished, the challenge is to find a good explicit approximation
to the interaction-energy functional which correctly describes
the interplay between correlation, delocalization, and charge
transfers. In a previous paper31 we have investigated the prop-
erties of W [γ ] by performing exact numerical diagonalization
on 1D bipartite finite rings with periodic boundary conditions.
This study revealed that the dependence of W as a function of
the NN bond order γ12 can be considered to be approximately
independent of the system size, lattice dimension, and band
filling n, provided that two simple scaling conditions are
taken into account. First, W (γ12) must be scaled between the
limit of weak correlation W 0 = ∑

i γii↑γii↓ and the limit of
strong correlation W∞ = ∑

i max[γii − 1,0], corresponding
to the given charge distribution γii . Second, γ12 must be
scaled accordingly in the range γ ∞

12 < γ12 < γ 0
12 between the

strongly correlated limit γ ∞
12 and the weakly correlated limit

γ 0
12. This range represents the domain of v representability

of γ . Mathematically, this means that for a given density
distribution {γii} it is a good approximation to regard

w = W − W∞

W 0 − W∞ (10)

as a function of the degree of electron delocalization

g12 = γ12 − γ ∞
12

γ 0
12 − γ ∞

12

. (11)

In other words, the relative change in W associated with a
change in the degree of electron delocalization g12 can be
considered as nearly independent of the system under study.
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This extends the conclusions of previous investigations on
the homogeneous Hubbard model.23 Notice, however, that the
relation between w and g12 does depend on γii and in particular
on the charge transfer �n = γ22 − γ11 between the sublattices
of a bipartite structure.38 Consequently, a sound general
approximation to W can be obtained by scaling the functional
dependence of W on γij corresponding to a simple reference
system, which already contains the fundamental interplay
between delocalization, charge transfer, and correlations.

The Hubbard dimer is the smallest and simplest system that
fulfills these conditions. We therefore propose the scaled dimer
approximation Wsc, which is given by

Wsc − W∞

W 0 − W∞ = W2 − W∞
2

W 0
2 − W∞

2

, (12)

where the subindex 2 refers to the dimer. Using the definition
of w [Eq. (10)] one may write Eq. (12) in a compact form as
wsc(g12,�n) = w2(g12,�n), which implies

Wsc = W∞ + (W 0 − W∞)
W2 − W∞

2

W 0
2 − W∞

2

. (13)

Notice that all the terms on the right-hand side of Eq. (13)
are simple functions of γij . The uncorrelated and strongly
correlated bounds in the dimer (Ne = Na = 2) are given by
W 0

2 = [1 + (�n/2)2]/4 and W∞
2 = �n/4. For an arbitrary

system, these bounds are given by W 0 = ∑
i γii↑γii↓ (Hartree-

Fock limit) and W∞ = ∑
i max[γii − 1,0] (minimal double

occupations).39 Finally, the exact dimer interaction-energy
functional for Ne = 2 is given by

W2

UNa
=

{
1 − γ 2

12
2

1+
√

1−(�n/2)2−γ 2
12

(�n/2)2+γ 2
12

, if γ ∞
12 < γ12 < γ 0

12,

�n/4, if |γ12| < γ ∞
12 .

(14)

A similar calculation yields the analytical expression for
the interaction-energy functional of a dimer having different
Coulomb repulsion integrals U1 and U2 on each site. Such a
generalization is appropriate for applications to models having
alternating on-site interactions on bipartite lattices.40

Despite their simplicity, Eqs. (13) and (14) reproduce
several important exact properties that are common to all
systems: (i) The definition of W [γ ] is conditioned by the
domain of v representability of the NN bound order γ12, which
is given by γ ∞

12 � γ12 � γ 0
12. The lower bound γ ∞

12 corresponds
to the strongly correlated limit and represents the maximum
electron delocalization under the constraint of minimal double
occupations. The upper bound γ 0

12 is the noninteracting
limit of γ12 yielding the maximum degree of delocalization,
irrespective of the value of the double occupations. Notice
that both γ ∞

12 and γ 0
12 depend on the band filling n, on

the charge transfer �n, and on the NN connectivity of the
specific lattice under study. For the half-filled dimer (n = 1)
we have γ ∞

12 = √
�n(2 − �n)/2 and γ 0

12 =
√

1 − (�n/2)2.
(ii) At the noncorrelated limit, the underlying electronic state
�[γ 0

12] is a single Slater determinant and W (γ 0
12) = WHF =

UNa[n2 + (�n/2)2]/4.39 Moreover, ∂W/∂γ12 diverges for
γ12 = γ 0

12. This is a necessary condition in order that an
arbitrary small U yields a nonvanishing change in the ground-
state density matrix γ

gs
12 , as expected from perturbation theory.

