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Angle dependence of the frequency correlation in random photonic media: Diffusive regime
and its breakdown near localization
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The frequency correlations of light in complex photonic media are of interest as a tool for characterizing the
dynamical aspects of light diffusion. We demonstrate here that the frequency correlation shows a pronounced angle
dependence both in transmission and in reflection geometries. Using a broadband white-light supercontinuum,
this angle dependence is characterized and explained theoretically by a combination of propagation effects
outside the medium and coherent backscattering. We report a strong dependence of the coherent backscattering
contribution on the scattering strength that cannot be explained by the diffusion theory. Our results indicate that
coherent backscattering of the frequency correlation forms a sensitive probe for the breakdown of the diffusive
regime near localization.
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I. INTRODUCTION

Nanostructured photonic media, such as photonic crystals,
metamaterials, and random media, are of interest due to their
potential of achieving nanoscale control over the flow and
emission of light. The wave nature of light results in a range
of interference phenomena, which modify the propagation of
light through complex photonic materials, in analogy with
the theory of electrons in solids. Interference effects lead to
new correlations between optical fields at different angles and
frequencies after interaction with the medium.1 For random or
partially disordered photonic media, methods have appeared
that allow for a statistical interpretation of the spectral width
of the transmission and reflection correlations in terms of the
distribution of dwell times of light inside the medium.1–5 The
short-range frequency correlation, known as C(1), which is
present in the spectrum after interaction with the medium, has
evolved into a broadband tool for characterizing the dynamic
transport parameters of photonic nanomaterials.6

Here, we explore the angle dependence of the frequency
correlation both in transmission and reflection geometries.
Previous theoretical and experimental studies of the C(1)

frequency correlation have not considered its dependence on
scattering angle.5 The angle dependence of the angular corre-
lation function in transmission was studied by Li and Genack,7

who showed that the far-field and near-field correlations form
a Fourier-transform pair. We derive a similar relationship
for the frequency correlation, which, however, is shown to
produce an angle-dependent narrowing of the correlation
width. In addition, we investigate interference contributions
to the frequency correlation in backscattering resulting from
coherent backscattering of light. For photonic media, time-
reversal symmetry dictates that for every path contributing to
the reflectance, a time-reversed path is present that interferes
constructively in exact backscattering. This effect, which is a
manifestation of weak localization, is known in photonics as
the coherent backscattering (CBS) effect.8,9 The constructive
interference in coherent backscattering results in a cone of
enhanced intensity versus an angle around the backscattering
direction, which is of order unity in intensity for all scattering

strengths. The angular extent of the CBS cone increases
proportional to the photonic strength (ke�B)−1 of the medium,
where ke denotes the wave vector of light in the medium and
�B denotes the (Boltzmann) transport mean free path.10

Effects of coherent backscattering have been observed in the
time-correlation function of colloidal suspensions11 and in the
angular correlation function (“memory effect”).1,12 However,
the direct contribution of time-reversed light paths has never
been investigated for the frequency correlation. A pronounced
angle dependence of this correlation can be expected from
the relationship between the time duration of a short pulse
after diffuse propagation and the spectral correlation function,3

combined with the observation of angle-dependent changes
in the pulse propagation time in scattering media.13 We
present here both a theoretical and experimental description
of this effect, using a series of strongly scattering media with
scattering strengths ranging from the diffuse scattering to the
strongly photonic regime. By varying the scattering strength,
we study the breakdown of the diffusion approximation for
the correlations in coherent backscattering. We report results
showing that the frequency correlation depends on scattering
strength in a new and previously unexplored way, and which
indicate that the frequency correlation may provide a more
sensitive means for accessing long light paths compared
to the conventional intensity CBS effect.14 Generally, the
frequency correlation can be used to obtain information on
the distribution of photon dwell times complementary to time-
resolved experiments, which are usually not easily extended to
angle-dependent measurements.15–18 In addition, we discuss
the possibility that the combination of CBS and frequency
correlations yields additional higher-order correlation effects
that are unique for the four-field correlation and are not found
in conventional intensity measurements.

II. THEORY

A. Angle-dependent frequency correlations in transmission

Following the general definition1, the short-range frequency
correlation function C

(1)
û,â(ω,�) between a single scattering
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direction û and a single incident direction â is given by

C
(1)
û,â(ω,�) = |〈tû,â(ω + �)t∗û,â(ω)〉|2

〈|tû,â(ω + �)|2〉〈|tû,â(ω)|2〉 , (1)

here tû,â is the transmission coefficient for the electric field
and � is the frequency difference between two fields. The
short-range frequency correlation has been well studied both
experimentally and theoretically.1,3–5 We follow here the
derivation by de Boer et al. in a slightly different notation,
where we make use of the “intensity on a scatterer” I, i.e.,
the intensity at the last scatterer in the medium.5,19 The
intensity I is related to the source S by an intensity propagator
H that contains the four-point ladder vertex with attached
incoming Green’s functions. After Fourier transformation of
the tranverse coordinate, I can be written as

I(q⊥,z; t) = 16π2

�B

∫
dz′

∫
dt ′H (q⊥,z,z′; t − t ′)S(q⊥,z′; t ′).

