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Optical transitions at commensurate angles in a misoriented bilayer
graphene in an external magnetic field
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Misoriented bilayer graphene with commensurate angles shows unique magneto-optical properties. The optical
absorption spectra of such a system strongly depend on the angle of rotation. For a general commensurate twist
angle, the absorption spectra has a simple single-peak structure. However, our studies indicate that there are
special angles at which the absorption spectra of the rotated bilayer exhibit well developed multipeak structures.
These angles correspond to even symmetry of the rotated graphene with respect to the sublattice exchange.
Magnetospectroscopy can therefore be a potentially useful scheme to determine the twist angles.
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Graphene,1 mechanically exfoliated from graphite,2 dis-
plays truly remarkable electronic properties,3 and holds an
immense potential to become a key ingredient for a new
generation of electronic devices. The dynamics of electrons in
a single sheet of graphene, a hexagonal honeycombed lattice
of carbon atoms is that of massless Dirac fermions with linear
dispersion, chiral eigenstates, valley degeneracy, and unusual
Landau levels in an external magnetic field.3 Bilayer graphene,
on the other hand, shows quadratic dispersion4 and the
charge carriers are characterized as massive chiral fermions.
Interestingly, epitaxial graphene,5 which is thermally grown
on the C face of the SiC substrate, and graphene grown by
chemical vapor deposition (CVD),6 are multilayer films and
yet, quite surprisingly, display behavior similar to that of a
single layer graphene.7 These systems are known to have a
high degree of rotational misalignments.8 Theoretical studies
of turbostratic bilayer graphene9–11 have indicated that, in this
case, the interlayer coupling is suppressed and the systems can
be roughly considered as two decoupled layers of graphene,
as confirmed by scanning tunneling spectroscopy together
with Landau level spectroscopy measurements.12 At the same
time, due to the modulated nature10 of the interlayer transfer
integral, these systems show quite rich low-energy physics,
which strongly depends on the nature of the commensurate
stacking faults.11

In a rotated bilayer graphene, the rotational stacking fault
is determined by an angle θ of rotation of one layer relative to
the other [see Fig. 1(a)]. Each layer consists of two sublattices,
A and B, and is characterized by two primitive translational
lattice vectors: �a = a(1,0) and �b = a(−1/2,

√
3/2), where

a = 0.246 nm is the lattice constant. The commensurate
rotation in a twisted bilayer is defined by the condition,10

�Tmk = m�a + k�b = �Tm′k′ = m′ �a′ + k′ �b′, where �a′ and �b′ are
given by the rotation of the primitive vectors �a and �b by θ .
The angles corresponding to the commensurate stacking fault
are determined from: cos θ = (3q2 − p2)/(3q2 + p2), where
q > p > 0 are integers. There are two types of commensurate
rotations that are distinguished by their symmetry, even or
odd, with respect to the sublattice exchange.11 For the even
commensurate stacking fault, both A and B sublattice sites

of the two layers are coincident at some point, while for the
odd stacking fault, only A sublattice sites of two layers are
coincident. The AA-stacking and Bernal stacking correspond
to even and odd stacking faults with angles θ = 0◦ and 60◦,
respectively.

The reciprocal lattice of a graphene layer consists of K

and K ′ sets of points: �K + �Gm,k , �K ′ + �Gm,k , where �Gm,k =
m �G1 + k �G2, m and k are integers, �G1 = 2π/a(1,1/

√
3) and

�G2 = 2π/a(0,2/
√

3) are primitive reciprocal lattice vectors,
and �K = 2π/a(1/3,1/

√
3), �K ′ = 2π/a(2/3,0). For a rotated

layer, the reciprocal lattice is rotated by an angle θ around the
origin [see Fig. 1(b)]. Then the even commensurate stacking
fault corresponds to the twist angles at which the K points of
the reciprocal lattice of two layers are coincident,11 i.e., �K +
�Gm,k = �K(θ ) + �Gm′,k′(θ ) at some values of k, m, k′, and m′.
For the odd stacking fault, the K and K ′ points are coincident,
i.e., �K + �Gm,k = �K ′(θ ) + �Gm′,k′(θ ).11

In the case of the commensurate stacking fault, the
interlayer coupling becomes a periodically modulated function
of position, which results in the interlayer coupling determined
only by the coincident points of the reciprocal lattice discussed
above. Therefore, the interlayer coupling is characterized by
the Fourier transform of the interlayer potential, t(k), at points
�K + �Gm,k , i.e., tm,k = t( �K + �Gm,k). The effective low-energy