(iii) For any fixed charge distribution {γii}, W decreases with
decreasing γ12, reaching its lowest possible value W∞ =
UNa[max(n − �n/2 − 1,0) + max(n + �n/2 − 1,0)]/2 for
γ12 = γ ∞

12 . The monotonic decrease in W upon reducing γ12

means that any drop in the Coulomb energy resulting from
correlations is achieved at the expense of kinetic energy or
electron delocalization. Notice that in most cases γ ∞

12 > 0.
Reducing γ12 beyond γ ∞

12 cannot lead to any further decrease
in W for the given {γii}. Therefore, W is constant and equal to
W∞ in the range of |γ12| � γ ∞

12 . (iv) The strongly correlated
γ ∞

12 shows a nonmonotonous dependence on charge transfer
�n. On a bipartite lattice γ ∞

12 vanishes for �n = 2 − 2n

if n � 1/2. In this case, all sites of one sublattice contain
strictly one electron, while the sites of the other sublattice
contain 2n − 1 electrons (γ22 = 1 and γ11 = 2n − 1). Since
the occupation of one of the sublattices is equal to one, no
electronic hopping can occur in the strongly correlated limit.
In addition, γ ∞

12 also vanishes for extreme charge transfers,
where one of the sublattices is completely empty (γ22 = 2n,
γ11 = 0, and �n = 2n, for n � 1) or completely full (γ22 = 2,
γ11 = 2n − 2, and �n = 4 − 2n, for n � 1). In this case the
uncorrelated γ 0

12 also vanishes.
The general validity of these properties relies on the univer-

sality and transferability of the interaction-energy functional.
In order to exemplify the previous general trends we present
in Fig. 1 results for Wsc as a function of g12 for different
representative values of �n. To evaluate the accuracy of the
scaled dimer approximation these results are compared with
the exact Levy-Lieb functional Wex[γ ], which was calculated
by performing the minimization in Eq. (5) for a finite ring
having Na = 10 sites and different numbers of electrons Ne.
The constraints on |�〉 given by Eq. (6) are imposed for
i = j (γ11 + γ22 = 2n and γ22 − γ11 = �n) and for NN ij

along a periodic ring (γij = γ12) by using the method of
Lagrange multipliers. In this way the constrained minimization
amounts to computing the ground state of an effective Hubbard
model, which has been done numerically by means of the
Lanczos method.23,31 The calculations demonstrate the above
discussed trends (i)–(iv). In addition, one observes that the
proposed approximation Wsc follows quite closely the exact
functional Wex all along the crossover from weak to strong
correlations (see Fig. 1). This is quite remarkable taking
into account the strong dependence of the boundary values
W 0, W∞, γ 0

12, and γ ∞
12 on band filling n and charge transfer

�n. The quantitative discrepancies are in general small [i.e.,
|Wsc − Wex|/(W 0 − W∞) � 0.008–0.06] except for Ne = 6
and �n = 1, where |Wsc − Wex|/(W 0 − W∞) � 0.1). More-
over, the largest deviations between Wsc and Wex occur for
rather large values of γ12 (g12 � 0.8–0.9) which concern
mainly the weakly correlated regime where the kinetic energy
dominates. Consequently, a good general performance of the
method can be expected. Although the dependence of W on
the degree of delocalization g12 is similar for different �n,
one observes significant differences between Figs. 1(a)–1(d),
which reflect the changes in the nature of the electronic
correlations as we move from purely metallic to strongly
ioniclike bonds. These are well reproduced by the scaling
ansatz Wsc. In the following section several applications of
LDFT are presented by using Wsc as an approximation to the
interaction-energy functional.
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FIG. 1. (Color online) Comparison between the scaled dimer
functional Wsc[γ ] as a function of the degree of electron delocal-
ization g12 = (γ12 − γ ∞

12 )/(γ 0
12 − γ ∞

12 ) [solid curves, Eq. (13)] and
the exact functional Wex derived from Lanczos diagonalizations
(symbols). Results are shown for a 1D bipartite ring having Na = 10
sites, different band fillings n = Ne/Na, and representative charge
transfers �n = γ22 − γ11. The inset figures display the corresponding
relative errors �W = (Wsc − Wex)/(W 0 − W∞).

