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Enhanced-transmission metamaterials as anisotropic plates
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2Université des Sciences et de la Technologie Houari Boumedienne, Algeria
(Received 8 March 2011; revised manuscript received 6 May 2011; published 18 July 2011)

We present an original design of anisotropic metamaterial plates exhibiting extraordinary transmission through
perfectly conductor metallic screens perforated by a subwavelength double-pattern rectangular aperture array.
The polarization properties of the fundamental guided mode inside the apertures are at the origin of the anisotropy.
The metal thickness is a key parameter that is adjusted in order to get the desired value of the phase difference
between the two transversal electromagnetic field components. As an example, we treat the case of a half-wave
plate having 92% transmission coefficient. Such a study can be easily extended to design anisotropic plates
operating in terahertz or microwave domains.
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I. INTRODUCTION

Naturally birefringent materials, such as quartz, are usually
needed to design quarter- and half-wave plates. In the optical
domain such materials exhibit small index values (around
1.5), leading to an efficient transmission coefficient through
the plates. In addition, the ordinary and extraordinary indices
difference is very small and this leads to relatively thick plates
(a hundred or a thousand of wavelengths for a half-wave plate).
Contrarily, in the terahertz domain, the birefringence becomes
larger (5 × 10−2 at 1 THz for quartz1) but the average optical
index of the material is also increased (2.13 at 1 THz for
the same crystal). This obviously leads to a high reflection
coefficient and thus to very weak transmission signals.
The transmission is also decreased by intrinsic absorption
losses of the used materials1 in the corresponding spectral
range.

Recently, a quarter-wave plate for terahertz applications has
been proposed by Saha et al.. It is based on artificial anisotropy
between TE and TM polarizations created by diffraction
through a dielectric lamellar grating.2 Polarization properties
of hole arrays have been studied in many works. In 2004,
Gordon et al. have observed strong polarization dependence
in the transmission through elliptical nanohole arrays.3 More
recently, a similar phenomenon was demonstrated through
asymmetric C-shaped holes.4 Optical rotation was experimen-
tally demonstrated by using a metallic film perforated by an
array of chiral hole structures: Archimedean spiral slots that
induce polarization rotation in the far infrared region5 while
Bai et al.6 used gammadion-shaped cavities in the visible and
near infrared.

In Ref. 7, a polarization conversion was observed for
near-infrared wavelengths, in transmission mode through a
trilayer structure (metal/dielectric/metal) with L-shaped hole
arrays. More recently, an optical polarization manipulation has
been theoretically studied by a “stereo-plasmonic” structure
made of three metallic layers perforated with a periodic array
of rectangular holes.8 To obtain the polarization properties,
the rectangular apertures are differently orientated in each
layer.

The aim of our study is to present original design of
a half-wave plate (or a quarter-wave one) for the terahertz

domain. A geometrical anisotropy is caused by a grating
of rectangular subwavelength apertures engraved into a thin
perfectly conducting film. As it is well known, a monoperiodic
(1D) metallic lamellar grating with a period smaller than
λ behaves as a perfect polarizer (the transmitted plane
wave is perpendicularly polarized to the grating grooves).
Similar polarization properties are obtained for a metallic film
perforated by a biperiodic (2D) square array of rectangular
apertures: an electric field perpendicular to the longer side
of the apertures is totally transmitted while a field parallel to
this side is completely reflected.9 This is directly linked to
the excitation and the propagation, at a given frequency, of
a guided mode along the metal thickness. Nevertheless, one
notes that the transmission greatly depends on this thickness.10

In fact, interference harmonics of this guided mode lead to
additional peaks in the transmission spectrum. This property
is general for any structure where the transmission is based
on the excitation and the propagation of a guided mode. It
was already verified in the case of annular apertures11 and for
bowtie nanoapertures.12

As it will be seen in the following, these polarization and
propagation properties of the fundamental guided mode can be
exploited to conceive a structure where anisotropy is induced
by the presence of two different polarization sensitive patterns:
two perpendicular rectangular apertures of unequal lengths as
seen in Fig. 1. The idea is that each of the two transverse
components of the electric field is effectively transmitted by
only one aperture at the same wavelength. A phase difference
appears because the effective index of the guided mode differs
from one to the other aperture. Consequently, it is possible to
adjust the value of this phase difference by changing the metal
layer thickness.

