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Size effects on transport properties in topological Anderson insulators
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We study the size effects on the transport properties in topological Anderson insulators (TAIs) by means
of the Landauer-Büttiker formalism combined with the nonequilibrium Green function method. Conductances
calculated for serval different widths of the nanoribbons reveal that there is no longer quantized plateaus for
narrow nanoribbons. The local spin-resolved current distribution demonstrates that the edge states on the two
sides can be coupled, leading to enhancement of backscattering as the width of the nanoribbon decreases, thus
destroying the perfect quantization phenomena in the TAI. We also show that the main contribution to the
nonquantized conductance also comes from edge states. Experiment proposals on TAI are discussed finally.
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Recently, the study of the topological insulator (TI) has
triggered great research interests.1–3 It was first proposed both
from topological band theory and topological field theory, and
soon experimentally realized in HgTe/CdTe quantum wells
(QWs).4,5 Although it is insulating in the bulk, conduction is
allowed on the boundary due to the presence of edge states.
These edge states are protected by the time reversal symmetry.
Each edge state is accompanied by its time reversal partner, and
the number of pairs is an odd number for topological nontrivial
phase, which leads to an odd-integer quantized conductance
on each edge. However these stories are restricted to where the
TI is semi-infinite. When two edges are getting close to each
other, finite size effect6,7 plays an important role. The overlap
between edge states from opposite edges opens an energy gap
so that properties of TI can be subtly modified.

The concept of TI can be generalized into many other
insulators such as topological Mott insulator8 and topological
superconductor.9–11 Its generalization in Anderson insulator
(AI) is also addressed in disordered system12–15 recently. It is
believed that the disorder-induced edge states are topologically
protected and play a central role. In this sense, such insulator
is named as topological AI (TAI). Thus, a question arises
naturally that whether this phenomenon will also be emergent
in the narrow nanoribbon with finite size. It is interesting to
explore the role edge state plays in the finite size system.

In the present paper, we studied size effects on TAI in detail.
We choose to study the typical topological band insulator
formed by HgTe/CdTe QWs,4 where spin-orbit coupling
is encoded. The TAI phase is addressed at certain random
strength when the Fermi surface is at the bulk conduction
band, where a quantized conductance is observed. We show
that the conductance is no longer quantized plateaus for narrow
nanoribbons. To understand clearly the physics of this picture,
we presented the local spin-resolved current distribution in the
disordered bar, which demonstrated that the main contribution
to the nonquantized conductance comes from edge states.
However, due to the truncation of the coherence length between
two edges by the finite sample size, disorder can induce
the interedge scattering. As a result, the TAI phase will be
suppressed. Through detailed size dependence study, we found
that by decreasing the width of the nanoribbon, the coupling

between edge states will lead to exponential enhancement of
the backscattering which destroys the TAI phase eventually.

As a starting point, we consider a HgTe/CdTe QWs narrow
nanoribbon. The low energy electron states are approximately
described by an effective four-band Hamiltonian:4

Ĥ =
(

h(k) 0
0 h∗(−k)

)
, (1)

where h(k) = ε(k) + �d(k) · σ̂ , k = (kx,ky) is the two-
dimensional wave vector, σ̂ = (σ̂x,σ̂y,σ̂z) are Pauli matrices.
Up to the lowest order of k, �d(k) = (Akx,Aky,M − Bk2),
and ε(k) = C − Dk2, where the parameters A, B, C, and
D depend on the thickness of HgTe/CdTe QWs. h∗(−k) is
nothing but the time reversal counterpart of h(k) so that time
reversal symmetry is respected. The Hamiltonian is obtained
by reducing the eight-band Kane model to the reduced Hilbert
space |E1,1/2〉, |H1,3/2〉, |E1, − 1/2〉, and |H1, − 3/2〉.
Mass M is an important parameter describing the energy gap
between conduction and valence band. The Hamiltonian with
M > 0 describes a conventional band insulator, while M < 0
corresponds to the TI. In the present study, tight-binding lattice
model is used, so that the above effective model is compactified
by substitutions ki → 1

a
sin(kia), and k2

i → 2
a2 (1 − cos(kia)),

where i = x,y, and a is the lattice constant. The width
and length of the nanoribbon under study are Ly and Lx ,
respectively. Meanwhile, we introduced disorders through
random on-site energy with a uniform distribution within
[−W/2,W/2], with the disorder strength W .