Hamiltonian of the twisted layer at commensurate condition
then takes the form:11

Heven =

⎛
⎜⎜⎜⎝

0 vF p̂1,− tθ e
iφ/2 0

vF p̂1,+ 0 0 tθ e
−iφ/2

t+θ eiφ/2 0 0 vF p̂2,−
0 t+θ eiφ/2 vF p̂2,+ 0

⎞
⎟⎟⎟⎠ , (1)

Hodd =

⎛
⎜⎜⎜⎝

0 vF p̂1,− tθ 0

vF p̂1,+ 0 0 0

t+θ 0 0 vF p̂2,+
0 0 vF p̂2,− 0

⎞
⎟⎟⎟⎠ , (2)

where tθ = tm,ke
iθ , pα,± = pα,x ± ipi,y is the electron mo-

mentum operator for layer α=1, 2, vF ≈ 106 m/s. The phase
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FIG. 1. (Color online) Misoriented graphene bilayer with angle
of rotation θ , shown schematically in real space (a) and reciprocal
space (b). The axis of rotation in real space passes through atoms
of A-sublattice in two layers. The black solid dots and red (medium
gray) open dots are the (a) atomic positions in real space, and (b) �K
and �K ′ points in the reciprocal space in different layers.

angle φ is determined from φ = 2π/3(m − k), which can have
possible values 0 or ±2π/3.13 For example, for θ = 38.2◦, the
phase angle is φ = 2π/3.

Introducing a normal magnetic field in the Hamiltonians
(1)–(2), we obtain the Landau level (LL) energies of a twisted
bilayer. For odd and even bilayers, the interlayer tunneling
introduces different coupling structures. For the odd bilayer,
the LLs of individual layers14 belonging to different LL indices
are coupled, while for the even bilayer, the LLs of same indices
are coupled.

For the odd bilayer, the LL energy spectrum is similar to
that of a bilayer graphene with Bernal stacking15

ε = s0ε0

√√√√√2n + 1 + t2
m,k

2ε2
0

+ s1

√√√√(
1 + t2

m,k

2ε2
0

)2

+ 2n
tm,k

ε0

,

where n = 0,1,2, . . . , s0 = ±1 corresponds to the conduction
and valence bands, respectively, and s1 = ±1 determines the
splitting of levels due to interlayer coupling. Here ε0 = h̄vF /�0
and �0 = √

ch̄/eB. For each n, there are two particle-like and
two hole-like LLs.

For the even-twisted bilayer, the interlayer tunneling cou-
ples the LLs of the two layers with same LL indices, resulting
in a splitting of the originally degenerate levels. This splitting
depends on φ. The energy spectrum of a twisted graphene in
this case is

ε = s0ε0

√
2n + t2

m,k

ε2
0

+ 2s1

√
2n

tm,k

ε0

cos(φ/2), (3)

where n = 0,1,2, . . . , s0 = ±1, s1 = ±1. If φ = 0 then ε =
±√

2nε0 ± tm,k , which is a simple splitting of degenerate
LLs of the two graphene layers. This energy spectrum is
similar to that of the AA stacked bilayer. If φ = ±2π/3 then

ε = ±
√

2nε2
0 + t2

m,k ± √
2nε0tm,k . Here the energy splitting of

degenerate LLs of two layers is less than the corresponding
splitting for φ = 0.

In Fig. 2, the magnetic field dependence of LLs for
different types of twisted bilayer are shown for interlayer
coupling strength of 50 meV. For the odd graphene bilayer
[Fig. 2(a)], the energy spectra is similar to that of a bilayer
with Bernal stacking. There is one level with exactly zero
energy, which does not show any magnetic field dependence.
For the even-twisted bilayer, there are two levels without any
magnetic field dispersion [Fig. 2(b) ]. These levels correspond

(a)

(b)

(c)

FIG. 2. (Color online) A few lowest LLs of three different
types of misoriented bilayer versus the magnetic field: (a) the odd-
twisted bilayer; (b) the even-twisted bilayer with phase angle φ = 0;
(c) the even-twisted bilayer with phase angle φ = 2π/3. The
interlayer coupling is set to 50 meV. Red (medium gray) and blue
(dark gray) lines in (b) and (c) correspond to the LL index n =1, 2
respectively.

to the LL index n = 0 where the energy of the LLs for all values
of φ is ε = ±tm,k . For n > 0, the LL spectrum depends on the
value of φ. The LL spectrum of the even-twisted graphene
with φ = 0 [Fig. 2(b)] is similar to that of a bilayer with
AA stacking. The LL spectrum of a graphene bilayer with
φ = ±2π/3 [Fig. 2(c)] shows an unique feature: there is a
clear gap-like behavior in the spectrum with no LLs within the
interval (