In the following, we give a simple equation which ex-
plains the principle of the proposed structure, the way to
obtain a half-wave plate and how to design it through the
determination of its geometrical parameters. Then, more
realistic numerical simulations based on the finite difference
in the time domain (FDTD) algorithm are performed in
order to obtain more exact values of the parameters and to
verify that the desired polarization properties can be correctly
obtained.
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FIG. 1. Schematic of the proposed structure: a biperiodic grating
(px and py are the periods along x and y, respectively) with two
rectangular apertures per period (ax �= ay) engraved into a h-thick
metallic screen.

II. MONOMODAL MODAL METHOD (MMM)

The structure is a thin metallic film (thickness h) perforated
by a square 2D grating (period px = py = p) of rectangular
apertures (see Fig. 1). For simplicity, all the considered
structures are supposed to be free standing in vacuum and
there is no dielectric media in the cavities (apertures). The
grating period is supposed to be smaller than all the incident
wavelengths (p < λ) and the angle of incidence is always
equal to zero (normal incidence). Consequently, there is only
one homogeneous transmitted wave, the zero-order diffracted
one which propagates perpendicular to the plate. All the
other transmitted diffracted orders are evanescent and are not
far-field detected.

In the following, the metal is supposed to be perfectly
conducting so no absorption losses are considered. This
assumption is justified in the terahertz frequency domain and it
is reinforced by the fact that involved propagation distances are
small compared to the wavelength (h < λ).13 The transmission
properties of such apertured metallic structures are directly
connected to the electromagnetic modes which can propagate
in the cavities. In our case, the rectangular apertures are smaller
than the incident wavelength and only the fundamental cavity
mode can be efficiently excited.

For a rectangular aperture of length a and width b (b <

a/2), the fundamental mode is the TE10 mode which is
polarized perpendicular to the longer side of the aperture. This
mode has a cut-off wavelength of λc = 2a, which leads to a
dispersive effective index verifying the equation:

ñ(a) =
√

1 − λ2

λ2
c(a)

. (1)

In the proposed structure, there are two perpendicular
rectangular cavities. The polarization directions of the modes
are perpendicular and the effective index depends on the cavity
parameters (the lengths ax and ay in our case). Therefore, by
adjusting the length of the two apertures, it is possible to get
a geometrical birefringence. Nevertheless, the transmission
through each aperture should be maximum for the same value
of the wavelength (working point). This last condition is then
fulfilled by adjusting the metal thickness.

The transmission properties of apertured metallic structures
can be theoretically studied by several methods. The finite
elements method and FDTD are very efficient tools but they
lead only to numerical calculations. On the contrary, many
papers have used the modal method to study the diffraction of
electromagnetic waves by periodic structures made in a perfect
metal. It is impossible to give an exhaustive bibliography
on this subject; however, the formalism is clearly exposed
for inductive grids in Ref. 15. The same method is used to
study the transmission by an annular apertures array made in
perfect conductor.16 More recently, in the context of enhanced
transmission by small apertures, a review paper by Garcı́a-
Vidal et al. describes the method, gives a bibliography, and
shows many interesting applications.17

In the regions above and below the metal, the incident and
diffracted fields are expressed as a series of Rayleigh waves.
In the cavities, the field is generally written as a superposition
of infinite series of the waveguide modes. Each waveguide
mode satisfies both the Helmholtz equation and the appropriate
boundary conditions along the vertical walls of the cavities.
The tangential components of the electric and magnetic fields
are then matched at the grating free space boundaries (z = 0
and z = h) which leads to a system of linear equations of
infinite dimension.

When the transversal spatial dimensions of the apertures
are small, only the fundamental mode of the waveguides has
a significant contribution to the diffracted amplitudes. In this
case, the linear system can be drastically simplified and a very
simple analytical expression for the diffracted field amplitudes
can be extracted. This approach, named the monomodal modal
method approximation, was presented many years ago in
several papers, for instance, in Ref. 15. In the context of
enhanced transmission, the monomodal approximation was
firstly used for the study of lamellar grating.18–20

Within the single-mode approximation, the zero-order
complex transmitted amplitude can be written:

t0 = 4YincYm|Sinc|2 exp(i�)

(Ym + Ỹ )2 − exp(i2�)(Ym − Ỹ )2
. (2)

In this equation, i = √−1, � is a phase angle created by
wave propagation in the cavity. It depends on the effective
index ñ of the cavity mode and on the metal thickness h:

� = h
2π

λ
ñ. (3)

Ym and Yinc are the admittances of the cavity mode and of
the incident wave, respectively. Let us define Sd as an overlap
integral. It is an integral over one aperture of the product of
the transversal electric fields of the mode and of a Rayleigh
wave “d”:

Sd =
∫∫

Aperture
ET

m

(
ET

d

)∗
dxdy. (4)

Sinc becomes the corresponding integral Sd for the incident
wave. Ỹ is an effective admittance in which all the diffraction
effects are incorporated: Ỹ = ∑

d Yd |Sd |2.
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In the expression of Ỹ , the summation runs over all the
diffractive orders (p,q ∈ Z) and over the polarization index
(σ = 1,TE Rayleigh mode, σ = 2,TM),

Ỹ =
∑

σ=1,2

+∞∑
p=−∞

+∞∑
q=−∞

Yp,q |Sp,q |2 = Yinc|Sinc|2

+
∑

σ=1,2

∑
p �=0

∑
q �=0

Yp,q |Sp,q |2 = Yinc|Sinc|2 + iC(λ). (5)

The first term corresponds to the incident mode (diffraction
order p = 0, q = 0) and it is a real term. All the other terms are
pure imaginary because, when λ > p, all the diffracted orders
are evanescent waves and their admittances are pure imaginary
numbers. Notations aside, Eq. (2) is given in Ref. 21, a paper
that proposes a discussion of the effective medium theory of
holey films.

When the apertures have a simple geometry (rectangle,
square, disk, annular), the cavity modes have simple mathe-
matical forms. Analytical expressions can then be found for
the overlap integral.22 Moreover, in the metamaterial limit
(λ � p) all the diffraction terms can be neglected [C(λ) �
Yinc|Sinc|2] and a very simple equation is obtained:

t0 −→ t0h
∼= 1

cos � + if sin �
with

f = 1

2

(
1

Yinc

Ym

|Sinc|2
+ |Sinc|2

Ym

Yinc

)
. (6)

Equation (6) leads to an Airy-like formula for the trans-
mitted intensity T0 = |t0|2, which is obtained in the theory
of the Fabry-Perot interferometer. However, contrarily to a
conventional Fabry-Perot interferometer, the effective index in
Eq. (3) verifies a dispersion equation with a cutoff. The position
of the transmission’s maxima seems to be easily determined
via Eq. (6). If sin � = 0 (� = lπ with l an integer � 0),
T0 = 1 and transmission maxima are reached.

As we are interested by polarization problems, two kinds
of maxima have to be distinguished: they correspond to even
or odd values of l:

l odd: l = 1, 3, 5 sin(�x) = 0, cos(�x) = −1⇒tx= −1,

(7a)
l even: l = 0, 2, 4, 6 sin(�x) = 0, cos(�x) = +1⇒tx= 1.

(7b)

For l > 0, we obtain a series of maxima similar to Fabry-
Perot’s. They depend on metal thickness and they need a
sufficient thickness (h > l λ

2 ) to occur. The solution with
l = 0 is not possible for a conventional Fabry-Perot with a
nondispersive index. But it corresponds here to a new kind of
maximum. The l = 0 maximum is reached near the cut-off
wavelength. It is important to note that the corresponding
value of the wavelength is independent of the metal thickness
and can be observed even for a very small thickness. This
new transmission peak will be named “cut-off peak” in the
following. It was predicted by the coworkers in a theoretical
study of coaxial aperture structures in the optical domain11

and experimentally observed in Refs. 23 and 24.

The position of the peaks can thus be determined approxi-
matively:

λ0
∼= λcutoff ; λl>0

∼= 2hl√
1+(

2hl
λcutoff

)2
= 2hl√

1+(
h l

a

)2
. (8)

As explicitly mentioned in Eq. (1), for a fixed value of the
wavelength, the effective index can be controlled by changing
the geometrical parameters of the cavity section, for instance,
the rectangle length a.

The principle of the determination of the parameters of a
half-wave plate is now simple to understand. We use a structure
(see Fig. 1) with two perpendicular rectangular apertures in
the primitive grating cell. The length ax of the first aperture
(ax,bx ; ax > bx) is parallel to the y axis while the length ay of
the second aperture (ay,by ; ay > by) is parallel to the x axis.
Then, we have to adjust ay in order to have the “cut-off peak”
for y polarization which coincides with the l = 1 peak of the
x polarization.