(2)

Equation (2) can be readily extended to combinations of
fields with different frequencies by modifying the source S. In
the following, we consider Ĩ as a complex field-field correlator
instead of a real-valued intensity. The incident light beam is
described by a Gaussian intensity profile with waist ρ0 that is
injected into the scattering medium at an injection depth zi .
For the frequency correlation, we consider a mixed-frequency
source containing two oscillating fields with frequencies ω

and ω + �. This yields an oscillating phase ei�t in the time
response. After Fourier transformation, the injected source
field profile, S̃, is given by

S̃(q⊥,z; t) = πρ2
0I0�Bδ(z − zi)e

− 1
4 |q⊥|2ρ2

0 ei�t . (3)

The propagator H̃ of a finite slab is considered, which will
be most convenient for further use when written as a function
of frequency

H̃ (q⊥,z,z′; t) = 1

2π

∫
d�ei�t H̃ (q⊥,z,z′; �) (4)

with5

H̃ (q⊥,z,z′; �)

= vE

4π�BD

sinh[(z′ + τ0)η̃] sinh[(L − z − τ0)η̃]

η̃ sinh[Lη̃]
, (5)

where η̃ = (|q⊥|2 + 1/Dτa − i�/D)1/2, D being the diffu-
sion constant of the light. The effect of internal reflections can
be included in H̃ following, for example, Zhu et al.20 The
diffuse propagator H̃ , in principle, depends on the optical
frequency ω through the dispersion of the parameters vE ,
�B , τa , and D in Eq. (5). However, in our experiments we
will consider these parameters constant as their variation with
frequency in the visible spectrum has been shown to be smooth
for the materials under study.6,17,21,22

FIG. 1. (Color online) Schematic picture of light transport
through a diffusive slab, indicating injection and extraction planes
at zi and zT

e , Gaussian source profile (shaded area, red), and the
additional path length difference ξ outside the medium.

The expression for Ĩ(q⊥,z,t) follows from Eqs. (2)–(4) as

Ĩ(q⊥,z; t) = 16π3ρ2
0I0

∫
dt ′

∫
d�ei�(t−t ′)H̃ (q⊥,z,zi ; �)

×ei�t ′e− 1
4 |q⊥|2ρ2

0

= 1

2π

∫
d�ei�t Ĩ(q⊥,z; �) , (6)

where the second line is obtained by the integration over t ′ of
ei(�′−�)t ′ , yielding δ(� − �′). Here, the final expression for
Ĩ(|q⊥|,z; �) is

Ĩ(q⊥,z; �) = 8π3ρ2
0I0vE

�BD
e− 1

4 |q⊥|2ρ2
0

× sinh[(zi + τ0)η̃] sinh[(L − z − τ0)η̃]

η̃ sinh[Lη̃]
.

(7)

The transmitted intensity in the far-field can be obtained
by attaching outgoing Green’s functions to the mixed-field
correlator Ĩ. In the most simple approximation, we assume
all the energy to be emitted from an ejection plane zT

e =
L − 2τ0 − 2

3�B with a weight of the ejection function given
by �B/16π .10,19 From the ejection plane, spherical waves are
emitted into the far-field. Since the detector collects intensity in
an angular range, we write down the expression of the far-field
intensity in direction û at a wave front emitted under an angle
θ with the normal. This is given by the integral of intensities
over all positions r⊥ on the ejection-plane times the Green
functions containing the corresponding path length difference
ξ = r⊥ · û = |r⊥| sin θ cos φ, as shown in Fig. 1

g̃û(r0,r⊥; ω) ≈ −e
i ω

c0
(r0+r⊥·û)

4πr0
, (8)

where r0 denotes the distance on the optical axis from the
detector to the center of the ejection plane (i.e., r⊥ = 0)
and φ is the azimuthal angle of r⊥ with the radiation plane
including θ .