To calculate the transport properties, we applied the method
by nonequilibrium Green function.14 A small external bias
V = VL − VR is applied longitudinally between the two
terminals. The local current between neighboring sites i and j

is calculated by the formula:16–19

Ji→j = 2e2

h
Im

[∑
αβ

Ĥiα,jβGn
iβ,jα(Ef )(VL − VR)

]
, (2)

where VL(R) describes the voltages at the lead-L(R).
Gn(Ef ) = Gr�LGa is electron correlation function with
line width function �L(R) = i[�r

L(R) − �a
L(R)], and the
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FIG. 1. The conductance G (a)–(c) vs disorder strength W for
different Fermi energy Ef . The widths Ly of the nanoribbon are
(a) Ly = 100 nm, (b) Ly = 200 nm, and (c) Ly = 300 nm.

retarded Green functions Gr (Ef ) = [Ga(Ef )]† = 1/[Ef −
Hcen − �r

L − �r
R], with Hcen the Hamiltonian in the cen-

tral region. The local spin-resolved current J α
i→j between

neighboring sites i and j with spin index α can also be
calculated from Eq. (2) without summing over spin index
α. The net current JL flowing through the central region
is calculated by summing index i for local currents Ji→i+x̂

over any cross section. After obtaining the current JL, the
linear conductance is given by G = limV →0 dJL/dV . In
addition, the linear conductance can be directly obtained by
G = T r[�LGr�RGa].

In the following numerical calculations, we used the
realistic material parameters of the HgTe/CdTe QWs:5 A =
364.5 meV nm, B = −686 meV nm2, C = 0 meV, D =
−512 meV nm2, and M = −10 meV. The length of the
nanoribbon is Lx = 1000 nm and the lattice constant is
a = 5 nm. Since this model is only valid for small k, we set
the Fermi energy small around the � point. In the presence
of disorder, the conductance is averaged over up to 400
random configurations except for Fig. 4 where 800 random
configurations are used for each data.

We first studied the conductance G versus disorder strength
W for different Fermi energy Ef and the width Ly of the
nanoribbon, as shown in Fig. 1. As long as the Fermi surface
Ef = 0.0 meV (see Fig. 1) lies inside the bulk gap, the conduc-
tance maintains a quantized value 2e2/h for different widths
in the clean limit. The conductance remains this quantized
value in a broad range of the disorder. When the disorder
further increases, electronic states become localized, and the
conductance decreases to zero rapidly. Such observation agrees
well with the previous result that the quantum spin Hall
effect20–23 is robust against weak disorder and independent of
the width of the nanoribbon. It is well known that a finite size
of the Hall bar opens a gap on the edge due to overlap between
edge states.6 Thus, the edge states are no longer Dirac particles.
Our result shows that although the edge states gain mass in
nanoribbon, the topology is still preserved. Backscattering is
still forbidden due to time reversal symmetry according to a
brilliant argument in Ref. 1.

When the Fermi surface lies in the valence band of the
bulk such as Ef = −14 meV shown in Fig. 1, system is
metallic in the absence of disorder. Once the disorder is turned
on, electrons become localized, and the conductance dives to
zero directly (see Fig. 1). This result exhibits the conventional
Anderson localization phenomenon. On the other hand, when
the Fermi energy Ef is raised up into the bulk conduction
band, say Ef = 14 meV, and the width is sufficiently large
[see Figs. 1(b) and 1(c)], conductance G decreases gradually
when the strength of the disorder increases. Comparing to
the Figs. 1(b) and 1(c), it is apparent that the “dip” in
conductance (which occurs at W ∼ 60 meV) becomes less
and less pronounced as the nanoribbon width Ly increases.
Because the increasing of the nanoribbon width Ly , the number
of conducting channels in the bulk is increased. The more
conducting channels there are, the larger the conductance will
be. In addition, the relation between conductance G and the
nanoribbon width Ly obeys: GLx = σcLy , where σc is the
conductivity, which is width independent. Beyond a certain
onset of W , the conductance turns back and increases to an
approximate quantized value (2e2/h). G maintains this value
for a certain range of W before eventually decreases. Concern-
ing the spin degeneracy, each spin component contributes one
conductance quanta only. This odd-integer valued conductance
plateau indicates that the system is in a topologically distinct
phase on this stage. More importantly, different from the pure
TI, the quantized value is induced by disorder. This topological
nontrivial phase is exactly the TAI phase. However, one should
note that when the width is as small as Ly = 100 nm, as shown
in Fig. 1(a), although the plateau is still present, it is no longer
integer quantized, but irrationally valued in unit of e2/h. At
the same time, the conductance plateau evolves into a hump
structure.