This leads to the structural relation:

ay = h√
1 + h2

a2
x

. (9)

Unfortunately, this last expression does not work correctly
because it is found on Airy expression of the transmitted
coefficient which is an approximation [Eq. (6)]. It assumes
to completely neglect diffraction and it corresponds to an
homogenization of the structured plates that is absolutely valid
for λ � p. But when λ > p, the evanescent waves, which are
confined in the near field, have a definite influence on the
far-field transmitted amplitude as they induce an additional
imaginary part for Ỹ . Note that the real part is independent of

λ (ReỸ = Yinc |Sinc|2 = 2
√

2
π

√
ab

pxpy
for a rectangular aperture

array illuminated at normal incidence) but the imaginary part
is not equal to zero and vanishes for a wavelength close to the
cutoff.

Figure 2 illustrates this point where a rectangular aperture
with a = 0.9p, b = 0.1p, and h = p is considered. On
Fig. 2(a), we have compared the exact transmission (T0 = |t0|2)
and the approximate one T0h = |t0h|2. For the two curves, the
cut-off peak is obtained for λ � λc = 2a, but in fact a small
shift appears. However, it is clear that the difference between
the two curves is larger for the first Fabry-Perot peak (l = 1).
As shown in Fig. 2(b), the imaginary part of Ỹ is at the origin
of this discrepancy as it induces a red-shift of this peak as
mentioned above. However, for the rigorous coefficient t0,
the phase difference between the cut-off peak and the first
Fabry-Perot peak remains around π .

So, a half-wave plate can be designed but the parameters
must be determined with the nonapproximate expression t0
[Eq. (2)] or a more general tool such as FDTD that is
able to simulate the transmission through a double-apertured
structure.

III. STUDY OF THE WHOLE STRUCTURE

To design the double structure, we have to take into
account the fact that both of the two apertures should have
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FIG. 2. (Color online) (a) Normalized trans-
mission T0 = |t0|2 (solid blue line) and T0h =
|t0h|2 (in dashed-dotted red line) calculated from
Eqs. (2) and (6) for a 2D grating of rectangular
apertures with a = 0.9p, b = 0.1p, and h = p.
The phase of t0 is also shown (in green dashed
line). (b) Real (solid blue line) and imaginary
(dashed-dotted red line) parts of the function Ỹ

that contribute in the expression of t0.

cut-off wavelengths larger than the period. Consequently,
ax and ay must be larger that p/2. Thus, we first fix the
geometrical parameters of one of the two rectangular apertures,
for example, ax = 0.75p, bx = 0.1p, and h = 0.8p (see
Fig. 1). In addition, by < p − ax is a second condition that
must be fulfilled to enable positioning the two perpendicular
rectangular apertures into one grating period. The rest of the
optimization procedure is done by varying the length ay and
by monitoring both the transmission and the phase difference
(PD) using the fast calculation algorithm of the monomodal
method.

Let us denote tx and ty the transmission amplitudes through
the two apertures (ax,bx) and (ay,by) respectively. Figure 3
shows the result of the optimization steps: we have plotted
the PD defined by PD = arg(ty) − arg(tx) as a function of λ/p

and ay/p. In this figure, three contour plots are underlined:
the white lines that correspond to equality of the transmission
amplitudes (|tx | = |ty |), the other lines correspond to a specific
values of PD: black line corresponds to a PD of π and the blue
line to PD = π/2.

Consequently, by exploiting the diagram of Fig. 3, one
can determine all the geometrical parameters of the desired
structure. Two results are summarized in Fig. 3: point A
corresponds to a half-wave plate with the geometrical param-
eters ax = 0.75p, ay = 0.582p, bx = 0.1p, by = 0.2p, and

h = 0.8p. The operating wavelength is then λ = 1.194p with
a transmission coefficient of Tλ/2 = 0.93 [see Fig. 4(a)]. Point
B corresponds to a quarter-wave plate where the parameters
become ax = 0.75p, ay = 0.653p, bx = 0.1p, by = 0.2p, and
h = 0.8p. The operating wavelength is λ = 1.182p in this case
but a smaller transmission coefficient (Tλ/4 = 0.57) is reached
as seen in Fig. 4(b).