The angle-dependent far-field intensity at a distance r0

is obtained by attaching the outgoing Green’s functions
to the near-field intensity of Eq. (7). This results in a
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mixed-frequency bistatic coefficient23 in transmission, and for
perpendicular incidence γ̃ T

û,0̂
(�) is given by

γ̃ T

û,0̂
(�) = 4πr2

0

I0A

�B

16π

∫
dr⊥g̃û(r0,r⊥; ω)g̃�

û(r0,r⊥; ω + �)

× Ĩ
(
r⊥,zT

e ,�
)

= �Be
i �

c0
r0

64π2I0A

∫
dr⊥e

i �
c0

r⊥·ûĨ
(
r⊥,zT

e ; �
)
,

(9)

where A denotes the detector area following the definition
of the bistatic coefficient.23 The second line of Eq. (9) can
be identified as a Fourier transform of Ĩ(r⊥,zT

e ,�) to a
transverse momentum coordinate −� sin θ

c0
û⊥, where û⊥ sin θ

is the projection of the scattering vector û onto the ejection
plane. This Fourier relationship between the near-field and the
far-field spectral correlation follows the van Cittert-Zernike
theorem and is an example of a more general theorem dealing
with spectral invariance of light on propagation.24 A similar
Fourier relationship holds for the angular correlation function,
as was shown by Li and Genack.7 The Fourier transform results
in a final expression for the scattering bistatic coefficient

γ̃ T

û,0̂
(�) = �Be

i �
c0

r0

64π2I0A
Ĩ

(
−� sin θ

c0
û⊥,zT

e ; �

)
, (10)

with Ĩ being the near-field correlator in momentum space,
Eq. (7). The correlation function of Eq. (1) can be calculated
by identifying that 〈tû,0̂(ω + �)t�

û,0̂
(ω)〉 ≡ γ̃ T

û,0̂
(�), from which

the correlation in transmission follows as

C
(1)
û,0̂

(�) =
∣∣γ̃ T

û,0̂
(�)

∣∣2

∣∣γ̃ T

û,0̂
(0)

∣∣2 . (11)

Equation (10) shows that the far-field frequency correlation
gains an additional angle-dependent dephasing, which can be
written as a transverse momentum that is proportional to the
frequency difference �/c0 and the angle θ .

The spectral correlation of Eq. (11) has a characteris-
tic spectral width ��(θ ), which in the forward direction
is approximately given by ��(0)/2π 	 1.46D/L2.3 For
nonzero angles, the spectral width is reduced, as is shown
in Fig. 2 where we have calculated the spectral narrowing
��(π/2)/��(0) as a function of the full width at half
maximum of the spectral correlation function. Figure 2
shows that the spectral narrowing depends strongly on the
combination of the incident beam size ρ0 and the initial spectral
width. For typical beam sizes of around 25−250 μm, the
narrowing effect is pronounced for correlation widths in the
range 10−100 cm−1. This frequency width corresponds to
dwell times Td 	 π/�� in the range 0.1–1 ps, or several
hundreds to thousands of scattering events. This regime applies
to many types of photonic nanomaterials with thickness in
the range of hundreds of nanometers to several micrometers,
demonstrating that the angle dependence of the frequency
correlation in Eq. (11) is a sizable effect in many situations.

FIG. 2. Calculated spectral narrowing of the frequency correla-
tion ��( π

2 )/��(0) against frequency correlation width ��(0)/2π ,
for various values of the incident beam width ρ0 of 25 μm (thick
line), 250 μm (line), and 2.5 mm (thin line).

B. Angle-dependent frequency correlations in reflection

While the C(1) frequency correlations in transmission are
governed by long light paths scaling with the slab thickness L,
the correlation in reflection is governed by paths of the order
of the mean free path �B . In addition, the reflection geometry
is characterized by the presence of weak localization in the
backscattering direction.

We start again from the frequency correlation of Eq. (1),
where this time we consider reflection coefficients rû,0̂ for
the electric field. For the case of reflection, we expand the
numerator of Eq. (1), analogous to Berkovits and Kaveh,12 into
combinations of diffusive and maximally-crossed multiple-
scattering contributions, respectively, denoted here by L
(diffuson) and C (Cooperon) [cf. Fig. 3(a)].10 The spectral
correlation function consists of four diagrams, consisting of
two diffusons (LL*), two Cooperons (CC*), and two mixed-
diagram contributions (LC* and CL*). We write the correlation
as the sum of two mixed-frequency bistatic coefficients
γ l

û,0̂
(ω,�) and γ c

û,0̂
(ω,�) :

C
(1)
û,0̂

(ω,�) = N
[∣∣γ l

û,0̂
(ω,�) + γ c

û,0̂
(ω,�)

∣∣2]
, (12)

where N is a normalization factor given by N = 1
4γ l

û,â(ω,0)−2.
Analogous to the derivation in transmission, the bistatic
coefficient for the ladder contribution can be written as