IV. RESULTS AND DISCUSSION

For the applications of the theory we consider the inho-
mogeneous Hubbard model on bipartite 1D and 2D lattices
consisting of a sublattice S1, where the energy levels εi =
ε1 = ε/2, and a sublattice S2, where εi = ε2 = −ε/2 [see
Eq. (1)]. Besides the band-filling n = Ne/Na, the system is
characterized by two dimensionless parameters: the bipartite
potential ε/t , which controls the degree of charge transfer
�n = γ22 − γ11 between the sublattices, and the Coulomb

repulsion strength U/t , which measures the importance of
correlations. The ground-state properties of the model are
the result of a subtle interplay between the kinetic energy
associated with electronic hopping and delocalization, which
is proportional to tγ12, the charge-transfer energy �ECT =
−ε�n/2, and the Coulomb-repulsion energy W . The physical
behavior is analyzed from the homogeneous to the strongly
ionic regimes, as well as from weak to strong correlations, by
computing the ground-state energy Egs, the NN bond order
γ12, the charge transfer �n, the average number of double
occupations per site W/UNa, and the charge gap �Ec. The
accuracy of the scaled dimer approximation is quantified by
comparing systematically the LDFT results with exact Lanczos
diagonalizations32 on finite 1D rings or 2D squares with
periodic boundary conditions. These systems also provide
an interesting opportunity to assess the ability of LDFT to
deal with discrete single-particle spectra and with possible
degeneracies at the Fermi energy, which often lead to nontrivial
charge transfers as a function of the model parameters.

Figure 2 shows the ground-state properties of a 1D ring
having Na = 14 sites and half-band filling n = 1 as a function
of the Coulomb repulsion strength for different values of the
energy-level shift ε/t . The results are given as a function
of U/(U + 4t) in order to cover the complete interaction
range, from weak correlations U/t 
 1 all over to the strongly
correlated limit (U/t � 1). Notice that w1D = 4t represents
the single-particle bandwidth in 1D. Moreover, U/t � 4
corresponds approximately to the crossover from weak to
strong coupling also in higher dimensions. First of all, for
the homogeneous case (ε/t = 0 and �n = 0) one observes
the well-known monotonous increase of Egs with increasing
U/t , reaching Egs = 0 for U/t → ∞, where both electronic
hopping and double occupations vanish. At the same time γ12

and W decrease monotonously with U/t [see Figs. 2(b) and
2(d)]. A number of new features appear when the bipartite
level shift ε is finite. In this case, as we go from weak to strong
correlations, the system undergoes a qualitative change from
a delocalized charge-density-wave (CDW) state (�n � 0.9–
1.6 and γ12 � 0.3–0.6) to a nearly localized state having a
homogeneous charge distribution (�n < 0.01 and γ12 < 0.1).
Starting from the weakly correlated CDW state and increasing
U/t , one observes a decrease in �n, since inhomogeneous
charge distributions necessarily imply larger average double
occupations [see Figs. 2(c) and 2(d)]. Nevertheless, a nearly
homogeneous charge distribution is only reached for U � ε.
An interesting effect, which becomes more distinctive as ε/t

increases, is the nonmonotonous dependence of the kinetic
energy and bond order γ12 as a function of U/t . Notice that
the maximum in γ12 does not correspond to the noninteracting
limit but to a finite value of U/t [see Fig. 2(b)]. In fact, for
U � ε the Coulomb repulsion on the doubly occupied sites on
sublattice S2 compensates the energy difference between the
two sublattices (ε1 = ε/2 = −ε2 > 0). This allows a nearly
freelike motion of the γ11 electrons occupying sublattice S1,
together with the extra γ22 − 1 electrons on sublattice S2

(γ11 < γ22 for ε > 0). Consequently, the delocalization of
the electrons is enhanced for U � ε, yielding a maximum in
γ12. The effect is more pronounced for ε/t � 1, since this
implies a stronger CDW at U = 0 and a larger crossover
value of U = ε. Moreover, it is interesting to observe that
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FIG. 2. (Color online) Ground-state properties of bipartite Hub-
bard rings having Na = 14 sites and half-band filling n = 1 as a
function of the Coulomb repulsion strength U/t . Different values
of the energy-level shift ε between the sublattices are considered as
indicated in panel (a). Results are given for (a) ground-state energy
Egs, (b) NN bond order γ12, (c) charge transfer �n = γ22 − γ11, and
(d) average number of double occupations per site W/UNa. The
solid curves refer to LDFT using the scaling approximation Wsc

[see Eq. (13)] while the symbols are the results of exact Lanczos
diagonalizations.

for large ε the maximum in γ12 corresponds to �n = 1
[compare Figs. 2(b) and 2(c)]. Indeed, for U/t � ε/t � 1
(in practice U/t � ε/t � 4) one electron is essentially locked
in the sublattice S2, and the remainder electron in the unit cell
is evenly distributed among the two sublattices. For n = 1 this
implies γ11 � 1/2 and γ22 � 3/2, or equivalently, �n = 1.