Let us study more precisely the case of the half-wave
plate. The monomodal method can hardly handle the double-
apertured structure. Thus, a finite difference time domain (3D-
FDTD) home-made code25 is used to simulate the transmission
through the whole structure. In the x-y plane, the calculation
window is equal to the elementary square cell (p × p) with
periodic boundary conditions. In the z direction, perfectly
matched layers (PML) boundary conditions are used. A
uniform meshing of δx = δy = δz = p/150 is applied, leading
to more than 12 × 106 nodes for the whole calculation.

Because of the spatial meshing of the structure, the
geometrical parameters of the modeled one must be slightly
modified in order to get the same transmission coefficients
(peaks position) as the monomodal method (point A of Fig. 3).
For example, the metal thickness was found to be h = 0.83p

instead of h = 0.8p used within the monomodal method.
Accordingly, we have performed three successive steps for
the FDTD calculations. Figure 5 presents the results of these
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FIG. 3. (Color) Phase difference PD =

arg(ty/tx) as a function of λ/p and ay/p for
h = 0.8p. The white contour plots give the
couples (λ,ay) that correspond to an equal trans-
mission coefficient through the two apertures
(|tx | = |ty |). The black line corresponds to PD =
π (point A answers the case of a half-wave
plate) and the blue line to PD = π/2 (point B
corresponds to a quarter-wave plate).

calculations in term of transmission spectra obtained through
three structures. An x-polarized incident plane wave is
supposed to illuminate the first grating [Fig. 5(a)] while a
y-polarized one is considered for the second grating [Fig. 5(b)].
The corresponding transmission spectra are plotted in Figs.
5(d) and 5(e), respectively. One can clearly see that the high
transmission at the FP (l = 1) peak of the first spectrum almost

corresponds to the cut-off transmission peak of the second
structure. A small shift is necessary to adjust the PD between
the transmitted x and y components. The lower parts of
Fig. 5 verify that the complete structure, with two perpen-
dicular apertures per period, has the properties of a half-wave
plate. The transmission intensity spectrum is calculated in the
case of a normally incident plane wave but linearly polarized
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FIG. 4. (Color online) Transmission spectra
for the two configurations of half-wave plate
(a) and quarter-wave one (b). The geometrical
parameters are given in the legend of each
subfigure. The phase differences are plotted
with a solid black line. The two vertical solid
black lines indicates the working points for each
configuration (λ = 1.194p for the half-wave
plate and λ = 1.182p for the quarter-wave one;
h = 0.8p in both cases).
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FIG. 5. (Color online) The design steps of the half-wave plate. [(a) and (d)] The schema and the transmission coefficient, respectively, of a
p-period array of rectangular apertures when illuminated by a linearly polarized plane wave along the x axis. [(b) and (e)] The corresponding
schema and transmission coefficient of an array of rectangular apertures when illuminated by a y-linearly polarized plane wave. (c) The schema
of the combined structure illuminated at 45◦ from the x axis; (f) the transmitted energy in the zero diffracted order (solid dashed black line)
and the phase difference PD (solid green line). In all cases, the metal thickness is set to h = 0.83p.

at 45◦ from the x axis. The obtained spectrum and the PD
are simultaneously plotted in Fig. 5(f). One can clearly note a
92% transmission coefficient at λ = 1.223p accompanied by
a phase difference of PD = 1.01π .

In order to verify that the transmission mechanism which
explains the polarization properties of the plate is well
understood, we have calculated the field into the two cavities
at the working wavelength value. Figure 6 presents sections
of the electric intensity (I = |Ex |2 + |Ey |2 + |Ez|2) in two
perpendicular planes intersecting the two apertures in their
middle. The illumination conditions are the same as in
Fig. 5(f). One can clearly note the presence of only one
node of the intensity distribution along the z direction
inside the aperture (ax,bx) while an almost uniform intensity
distribution exists inside the second aperture. This confirms
the excitation of the (l = 1) and (l = 0) Fabry-Perot harmonics
inside the (ax,bx) and (ay,by) apertures, respectively, at this
wavelength.

To verify the polarization response of the designed half-
wave plate, we have performed the numerical experiment
shown in Fig. 7(a). So a linearly polarized incident plane wave
is supposed to illuminate the plate at normal incidence. The
angle of polarization φ is defined relatively to the x axis. A
second polarizer is used to analyze the polarization of the
transmitted wave.