γ̃ l

û,0̂
(ω,�) = �Be

i �
c0

r0

64π2I0A
Ĩ

(
−� sin θ

c0
û⊥,zR

e ; �

)
, (13)

where zR
e = 2

3� denotes the ejection plane in reflection, based
on the average and the weight of the ejection function as
defined in Ref. 19. For the case of the coherent backscattering
contribution, the solution is obtained by adding the incident
and outgoing plane waves on positions r⊥, r′

⊥
10

γ̃c(q⊥,ω,�) = �B

4Aμi

∫ ∫
d2r′

⊥d2r ⊥e−iq⊥·(r⊥−r′
⊥)

×H̃ (r⊥ − r′
⊥,zi,ze,�)S̃(r′

⊥,zi ; �), (14)

where q⊥ = k0û⊥ sin θ denotes the transverse wave-vector
difference of the incident and outgoing waves. Following the
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FIG. 3. (Color online) (a) Four-field diagrams contributing to
the frequency correlation C

(1)
R (ω,�), from left to right: LL*, CC*,

LC*, and CL*. (b) Frequency full width at half maximum ��,
normalized to width at backscattering θ = 0 for the different diagram
contributions. (c) Relative contribution of various diagrams to the
total C(1) correlation. (d) Total calculated broadening of correlation
function against backscattering angle.

derivation of Sec. II A, we find a similar expression for the
bistatic coefficient with the addition of a wave vector q⊥

γ̃ c

û,0̂
(ω,�) = �Be

i �
c0

r0

64π2I0A
Ĩ

(
q⊥ − � sin θ

c0
û⊥,zR

e ; �

)
. (15)

The angle-dependent frequency width of the various dia-
grammatic contributions to the frequency correlation is shown
in Fig. 3(b), while their relative amplitude contributions to the
total correlation are shown in Fig. 3(c). In exact backscattering
(θ = 0), γc equals γl , and the contributions of the four
combinations LL*, CC*, CL*, and LC* are equal. For nonzero
wave vector q⊥, the CBS contributions broaden spectrally
due to the reduced weight of long light paths [cf. Fig. 3(b)].
However, the CBS contribution decreases rapidly in intensity
for large scattering angles [cf. Fig. 3(c)], resulting in recovery
of the purely diffusive correlation at large angles. The resulting
frequency broadening of the total correlation, including the
contributions of all diagrams, is shown in Fig. 3(d).

The angle dependence in the coherent backscattering-
frequency correlation shows similarities to the time-correlation
function of weakly scattering colloidal suspensions in
backscattering.11,25 These effects are related because of the
presence of the same path-length distribution in the dephasing
caused by moving particles. However, whereas the time-
correlation is governed by the slow movement of scattering
colloids, the frequency correlation in our case directly relates
to the photon transport time in the random medium with
quenched disorder.

FIG. 4. (Color online) Experimental setup for white-light angle-
dependent frequency correlations in transmission and backscattering
geometries. Dashed lines indicate components that are only present
in backscattering configuration.

III. METHODS

Correlations were measured in the frequency domain using
a broadband technique developed by us as described in
Ref. 6. Spectra containing individual frequency speckles were
collected as a function of scattering angle using a rotation stage
and a fiber-coupled grating spectrometer, as shown in Fig. 4.
Polarization filters were used to select linear-polarization
channels for the incident and detected light. In the coherent
backscattering experiments, a quarter wavelength plate was
placed directly in front of the sample to select circular-
polarization channels. Circular polarization is used to suppress
single-scattering contributions in the coherent backscattering
cone, which would otherwise result in a reduced enhancement
factor.21 The spectral correlation function was obtained at each
angle by averaging the correlation functions from 50 spectra
taken at different sample positions. The correlation function
was averaged over a spectral range from 550 to 850 nm, yield-
ing an average over several thousands of individual speckles.
The configuration could be switched between a transmission
geometry and a backscattering geometry as illustrated in
Fig. 4. The backscattering setup had an angular resolution
of 1.2 mrad. For large-angle backscattering measurements,
the beam splitter was replaced by a small reflecting prism
following Ref. 21. For the transmission experiments, the beam
waist at the sample position was varied by using a set of lenses
of focal lengths ranging between 5 and 60 cm. The resulting
beam waist at the sample position was determined using a
knife-edge method, yielding values of ρ0 between 26.4 ± 0.7
and 328 ± 16 μm.