To further understand the finite size effect on TAI, the
relation between hump peak value and bar size is investigated

FIG. 2. The conductance G vs bar width Ly at disorder strength
W = 115 meV. Different lengths are chosen with Lx = 1000 nm
(black solid line), 2500 nm (red dash line), 4000 nm (green dot line),
and 5000 nm (blue short dash line), while the symbols , •, , and

are corresponding to the realistic results of exact diagonalization,
respectively. The inset shows the linear fitting of ln(2 − G) by picking
a typical length Lx = 5000 nm.
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in detail, as shown in Fig. 2. With the increase of width, the
plateau conductance G increases as well, and finally saturates
to 2e2/h. After numerous calculation, we found that the
quantity (2 − G) behaves as an exponential function of the
width Ly , which is quite unconventional. In the case of normal
metal, conductance is proportional to the width due to the in-
crease of channels. This exponential behavior of conductance
suggests that the conductance hump is contributed also by
the edge channel of the Hall bar, as the interaction between
states localized on opposite edges decays exponentially with
respect to the width. Due to previous studies by Groth et al.,13

finite disorder would reverse the sign of mass term of the
BHZ model,4 leading to a robust edge state. The above result
adds new insights to this understanding in narrow nanoribbon
structure.

In order to get a better insight into the microscopic origin
of the conductance variations as shown in Fig. 1(a), the local
spin-resolved current distributions are plotted in Fig. 3. Due
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FIG. 3. The distribution of local spin-resolved current with
disorder strength (a) W = 75.0 meV, (b) W = 90.0 meV, and
(c) W = 115 meV. The Fermi energy is Ef = 14.0 meV and the bar
size is Lx = 200a and Ly = 20a. The vector length is proportional
to the square root of the current value.

to the time reversal symmetry, we only consider the spin-up
component, the influence of spin-down component can be
directly obtained by time reversal symmetry. Here, the local
spin polarized current on site i is defined as J

↑
i = J

↑
i→i+x̂ +

J
↑
i→i+ŷ . When W = 75.0 meV, the whole sample behaves

similarly as a conventional metal with large backscattering.
The vortex-like circulation pattern can be easily seen, which
reflects that the scattering direction is determined by the
chirality of spin orbital interaction. As to the transport property,
this is an AI as the conductance decreases very rapidly as
an exponential form with respect to the bar length Lx [see
Fig. 4(b)]. As the disorder strength increases gradually, current
on one edge is greatly suppressed, while enhanced on the
other edge. Meanwhile, the bulk of the sample becomes more
and more insulating. All these signals indicate a formation of
stable edge states. At last, when the disorder is raised up to
W = 115.0 meV and conductance reaches peak value, bulk
states are extremely disordered and insulating. Edge states on
the upper edge survives and appears to be very robust against
disorder. However, due to the finiteness of the nanoribbon
width, small backscattering is still present by hopping from
the upper edge to the lower one. The reduction of conductance
is apparently proportional to this hopping probability which is
an exponential function of the width.

In Fig. 4(a), the conductance G as a function of disorder
strength W with different length Lx of the nanoribbon is
plotted. The dip feature is clearer for a large Lx because of
the increasing probability of the backscattering between the
two edges. It is interesting to point out that the main shape
of the conductance hump at around the disorder strength
W = 115 meV changes little with the bar length, and the
system in that region exhibits the nonquantized version of
TAI behavior. The corresponding localization length ξ =
−limLx→∞Lx/ln(G) as a function of disorder strength W is
shown in Fig. 4(b). We notice that the localization length
increases dramatically near the conductance hump region,
which is the finite size version of the picture that reasonable
disorder scattering can drive an insulating system into a TAI

FIG. 4. (a) The conductance G vs disorder strength W for
different lengths of the nanoribbon. (b) The localization length
ξ vs disorder strength W . The Fermi energy is Ef = 14.0 meV and
the width of the nanoribbon is Ly = 100 nm.
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phase so that the system shows quantized conductance.12,13 On
the other hand, ξ almost vanishes near the dip region. From
the theoretical viewpoint, the sharp difference of longitudinal
localization length in different disorder regions plays the
central role for all experimental observable effects, both for
bulk and finite size version of TAI.

In summary, the size effects on the transport properties
in TAI are studied in this paper. We found the conductance
plateau deviates from its quantized value exponentially as
the nanoribbon width decreases. Such behavior is originated
from the mutual interaction between edge states, as is clearly
evidenced by local spin-resolved current distributions in the
disordered bar. Furthermore, we found the conductance is gen-
erally decaying exponentially as the system length increases.
However, in the TAI region, the longitudinal localization length
is extremely long, which is found up to hundreds of microns.

This is quite a good feature that makes the TAI phase with a
narrow nanoribbon experimentally distinguishable.

It is reported24 that TI can be realized in optical lattices,
where the disorder can be introduced by an optical laser
speckle potential.25,26 By tuning the laser intensity, it is
quite promising to observe the TAI and the finite size effect.
However, in contrast to the uniform random disorder studied
in this work, the disorder in optical laser speckle is correlated.
The effect of this difference is unknown up to now. Therefore,
it should be an interesting problem for future studies.
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