The local magnetic moments S2
i = 3

4 〈(n̂i↑ − n̂i↓)2〉 =
3
4 (γii − 2〈n̂i↑n̂i↓〉) at the different sites i provide an alternative
perspective of the electronic correlation and localization
occurring as U/t increases. If one focuses on S = 0 states,
S2

i can be directly interpreted as the variance of the local
magnetic moment. In the uncorrelated limit, n̂i↑n̂i↓ = γ 2

ii/4

and therefore S2
i depends only on the density distribution γii .

For example, for n = 1 one observes that S2
i decreases with

increasing ε/t , namely, from S2
i = 3/8 for ε/t = 0 to S2

i = 0
for ε/t = ∞. In the latter case all electrons are paired on one
sublattice (U = 0 and n = 1). If now the Coulomb repulsion
is raised, one finds a reduction of charge fluctuations and thus
an enhancement of S2

i . Finally, for U/t � 1 and U � ε the
largest possible S2

i = 3/4 is reached, irrespective of the value
of ε/t . At this point all sites are singly occupied and the
variance of S2

i is maximal (S = 0).
Concerning the comparison between LDFT and exact

results one observes that all the considered ground-state
properties are very well reproduced by the scaled dimer ansatz.
This holds for all values of the energy-level shift between the
sublattices, not only close to the weak and strongly correlated
limits but also in the intermediate interaction region. Moreover,
the fact that γ12, �n, and W are all obtained with a high level of
precision shows that the results for Egs are not the consequence
of a strong compensation of errors. It is also interesting to note
that the accuracy actually improves as the charge distribution
becomes more inhomogeneous, i.e., as ε/t and the CDW
become stronger. In other words, the homogeneous case, which
was investigated in some detail in Refs. 23 and 24, is the
most difficult one. This seems reasonable, since large values
of ε enhance the importance of single-particle contributions
to the energy and somehow tend to decouple the 1D chain
in dimers, within which correlations are taken into account
exactly. A similar improvement of the accuracy of the scaled
dimer functional has already been observed in dimerized
chains with homogeneous charge density.25 One concludes
that LDFT, combined with Eqs. (13) and (14) for W [γ ],
provides a very good description of electron correlations and
of the resulting interplay between kinetic, charge-transfer, and
Coulomb energies in 1D lattices.

In Fig. 3 the band-filling dependence of Egs is shown for
a 1D ring having Na = 14 sites and representative values of
the Coulomb repulsion U/t and of the energy-level shift ε/t .
For low electron densities, up to quarter-band filling n = 1/2,
one observes that Egs decreases for all U/t as the band is
filled up. Notice in particular the weak dependence of Egs

on the Coulomb repulsion strength, even for U/t � 1. This
implies that for low carrier densities charge fluctuations are
very efficiently suppressed by correlations. Consequently, the
kinetic and crystal-field energies dominate over the Coulomb
energy (n � 1/2). This is quite remarkable, since ignoring
correlations would have lead to a quadratic increase in the
Coulomb energy (EHF ∝ Un2). Comparing different crystal
fields ε/t , one notes that the role of electron interactions is
most important in the homogeneous case, where our results
coincide with previous calculations.24 As ε/t increases the
electrons tend to be localized on one sublattice in order to take
advantage of the crystal field, thereby reducing the importance
of both kinetic and Coulomb contributions. Consequently,
Egs is nearly independent of U/t (ε/t � 4 and n � 1/2).
Beyond quarter-band filling the n dependence of Egs changes
qualitatively, since double occupations become unavoidable,
not only for delocalized electronic states but also for ionic
states with significant charge transfer to the most stable
sublattice. In this case (n � 1/2) Egs continues to decrease
with increasing n only if the Coulomb interactions are weak
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FIG. 3. (Color online) Band-filling dependence of the ground-
state energy of 1D Hubbard rings having Na = 14 sites and different
bipartite potentials ε. The solid curves refer to LDFT with the scaled
dimer functional Wsc, and the symbols refer to exact numerical results.
Representative values of the Coulomb repulsion strength U/t are
considered as indicated in panel (a).