√
3/2)tm,k > ε > −(

√
3/2)tm,k for all values of the

magnetic field.
The LL wave functions of the twisted bilayer also depend on

the type of commensurate stacking fault. Below we consider
in detail only the case of even bilayer, which shows new and
interesting features. The wave functions for the even-twisted
bilayer corresponding to the LLs (3) are

�n,s0,s1
= Cn

⎛
⎜⎜⎜⎝

s0s1fne
iθ/2eiβψn−1

−is1e
iθ/2ψn

fne
−iθ/2ψn−1

−is0e
−iθ/2eiβψn

⎞
⎟⎟⎟⎠ , (4)

where ψn is the wave function of the conventional LL with
index n, fn = 1,Cn = 1/2 if n > 0 and fn = 0,Cn = 1/

√
2

if n = 0. The phase β depends on the twist angle and is
defined as

β = arcsin

⎡
⎣ s1tm,k sin(φ/2)√

2nε2
0 + t2

m,k + 2s1

√
2ntm,kε0 cos(φ/2)

⎤
⎦ , (5)

which is nonzero only for φ �= 0.
Armed with the wave functions (4), we are now ready to

evaluate the strength of the electron-electron interaction within
a single LL. This interaction is characterized by the Haldane
pseudopotentials16 and is responsible for the formation of
the fraction quantum Hall effect (FQHE) states.17 Since the
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interlayer coupling in Eq. (4) affects only the phases of the
wave function components, the pseudopotentials for the wave
functions (4) are determined only by the LL index n and does
not depend on the interlayer coupling. The pseudopotentials
for the even-twisted bilayer are identical to those of individual
graphene layers. Hence the strength of the FQHE in the
even-twisted bilayer is the same as in an isolated graphene
layer.14 Therefore, as far as the FQHE is concerned, the
even-twisted bilayer can be considered as two decoupled
graphene layers for any twist angle.18 Since the odd-twisted
bilayer is similar to the bilayer graphene with Bernal stacking,
the FQHE in an odd bilayer is similar to a bilayer graphene
with Bernal stacking.15

The phase β in Eq. (4) depends on both the twist angle
(through φ) and the LL index n. Although this phase does
not influence the interaction properties within a single LL,
importantly, it can modify the optical transitions between
different LLs. For light polarized along the x axis, the operator
M̂ of optical transitions is

M̂ ∝
(

σx 0
0 σx

)
, (6)

where σx is the Pauli matrix. Then the selection rule for
the optical transitions between the initial state i, and the
final state f, is the same as for a single graphene layer, i.e.,
nf = ni + ±1. We consider only the optical transitions to
higher excited states, i.e., nf = ni + 1, as those have higher
frequencies and are perhaps easier to observe. The intensity of
the corresponding optical transitions is

Iif = I0C
2
ni
C2

nf
|s0,is0,fs1,is1,f + e−(βi+βf )|2. (7)

For the even-twisted bilayer with φ = 0, βi = βf = 0. Then the
intraband optical transitions (the same sign of s0) are allowed
only between the states with the same sign of s1. The interband
optical transitions are allowed between the states with opposite
signs of s1. All transitions have the same intensity. Therefore,
for a given LL index ni, the optical absorption consists of a
single line.

A different situation occurs for the even-twisted bilayer
with nonzero values of φ. In this case, both βi and βf
are nonzero and depend on the LL index n. For a given
interlayer hopping integral, tm,k , and a given angle φ, we
calculate the angle β for initial and the final states, then from
Eq. (7), we calculate the intensity of corresponding optical
transitions. For each parameter n, the initial and the final states
are characterized by the parameters s0 and s1. We consider
below only the interband optical transitions, i.e., s0,i = −1
in the initial state (valence band) and s0,f = 1 in the final
state (conduction band). For each initial state, there are two
transitions to the final states with s1,f = 1 and −1. In Fig. 3, the
relative intensity of these transitions, calculated from Eq. (7),
are shown for different initial LLs and for different magnetic
fields. For each LL index, the initial and final states are
characterized by the parameter s1. The four possible optical
transitions at a given LL index are shown schematically as
inset in Fig. 3(c). In Figs. 3(a) and 3(c), the transitions from the
states with s1,i = 1 are shown, while in Figs. 3(b) and 3(d), the
initial state has s1,i = −1. The triangles and dots correspond

(a) (c)

(d)(b)