For the transmission measurements in Sec. IV A, we used
two thin slabs of TiO2 powder with thicknesses of 3.4 and
6.3 μm. The mean free path of the sample ranges between
0.55 and 0.9 μm in the visible part of the spectrum.21 The thin
TiO2 slabs have been investigated before using time-resolved
transmission, and were found to be within the limits of
classical diffusion description.18 In the reflection experiments
of Sec. IV B, we study a series of random scattering media with
different inverse photonic strengths ke�B , covering nearly an
order of magnitude from ke�B = 3.6 ± 0.8 to ke�B = 26 ± 3.
The materials under study include samples of etched porous
GaP, which have been under investigation earlier for the
possible effects of localization.14,17 These samples have been
shown to be of sufficient thickness and with a low residual
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FIG. 5. (Color online) (a) Experimental frequency correlations
after transmission through a 3.4-μm slab of TiO2 powder, for a few
typical forward angles. (b) Experimental correlation width ��/2π

against transmission angle for a beam waist ρ0 of 26.4 ± 0.7 (dots,
black), 55 ± 2 (circles, red), 120 ± 4 (upright triangles, green), and
328 ± 16 μm (open triangles, blue). The three black open circles with
arrows correspond to the experiments displayed in (a).

absorption for sensitive measurements of long light paths. In
addition, we also include in our studies two layers of GaP
nanowires, which have been shown to be among the most
strongly scattering nanomaterials available today.22

IV. EXPERIMENTS

A. Frequency correlations in transmission

We investigated experimentally the angle-dependence of
the frequency correlation in transmission for various values
of the beam waist ρ0. Figure 5(a) shows typical spectral
correlation functions for ρ0 = 328 ± 16 μm at transmission
angles of 0.04, 0.7, and 1.4 rad, 0.0 rad indicating the forward
scattering direction. The exact forward direction was not
measured as this contained contributions from the coherent
beam for the optically thin samples (L/�B 	 5 for the 3.4 μm
thick slab). The correlation functions were normalized to
the second data point, to remove any uncorrelated noise,
which is accumulated at zero frequency shift. A pronounced
narrowing of the spectral correlation is observed for increasing
transmission angles. This narrowing is further characterized in
Fig. 5(b) where the full width at half maximum, ��, of the
spectral correlation is plotted against transmission angle, and
in Fig. 6 showing the narrowing at 1.4 rad for the two different
slabs. Clearly, the narrowing depends on beam waist ρ0, in
agreement with our theoretical calculations using Eq. (11), as
illustrated by the lines in Fig. 6. For the calculations we used
values of L, �, and D obtained from other experiments and
which produced the correct width of the frequency correlation
function at zero angle. Therefore, the curves in Fig. 6 do not
contain any adjustable parameters. The increase of the slab
thickness from 3.4 to 6.3 μm results in a longer dwell time
and thus in a reduction of the correlation width. This results
in a correspondingly less strong angle dependence, following
Fig. 2. We point out that the agreement with theory is limited
to beam sizes that are smaller than the diameter of our detector,
which in our experiments is set by the 500-μm-diameter

FIG. 6. (Color online) (a) Experimental values of the spectral
correlation width �� at 1.4 rad, normalized to the width at 0 rad,
against beam waist ρ0, for TiO2 slabs of 3.4 (circles, red) and 6.3 μm
(triangles, blue) thickness. (lines) Calculated spectral narrowing of
the C

(1)
T correlation of Eq. (11) for transmission.

fiber. We conclude that the model including angle-dependent
propagation outside the medium, as given by Eq. (11), provides
a good quantitative description of our experimental results,
including the scaling of the effect with ρ0.

B. Frequency correlations in coherent backscattering

In the following, we examine the single-channel frequency
correlation around the coherent backscattering direction.
Compared to the transmission experiments, the reflection mea-
surements require slabs of sufficient thickness and scattering
strength to resolve the coherent backscattering effect. We have
chosen to study a series of slabs of porous GaP with different
scattering strengths, as these have been shown to cover the tran-
sition from diffuse-scattering to the strong-scattering regime
near localization.14,17 In addition, two strongly scattering
porous GaP slabs were measured before and after infiltration
with 1-dodecanol. Infiltration with 1-dodecanol lowers the
photonic strength by a factor of three; this method allows
unambiguous separation of the effects of scattering strength
from other, sample-dependent contributions.14 Figure 7 shows

FIG. 7. (Color online) Experimental correlation functions in
reflection (normalized) for porous GaP samples before (a) and
after (b) infiltration with 1-dodecanol. Symbols indicate correla-
tion in backscattering (diamonds, black at θ = 0 rad) and at the
maximum broadening (dots, red at respectively θ = −0.06 rad and
θ = 0.024 rad). (ii) and (iii) correspond to Fig. 9.
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FIG. 8. (Color online) (a) Experimental intensity CBS-cone
measured for a porous GaP slab, with (line) fit for ke�B = 4.7 ± 0.6.
(b) Frequency correlation 1/e half-width ��/2π against backscat-
tering angle for circularly polarized conserving (dots, black) and
linearly polarized nonconserving (red, open triangles) channels.

the experimental correlation functions of a porous GaP sample
before (a) and after (b) infiltration, and for angles correspond-
ing to exact backscattering (θ = 0 rad) and angles where
the largest change in spectral width occurs. The frequency
correlation functions in reflection show a triangular peak,
which is slightly rounded by our spectral resolution of around
3 cm−1. Upon infiltration with 1-dodecanol, the frequency
correlation narrows indicating an increase of the photon dwell
times resulting from the increase in mean free path.