(U/t < 4). Otherwise, for U/t > 4, Egs goes first over a
minimum at n = 1/2, where the decrease in kinetic and
crystal-field energies is approximately canceled by the increase
in Coulomb energy. Then, it increases with n as we move to
even higher densities (n > 1/2). These trends are qualitatively
similar for all values of the bipartite potential. However, the
crossover from low- to high-density behavior becomes more
abrupt as ε/t increases [compare Figs. 2(a)–2(d)]. As in Fig. 2
the agreement between the LDFT results (solid curves) and the
Lanczos diagonalizations (symbols) is most satisfying for all
values of n, U , and ε. The scaling approximation reproduces
all the previous trends very accurately. Moreover, as already

mentioned in the context of Fig. 2, the quality of the results
for Egs is not the consequence of a compensation of errors on
different contributions (i.e., ECD, EK, and W ). This is probably
the reason behind the favorable outcome for all band fillings
and interaction parameters.

The charge-excitation gap

�Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) (15)

is a property of considerable interest in strongly correlated
systems, which measures the insulating or metallic character
of the electronic spectrum as a function of ε/t , U/t , and n. It
can be directly related to the discontinuities in the derivatives
of the single-particle and correlation energies per site with
respect to the electron density n. Therefore, the calculation of
�Ec constitutes a more serious challenge than the calculation
of Egs, particularly in the framework of a density-functional
approach. In Fig. 4 results are given for �Ec as a function
of band filling n < 1, which correspond to 1D Hubbard rings
having Na = 14 sites and different ε/t and U/t . The half-
filled-band case deserves special attention and is considered
in Fig. 5.

Finite bipartite rings have a discrete single-particle energy
spectrum, which is conditioned by the two important inversion
and electron-hole symmetries. The former requires εα(k) =
εα(−k), where α = 1,2 refers to the two bands of the unit
cell, and the latter implies that for each eigenenergy εα(k)
the inverse −εα(k) is also an eigenvalue. In the following
we restrict ourselves to Na even, as imposed by the periodic
boundary conditions. In the homogeneous case (ε = 0) we
have one atom per unit cell and −π/a � k � π/a. The single-
particle energies are given by εk = −2t cos(ka), where k = 0,
k = ±νπ/aNa, with ν = 1, . . . ,(Na − 1), and k = π/a. For
Na/2 even, this yields a doubly degenerate level in the middle
of the band corresponding to k = ±π/2a, while for Na/2
odd k = ±π/2a is not allowed and there is a gap in the
middle of the band between two doubly degenerate states
(k = ±4π/7a and k = ±5π/7a for Na = 14). For Na/2 even,
the alternating bipartite potential (ε �= 0) couples the states
having k = ±π/2a and opens a gap ε at half-band filling
(n = 1), while for Na/2 odd, one observes simply an enhance-
ment of the existing gap between doubly degenerate states.
The results for �Ec in the noninteracting limit (U/t 
 1)
can be interpreted in terms of the single-particle spectrum. In
particular for Na = 14 one finds that for U = 0 the charge gap
�Ec = 0 for Ne = 3–5, 7–9, and 11–13 due to the presence
of double degenerate states. Any small Coulomb interaction
U �= 0 removes the double degeneracy yielding a finite �Ec

for Ne = 4, 8, and 10. This explains the even-odd alternations
as a function of Ne for small U/t [see Figs. 4(a) and 4(b)].

For strong interactions (U/t > 4) the single-particle picture
breaks down and simple detailed interpretations seem difficult.
One may however observe that for low carrier density (n <

1/2) the gap tends to decrease as ε/t increases, even for large
U/t , since the two sublattices progressively decouple from
each other. In contrast, an increasingly important gap develops
for large U/t at n = 1/2, which tends to �Ec = ε for U/t →
+∞. This contrasts with the corresponding gap in the weakly
correlated limit, which vanishes for Na/2 odd and is finite (of
the order of t/Na) for Na/2 even. The origin of the finite charge
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FIG. 4. (Color online) Charge gap �Ec = E(Ne + 1) + E(Ne −
1) − 2E(Ne) as a function of band filling n in 1D Hubbard rings
having Na = 14 sites and different bipartite potentials ε. The solid
lines connecting discrete points refer to LDFT with the scaled
dimer functional and the symbols to exact Lanczos diagonalization.
Representative values of the Coulomb repulsion strength U/t are
considered as indicated in panel (c). Results for n = 1 are given in
Fig. 5.