FIG. 3. Intensity of optical transitions (absorption) between the
valence (s0,i = −1) and conduction (s0,f = 1) bands shown for even-
twisted bilayer with φ = 2π/3 as a function of the LL index. The
magnetic field is 0.5 T for (a) and (b), and 2 T for (c) and (d). The
optical transitions are between the initial states with s1,i = 1 [(a) and
(c)] or s1,i = −1 [(b) and (d)] and final states with s1,f = 1 (dots) or
s1,f = −1 (triangles). (Inset) Optical transitions (schematic) from the
initial valence band states with LL index n and different values of s1

to the final conduction band states with LL index n + 1 and different
values of s1.

to the final states with s1,f = −1 and 1, respectively. The
general tendency illustrated in Fig. 3 is the existence of strong
transitions to both final states. At a small magnetic field and
small LL index, these transitions have comparable intensities
[see Figs. 3(a) and 3(b) where the magnetic field is 0.5 T].
With increasing LL index, the transition to one of the states is
suppressed and the system becomes similar to the case of
φ = 0. The regions of magnetic fields and LL indices for
which the optical transitions have comparable intensities are
determined by the strength of interlayer transfer integral, tm,k .
The strongest coupling should be expected for small values of
m and k, e.g., for the twist angle 38.2◦.

The unique features of optical transitions for φ �= 0 are
clearly visible in the optical absorption spectra. Depending
on the occupation of the Landau levels, i.e., on the electron
density, for a given Landau level index, n, either a single
level with s1,i = 1 is occupied or two levels with s1,i = −1
and 1 are occupied. The absorption spectra are calculated only
for transitions from the occupied states. The intensities of
corresponding optical transitions are calculated from Eq. (7),
while the frequency is determined from the energies [see
Eq. (3)] of the initial and the final states. In Fig. 4, we show
the absorption spectra from a given LL of the valence band
of a twisted bilayer with interlayer coupling of 50 meV. At
a given LL index, the absorption spectra (black solid lines)
correspond to the transition from the ground state with s1,i = 1
[see inset in Fig. 3(c)], i.e., only the state with s1,i = 1 is
occupied. The absorption spectra from all the initial states
(s1,i = 1 and −1) with a given LL index are shown by red
(medium gray) lines. For the LL index n = 0, there is only
one initial state in the valence band. A 2 meV broadening
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. (Color online) Intensity of optical transitions (absorption)
between the valence (s0,i = −1) and conduction (s0,f = 1) bands
shown for the even-twisted bilayer with φ = 2π/3 as a function
of the transition energy for different LL index ni of the initial state.
The magnetic field is 0.5 T (left panel) and 2 T (right panel). The
black lines correspond to transitions from the initial state with s1 = 1
only, while the red (medium gray) lines correspond to transitions
from all initial states (s1 = 1 and −1) with a given LL index n. For
comparison, the optical absorption spectra of the odd bilayer [blue
(dark gray) line] and even bilayer with φ = 0 [green (light gray) line]
are shown in panel (b) for ni = 1.

of the optical lines is introduced in Fig. 4. The absorption
spectra clearly show a multipeak structure which is more
pronounced at a small magnetic field [0.5 T in Figs. 4(a)–4(c)]
and at small LL index. With increasing magnetic field [see
Figs. 4(d)–4(f)] or increasing LL index, only one peak in the
absorption spectra survives, which is consistent with the results
shown in Fig. 3. Such a behavior of the absorption spectra of
a even-twisted bilayer with φ �= 0 is totally different from
the odd-twisted graphene or even-twisted with φ = 0. For
odd-twisted graphene, which is similar to bilayer graphene
with Bernal stacking, only one strong optical transition exists
for each LL. Therefore, for both odd bilayer and even bilayer
with φ = 0, the optical spectra for each LL consist of a single
line [Fig. 4(b), ni = 1]. Figure 4 clearly shows the fingerprints
of the phase angle φ in the magneto-optics of commensurate
twisted graphene.

In conclusion, magneto-optical properties of twisted
graphene bilayer show strong dependence on the twist angle.
At twist angles corresponding to even or odd bilayer with
zero phase angle, the absorption spectra from a given LL
consist of a single line, while the optical spectrum of the even
bilayer with nonzero angle φ has well-developed multipeak
structure which can perhaps be observed experimentally. Such
dependence of the optical spectra on the twist angle is visible
at low LL index, n � 10, and weak magnetic field, B � 5 T.
The strongest multipeak structure should be observed at large
interlayer coupling, e.g., for the twist angle 38.2◦.
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