In the same experimental configuration as used for the
frequency correlations, conventional intensity CBS cones were
obtained by collecting the average intensity. Figures 8(a) and
8(b) show a typical combination of intensity CBS cone (a)
and the 1/e frequency half-width of the spectral correlation
function (b) as a function of backscattering angle. The black
dots represent measurements taken in the helicity-conserving
channel, while the open triangles (red) in Fig. 8(b) are
measurements in the polarization nonconserving channel. The
narrowing of the spectral correlation at large angles can be
attributed to the dephasing contribution of Eq. (10). As the path
length distribution in reflection is governed by short light paths
of the order of the mean free path �B , this angle-dependent
narrowing stays prominent even when L increases to infinity,
i.e., for semi-infinite slabs.

An additional feature is observed in the helicity-conserving
channel that resembles the calculated response of Fig. 3(d).
For the narrow angular range around backscattering where the
effects of the CBS cone are most pronounced, the additional
narrowing due to dephasing is relatively small. We therefore
analyze the broadening associated with the coherent backscat-
tering effect by defining an experimental spectral-broadening
parameter ��exp(θ ) as the ratio of the helicity-conserving and
nonconserving widths �� at every angle θ . Results are shown
in Figs. 9(a) and 9(b) for four different samples with scattering
strength ranging from ke�B = 26 ± 3 to ke�B = 3.6 ± 0.8.
The wave vector ke includes the effective refractive index
of the scattering medium ne, ranging between 1.4 and 2.0
for the materials under study. Backscattering corresponds to
θ = 0.0 rad. Conventional CBS cone (i) corresponds to the

,

FIG. 9. (Color online) Left (a): Conventional intensity-CBS
cones for different random-scattering media, with (from top to
bottom) compressed nanowires, photoanodically etched porous GaP
in air and in dodecanol, and etched porous GaP, with values ke�B

ranging from 3.6 ± 0.8 to 26 ± 3. Red lines are theoretical fits of
conventional CBS.26 Right (b): Experimentally determined increase
in the width of the spectral correlation function ��exp. The lines
are the theoretical calculations using Eq. (12) for known material
parameters (��calc, dashed blue), and including deviation parameter
S characterizing the long-range correlations (��exp, solid red).
Vertical bar denotes deviation from theoretical maximum (S = 0,
horizontal line, blue).

most strongly scattering nanowire material of Ref. 22. CBS
cones (ii) and (iii) in Fig. 9(a) were taken from the same porous
GaP sample before and after infiltration with 1-dodecanol,
consistent with earlier measurements on the same sample.14

Cone (iv) corresponds to a less strongly scattering porous GaP
layer. The red lines in Fig. 9(a) show fits using a finite-slab
model26 including an internal reflection correction, yielding
values of ke�B as indicated in the figure. All conventional CBS
cone shapes can be described by the finite sample thickness
or limited angular resolution, the estimated absorption lengths
exceed the sample size.14

The characteristic angle dependence of ��exp is found in
Fig. 9(b) for all samples under study, however with different
magnitudes of the broadening effect. The angle-dependent
broadening can be reproduced theoretically using Eq. (12)
using the known sample parameters (dashed lines, blue).
This model gives good quantitative agreement for the least
strongly scattering material with ke�B = 26. For the more
strongly scattering samples with ke�B < 10, the magnitude
of the experimental broadening is significantly smaller than
would be expected on the basis of the C(1) theory. In our
model analysis, we take into account the effect of known finite
slab thicknesses, which cuts off of light paths above a critical
length in the propagator of Eq. (5). This correction is especially
important for the nanowire material (i) for which L/� 	 25.
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The red lines in Fig. 9(b) correspond to the C(1) theory
with an amplitude fitted to match the experimental data. We
find that the theory can be scaled to our experimental data to
good agreement using only a single, angle-independent scale
factor. Therefore, in order to quantify disagreement with the
diffusion model, we introduce an angle-independent parameter
S describing the percentage of deviation from diffusion, which
is defined as the ratio of experimental to calculated broadening
curves, offset by the baseline of unity, i.e.,