gap for large U/t is the energy difference between adding an
electron in the sublattice S1 (having ε1 = ε/2) and removing
an electron in the sublattice S2 (having ε2 = −ε/2). In fact,
for U/t � 1 the kinetic energy is very weak, ECD dominates
over EK, and therefore the sublattice S1 is essentially empty in
the strongly correlated ground state (n � 1/2). Notice that a
finite �Ec � ε for n = 1/2 and large U/t is also found in the
thermodynamic limit, as well as for finite Na with Na/2 even.

As for any excitation, obtaining accurate results for �Ec

within a density-functional approach is more delicate than for
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FIG. 5. (Color online) Charge gap �Ec = E(Ne + 1) + E(Ne −
1) − 2E(Ne) as a function of the Coulomb repulsion strength U/t in
1D Hubbard rings having a band filling n = 1, representative values
of the bipartite potential ε, and (a) Na = 12, (b) Na = 14, and (c) Na =
∞ sites. The curves refer to LDFT with the scaled dimer functional
Wsc and the symbols to exact diagonalizations. In the inset figure the
ring-length dependence of (�Ec − U )/t is shown for ε/t = 4 and
U/t = 4.

the ground-state properties. Nevertheless, it seems fair to say
that LDFT with the present approximation to W performs quite
well quantitatively, except for intermediate values of ε/t and
U/t [see, for example, ε/t = 1 and U/t = 12 in Fig. 4(b)]. In
particular the removal of degeneracies due to the interactions
and the resulting even-odd oscillations, the crossover from
weak to strong correlations, and the development of a finite
gap �Ec � ε at quarter-band filling for U/t � 1 are very well
reproduced.

The charge gap at half-band filling has the specificity of
involving an extra double occupation for Ne = Na + 1, which
is unavoidable even in a strongly correlated state, in contrast
to any smaller band filling Ne � Na. This implies that a con-
tribution of the order of U/t to �Ec must be taken for granted.
It is therefore more meaningful to consider (�Ec − U )/t as
reported in Fig. 5, which represents the nontrivial kinetic and
correlation contributions. In the homogeneous case without
interactions (ε = 0 and U = 0) the gap vanishes for Na/2 even,
while it remains of the order of t/Na for Na/2 odd. �Ec − U

decreases monotonously as U/t increases, reaching a common
limit �Ec = U − 2wb for all Na, where wb represents the
kinetic energy gained through the delocalization of the extra
electron or hole. In the homogeneous case wb = 2t coincides
with the single-particle band width, since the ground state
for Ne = Na ± 1 is the fully polarized ferromagnetic Nagaoka
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state.10 The structureless shape of �Ec as a function of U/t

hides a profound change in the nature of the underlying charge
excitation along the crossover from weak to strong interac-
tions, namely, from a single-particle electron-hole excitation
to a strongly correlated low-spin to high-spin excitation.8–10

The simplicity �Ec versus U/t should not understate the merit
of the LDFT results in comparison to exact diagonalizations
(Na = 12 and 14).

For nonvanishing bipartite potential and U = 0 the charge
gap is positive, equal to ε for Na/2 even, and slightly larger
than ε for Na/2 odd (for example, for Na = 14, �Ec/t = 1.32,
4.08, and 8.08 for ε/t = 1, 4, and 8, respectively). The
underlying excitation involves the promotion of an electron
across the single-particle gap opened by the bipartite potential.
This corresponds to delocalized electron-hole excitations
between CDW states, which are more or less strong depending
on the value of ε/t . As U/t increases �Ec − U decreases and
eventually changes sign, since the Coulomb repulsion brings
the energy of the states with doubly occupied configurations
on sublattice S2 closer to the energy of singly occupied
configurations on sublattice S1 (ε1 = −ε2 = ε/2 > 0). For
U > ε the system undergoes a transition to a homogeneous
state, after which the gap becomes essentially linear in U .
In the strongly correlated limit �Ec = U − 2wb for all Na,
where, as in the homogeneous case, wb represents the energy
gained through the addition of the extra electron or hole. These
are the same due to the electron-hole symmetry of the bipartite
lattice. In the homogeneous case, the extra electron occupies
the k = 0 state of the minority-spin band, while the majority
band is full (Nagaoka state).10 Therefore, wb = 2t coincides
with the single-particle bandwidth. In the presence of a finite
bipartite potential the situation is similar, since an extension
of Nagaoka’s theorem also holds in the presence of inhomoge-
neous energy levels εi .11 However, notice that the bipartite
potential introduces a shift of the energy ε0 of the k = 0
single-particle state, which stabilizes the system with Ne =
Na ± 1 electrons relative to the half-filled case (Ne = Na).
For example, ε0/t = −2.83 for ε/t = 4 and ε0/t = −4.47
for ε/t = 8. Consequently, the strongly correlated limit of
(�Ec − U )/t decreases with increasing ε/t .