As is well known, after passing through a perfect half-
wave plate, the original polarization plane is rotated through
an angle 2φ. Figure 7(b) presents the obtained transmission
spectra as a function of the analyzer angle α when φ = 45◦. At
the working wavelength value λ = 1.223p, the transmission
variations versus α almost verify a Malus law with a maximum
exactly located at α = 135◦ = π − φ demonstrating a rotation
angle of 2φ. Nevertheless, the plate is not a perfect half-wave
one. The transmitted wave is elliptically polarized with a very
small ellipticity of 1:3000 corresponding to a path difference
of λ/2 ± λ/10 000.
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FIG. 6. (Color online) Two plane sections given the electric
intensity distributions around the whole double apertured structure
when illuminating at normal incidence by a linearly polarized plane
wave (λ = 1.223p). The incident electric field is directed at 45◦ from
the x axis. The vertical planes intersect the apertures in their middle.

To evaluate the bandwidth of this plate, we plot on Fig. 8
the polarization ellipticity η (solid black line) of the elliptical
polarization of the wave emerging from the plate as a function
of the wavelength in the case of an incident polarization at
φ = 45◦. This ellipticity is defined by the ratio of the minor
axis Am to the major one AM [η = tan(ξ ) = Am/AM ]. It can
be related to the PD and to the amplitude of the x and y

components through the expression:

sin(2ξ ) = sin(2χ ) sin(PD), (10)

where χ is given by tan(χ ) = Ey/Ex .
By the same way, the ellipsis axis rotation β (see inset of

Fig. 8), that is due to the difference between the two transmitted
amplitudes Ex and Ey , is given by

tan(2β) = tan(2χ ) cos(PD). (11)

The variations β(λ) are also plotted (dashed blue line)
on the same Fig. 8 where the transmission spectrum is
also remembered (dotted-dashed red line). First, we fix the
wavelength bandwidth so that it corresponds to 20% variations
of the transmission coefficient. According to Fig. 8, we get
a bandwidth of 
λ = λ/40 inducing a maximum elliticity
variations of 
η = 0.03. This value is very small. So it can be
assumed that the polarization of the transmitted wave remains
linear over all this bandwidth. In addition, the ellipsis major
axis, is directed along the y direction (2 × φ = 2 × 45◦ =
90◦) at the working wavelength λ = 1.223p, but this almost
remains valid over all the bandwidth ([
β]max � 10◦). All
these properties correspond to a very efficient half-wave plate.

To be more concrete, let us set the working wavelength
to λw = 300 μm that corresponds to a frequency of 1 THz.
The structure dimensions become p = 245 μm, ax = 179 μm,
ay = 143 μm, bx = 24.5 μm, by = 49 μm, and h = 196 μm.
With these values, the wavelength bandwidth is about 
λ =
7.5 μm that corresponds to a frequency bandwidth of

ν = 25 GHz.
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IV. CONCLUSION

In summary, we have designed and theoretically tested
an anisotropic metamaterial based on enhanced transmission
structures exhibiting guided modes inside their subwavelength
apertures that are engraved into opaque metallic plates. The
obtained phase difference, that can freely be set, directly
involves the effective index of the guided modes inside each
aperture. The geometrical parameters of the apertures (includ-
ing the metal thickness) allow fixing the cut-off frequencies
of the guided modes. Any phase difference value, associated
with same transmission coefficients along two perpendicular
polarization directions, can be obtained. An example of a half-
wave plate with 92% transmission coefficient is theoretically
demonstrated. The diagram of Fig. 3 shows also another
solution to get a nonoptimized quarter-wave plate exhibiting a
transmission coefficient of 57%. This kind of structure can be
exploited in both terahertz and microwave spectral domains
but it also can be extended to the visible range in spite of
metal losses. Nevertheless, for the proposed structure, the
wavelength bandwidth where the plate can be considered as a
good half-wave plate is not very large. The bandwidth depends
on the width of the transmission peaks which is directly related

to the width (bx and by) of the apertures. It is important to
optimize the plate bandwidth for each particular application.
Other geometrical patterns can be used for this purpose. Their
“common point” must be the high sensitivity to the polarization
properties. In addition, if the technological fabrication process
needs the presence of a substrate, this latter slightly modifies
the transmission efficiency and induces a small modification
of the working wavelength value. Consequently, an adjustment
of the metal film thickness is required to reach the desired
effect at the chosen wavelength. Moreover, based on the
same principle, other artificial anisotropic plates can be planed
and we are working on the design of quarter-wave and half-
wave plates where the wavelength bandwidth is significantly
improved.
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