S ≡ ��max
calc − ��max

exp

��max
calc − 1

. (16)

The finite values of the slab thickness results in reduced
amplitudes of the calculated curve, as can be observed in
Fig. 9(b). The vertical bars (blue) in Fig. 9(b) indicate the
deviation of the experimental results from the C(1) theory
corrected for slab thickness (S = 0, blue lines). The resulting
deviation from classical diffusion S is presented for all studied
samples in Fig. 10(a) as a function of the inverse photonic
strength ke�B . The experimental data show a strong increase
of S toward ke�B 	 3.6, which is unaccounted for by finite
sample thickness and absorption, as can be concluded from the
CBS-intensity cones of Fig. 9(a). Infiltration with dodecanol
significantly reduces the deviation from classical diffusion, as
indicated by the open symbols in Fig. 10. Each type (hollow
circles and diamonds) represents one particular sample before
and after infiltration. The pronounced effect of infiltration
agrees with our expectation for an effect depending on the
scattering strength, rather than on other sample-dependent
properties. The frequency width �� of the correlation in
exact backscattering, shown in Fig. 10(b), follows a 1/ke�B

dependence, which can be interpreted from classical diffusion
in the following way. For classical diffusion, the frequency
width �� is proportional to D/�2

B , which in combination with
D = vE�B/3 yields the observed inverse linear dependence
on �B . A renormalization of the diffusion constant33,35 would
lead to a narrowing of the frequency correlation, which is not
observed in our experiment.

V. DISCUSSION

We interpret the general trend in Fig. 10(a) starting from
the diffuse scattering regime. In the CBS cone, the wings
of the cone correspond to very short transverse distances
between the point of entry and the point of exit of light
in the medium, of the order of the mean free path �B .26

The frequency broadening ��exp in the wings is sensitive
to the phase delay of these short paths relative to that of the
total distribution. In the C(1) approximation, the maximum
frequency broadening ��calc is independent of ke�B , as
indicated by the dash-dotted line in Fig. 10(a). The deviation
of our experimental data from this line can be caused by two
possible types of effects, which either affect the dwell time or
add new contributions to the spectral correlation. To the first
type belongs the cutoff of long light paths and the associated
distribution of decay times near localization.14,33 The second
type includes higher-order contributions to the correlation
function known as C(2).1 Several authors have considered this
contribution in a reflection geometry.3,12,27–30 The angular C(2)

correlation is inversely proportional to the illumination area,

and is expected to be negligibly small for the geometry of our
experiment. In contrast, the near-field correlation in reflection
is a local effect on a length scale of order �, which does not
vanish for plane-wave illumination. This long-range near-field
correlation has been calculated by Stephen and Czwilich as27

C(2)(R) 	 27

2k2
e �

2
B

(
�B

R

)3

. (17)

Equation (17) shows that for short distances R 	 �B contribut-
ing to the wings of the CBS cone the near-field intensities
are much stronger correlated than for distances R >> �B

contributing to the center of the cone.
At this stage, a full theoretical framework of the C(2) contri-

bution to the coherent backscattering frequency correlation has
yet to be developed. Figure 11 shows the higher-order diagrams
that have to be included in such an extended model, following
Ref. 29. The four-field correlation takes place through the
Hikami-box vertex, which is not present in the conventional
intensity CBS. In addition, interference with an unscattered,
reduced incident intensity may be important.30 In a different
context, these “shadow” terms have been identified for their
role in energy conservation in the CBS cone.31 Althogether,
the frequency correlation CBS may contain new information
compared to the conventional intensity CBS, where C(2) is
only a background.32 This is important as our measurements
show a collapse of the CBS effect in the correlation function,
while the intensity CBS cone is still intact. A crucial point
is that self-interference due to the intersection of paths is
associated with a finite intersection volume of order λ2�B ,
with λ being the optical wavelength.10 This is especially
relevant in the wings of the CBS cone, where the transverse
distance between the path ends is only one mean free path �B .
Following the scaling of Eq. (17), the condition C(2)(�B) = 1 is
reached when ke�B = (27/2)1/2 	 3.67. The breakdown of the

FIG. 10. (a) Experimentally observed deviation from the simple
C(1) CBS model, S, against ke�B . (Open symbols) Pairs of scattering
samples before and after infiltration with dodecanol. Lines represent
C(1) value of S = 0 (dash-dotted) and Eq. (17), S = 27

2 (ke�B )−2

(solid). (b) Spectral 1/e half-width �� of the C(1) correlation function
at exact backscattering θ = 0 against ke�B for the different materials
under study. Line denotes a fit using the classical diffusion theory
with �� 	 D/�2

B ∝ 1/ke�B .
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FIG. 11. Higher-order diagrams in the frequency correlation in
reflection, including time-reversal symmetry.29 L and C are ladder
and Cooperon vertices, H indicates the Hikami-box vertex consisting
of three terms.10

weak-scattering limit for the C(1) correlation is thus expected
to occur far above the localization limit ke�B ∼ 1 in the wings
of the CBS cone. The line in Fig. 10(a) illustrates this scaling,
where we hypothesized a deviation S of zero in the diffuse
limit up to full breakdown S = 1 of the C(1) model due to path
intersection.