The comparison between LDFT and exact diagonalizations
shows a very good agreement. This confirms the previously
observed trend to a slight improvement of accuracy as the
strength of the bipartite potential ε/t increases. Figure 5 also
reports LDFT results for the charge gap in the thermodynamic
limit. In this case γ ∞

12 is obtained from a Nagaoka-like
variational state in which the spin-up orbitals of sublattice
S2 are occupied (γ22 > γ11) and the remaining γ11 + γ22 − 1
spin-down electrons are delocalized throughout the entire
lattice. The trends observed for Na = ∞ are essentially the
same as for Na = 12 or 14. The dependence of �Ec on the
chain length is given in the inset of Fig. 5(c). The accuracy
of the LDFT calculations for different Na is quantified by
comparison with exact results.

Figure 6 shows the ground-state properties of the 2D
Hubbard model on a square cluster having Na = 16 sites
and periodic boundary conditions. The results are given as
a function of the Coulomb repulsion strength U/t for different
values of the energy-level shift ε/t at half-band filling n = 1.
First of all, one observes a number of qualitative similarities

FIG. 6. (Color online) Ground-state properties of the half-filled
Hubbard model on a 2D square cluster having Na = 4 × 4 sites and
periodic boundary conditions (n = Ne/Na = 1). Results are given for
(a) ground-state energy Egs, (b) NN bond order γ12, (c) charge transfer
�n = γ22 − γ11, and (d) interaction energy W . LDFT (solid curves)
and exact diagonalizations (symbols) are compared as a function of
the Coulomb repulsion strength U/t for representative values of the
energy level shift ε between the sublattices, as indicated in panel
(a). The discontinuities in the exact results for γ12, �n, and W are
a consequence of the degeneracy of the single-particle spectrum and
the finite cluster size.

with the ground-state properties of 1D rings presented in
Fig. 2. Among these let us mention the monotonous increase
of Egs with increasing U/t , the stabilization associated with
the bipartite potential ε, and the convergence of all Egs curves
to the ε = 0 case when U � ε [see Fig. 6(a)]. The convergence
of Egs to the homogeneous limit occurs for U/t larger than
the value at which the NN bond order γ12 is maximal, once the
charge transfer �n = γ22 − γ11 and the interaction energy W

drop. These features are comparable to the behavior observed
in the 1D case and can be understood in similar terms. They
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reflect the change from a weakly correlated CDW state to a
strongly correlated nearly homogeneous state as the strength of
the Coulomb interactions is increased. However, in the present
2D periodic cluster one observes distinctive discontinuities
in γ12, �n, and W as a function of U/t , which are absent
in the 1D results for Na = 14 (compare Figs. 2 and 6).
These discontinuities are a finite-size effect resulting from the
sixfold degeneracy of the single-particle spectrum at the Fermi
energy εF . They are not specific to the 2D geometry, since
similar effects are also found in finite 1D chains with periodic
boundary conditions. In the present case, four of the degenerate
states at εF admit a charge transfer of one electron between
the sublattices [�k = (±π/2a, ± π/2a)], while the two others
show a homogeneous charge distribution [�k = (π/a,0) and
�k = (0,π/a)]. Two of the former CDW states are stabilized
by the bipartite potential, although they involve an average
number of double occupations higher than that of the latter.
The number of electrons at half-band filling is such that
only three of the six degenerate states are occupied for both
spin directions (U = 0). In the weakly correlated limit and
for ε �= 0 two of the states with strong charge transfer are
occupied. Thus, the ground state corresponds to a CDW state.
This configuration remains stable for rather large values of
U/t , until U becomes larger than ε. At this point a sharp
transition to a nearly homogeneous state takes place. Shortly
before the discontinuities occur γ12 goes over a maximum, as
the energy to transfer an electron from a doubly occupied site
of sublattice S2 to an empty site on sublattice S1 vanishes.
It is worth noting that such discontinuous jumps only take
place for specific band fillings which match the degeneracies
of the single-particle spectrum. They are not observed for
other band fillings or in the thermodynamic limit. For example,
for Ne = 10, no discontinuities in the ground-state properties
are observed, since the Fermi level is not degenerate. The
importance of this finite-size effect decreases with increasing
system size typically proportional to 1/Na. In the present
case the change in �n resulting directly from the changes
of occupation among the degenerate levels is 0.5, which
corresponds to the transfer of two electrons per spin in an
Na = 16 cluster.

Comparison with exact diagonalizations shows that LDFT
with the scaled dimer approximation yields quantitatively
good results both for U significantly smaller and larger than
ε. However, the approximation fails to reproduce the sharp
transition. Instead, a continuous crossover is predicted, which
becomes sharper and thus more accurate as ε/t increases
(see Fig. 6). The shortcomings of the scaling approximation
can be traced back to the particular form of the pure-state
v-representability domain of the density matrix in the square
4 × 4 cluster, which is composed of two disjoint regions as a
function of γ11 and γ12 for γ11 + γ22 = 2. In other words, the
pure-state representability domain is neither convex nor simply
connected at half-band filling. It is therefore not surprising that
the scaling approximation yields a continuous crossover, since
the scaling hypothesis implicitly assumes a convex or at least
path-connected representability domain. Nevertheless, aside
from this restriction, the overall predictions of LDFT always
remain correct. Moreover, in the absence of degeneracies at
εF (e.g., for Ne = 12 and Na = 16 in 2D) LDFT recovers its
usual performance for all model parameters. A more detailed

discussion of the effects of degeneracies on the representability
of the density matrix can be found in Ref. 31.

Finally, it is worth noting that the LDFT results for Egs

are invariably very accurate, even close to the transition and
despite the discontinuities observed in other exact calculated
properties. This is in fact the result of a compensation of errors
between the charge-density energy ECD = −ε�n/2 and the
interaction energy W . Indeed, in the transition region the
scaling ansatz overestimates both �n and W . In contrast,
the bond order and thus the kinetic energy are obtained quite
precisely [see Figs. 6(b)–6(d)].

V. SUMMARY AND OUTLOOK

A density-matrix functional approach to lattice-fermion
models has been applied to the inhomogeneous Hubbard
Hamiltonian on bipartite 1D and 2D lattices. As in the
continuum1 the kernel of the theory is interaction energy W ,
regarded here as a functional of the density matrix γij with
respect to the lattice sites. Based on previous investigations31

of the scalability and transferability of W [γ ], and on exact
analytical results for the Hubbard dimer, we propose a simple
approximation to W , which takes advantage of its scaling
behavior. In this way a unified description of the interplay
between correlations and charge redistributions is achieved
from weak to strong coupling and for all band fillings. Using
this approximation, several important ground-state properties
as well as the charge-excitation gap of 1D and 2D lattices have
been determined successfully as a function of the Coulomb
repulsion strength and of the external bipartite potential.

The accuracy of the results confirm the pertinence of
the scaling approximation and the transferability of the
interaction-energy functional. Among the reasons for the
success of the present scaled dimer approximation one should
first of all mention the universality of the correlation-energy
functional as stated by Hohenberg-Kohn’s or Levy-Lieb’s
formulations. Moreover, the present approach has the asset
of incorporating exact information on W [γ ] at the two most
important limits of weak and strong correlations. These
fundamental boundary conditions—somehow analogous to
the sum rules of the local-density approximation in the
continuum—provide a useful guide for the development of
the theory and are a further reason for the good performance
of the method.

In order to go beyond the present study it would be
worthwhile to investigate the role played by the on-site
form of the Hubbard-Anderson interaction in more detail.
For example, it is interesting to generalize the interaction-
energy functional to the case of site-dependent Coulomb
repulsions, since this would allow a more realistic description
of inhomogeneous systems like transition-metal oxides. Such
an extension is indeed possible by using a suitably scaled dimer
approximation with different on-site repulsions.40 Moreover,
the locality of the dominant interactions is a characteristic of
strongly correlated phenomena, which could be exploited more
systematically in the future. In this way it should be possible to
improve the flexibility of the explicit approximations to W [γ ],
thereby extending the range of applicability of LDFT.
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24R. López-Sandoval and G. M. Pastor, Phys. Rev. B 66, 155118

(2002).
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