Apart from possible higher-order contributions in the
spectral correlation, we consider the sensitivity of the CBS-
induced broadening of the frequency correlation to changes
in the path length distribution. In particular, we compare the
new technique to measurements of the CBS-cone rounding
in intensity measurements.14 Figure 12 shows both the cone-
rounding angle �θR and the suppression of the frequency
broadening S as a function of the path length cutoff defined by
a (total) length Lξ . For simplicity, we choose an exponential
cutoff such as is the case for absorption in Eq. (5), however
alternative choices of the path length scaling are available to
describe other effects such as localization.33 Experiments on
the same porous GaP samples have identified an anomalous
cone rounding �θ of around 4 mrad.14 In Fig. 12, this
value corresponds to a value Lξ/�B of 3.7 × 103 or a cutoff
length Lξ of around 1 mm for the porous GaP sample. In
comparison, for the same Lξ/�B the parameter S gives a

FIG. 12. Comparison between the sensitivity of the parameter S

and the CBS-cone rounding14 �θR to the suppression of long light
paths, represented by the cutoff length Lξ .

value of 0.28. Experimentally we have observed, for the
same sample as used in Ref. 14, an S value of 0.65 ± 0.04.
Recent experiments have reported sizable corrections to
diffuse transport for values of k�B larger than 1 (respectively
k�B 	 2.5 and k�B 	 1.8 in Refs. 16 and 34). Self-consistent
theories of time-dependent diffusion33,35 predict a reduction
of the diffusion constant in this regime, which should lead to
a narrowing of the spectral correlation. This is not observed
experimentally in Fig. 10(b). However, we point out that both
the horizontal axis depending on �B and the vertical axis
depending on D should be renormalized in this regime, making
it hard to observe these renormalizations experimentally as
there is no absolute reference against which these can be
calibrated.

VI. CONCLUSIONS

In conclusion, we have studied both theoretically and exper-
imentally the angle-dependence of frequency correlations in
random photonic media both in transmission and in reflection.
A narrowing of the spectral correlation was found; it depends
on both the scattering angle and the incident beam waist and
could be identified as an additional dephasing of the multiple-
scattered light outside the medium. This contribution has not
been reported in other work on frequency correlations.1–5 We
note that earlier experimental studies dealt with much thicker
slabs for which the width of the frequency correlation was
too small to observe the effect according to Fig. 2. However,
the angle-dependent narrowing is sizable for frequency widths
above 10 cm−1, which corresponds to dwell times below 1 ps.
Thus the effect is relevant for many nanophotonic materials and
thin films in which light trapping plays a role, and particularly
in reflection geometries where the path length distribution is
governed by short paths on the scale of the mean free path �B ,
even for very thick samples.

In backscattering, we have found a contribution to the
frequency correlation that can be attributed to the angle-
dependent path length distribution in coherent backscattering.
Our diffusion model is confirmed by experiments for scattering
materials with inverse photonic strength ke�B 	 26, however
the magnitude of the broadening effect appears reduced for
samples with larger scattering strength. We emphasize that a
similar strong dependence is not found for the intensity CBS
cones obtained in the same experiment. Thus the frequency
correlation in backscattering may form a new instrument for
accessing the breakdown of diffusion theory in the limit of
very strong multiple scattering. Earlier work on similar (and
some of the same) strongly scattering materials revealed no
or only weak corrections to classical diffusion.17 It has been
pointed out that time-resolved transmission is not expected to
yield large modifications for the typical samples under study.33

The angle-dependent frequency correlation provides a means
for accessing the path-length distribution in reflection on
much shorter time scales than can be accessed using ultrafast
laser pulses. The frequency-resolved technique thus yields
information complimentary to picosecond time-resolved ex-
periments, which are usually more involved and not eas-
ily extended to studying angle-dependent phenomena.13,15–17

The frequency correlations in coherent backscattering have
the potential to be an even more precise probe of changes in the
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path-length distribution than cone-rounding measurements
using the intensity CBS, making it an important tool for
studying the strong-scattering regime near localization. Our
results call for new theoretical models for frequency corre-
lations in combination with coherent backscattering in the
strong-scattering limit.
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