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Detecting entanglement of two-electron spin qubits with witness operators
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We propose a scheme for detecting entanglement between two-electron spin qubits in a double quantum dot
using an entanglement witness operator. We first calculate the optimal configuration of the two electron spins,
defined as the position in the energy level spectrum where, averaged over the nuclear spin distribution, (1) the
probability to have two separated electrons and (2) the degree of entanglement of the quantum state quantified by
the concurrence are both large. Using a density matrix approach, we then calculate the evolution of the expectation
value of the witness operator for the two-spin singlet state, taking into account the effect of decoherence due to
quantum charge fluctuations modeled as a boson bath. We find that, for large interdot coupling, it is possible to
obtain a highly entangled and robust ground state.
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Introduction. Entanglement—nonclassical correlations be-
tween quantum-mechanical particles—has for a long time
been a theoretically predicted concept1 without experimental
proof. The first experimental observation of entanglement
was reported for photon pairs in 1972,2 and since then
entanglement between protons,3 kaons,4 trapped ions,5 and
individual neutrons,6 between an atom and a photon,7 and
between superconducting qubits8 has also been demonstrated.
An important goal in present-day solid-state quantum physics
is to generate and detect (prove) entanglement between
individual electrons. The motivation behind this quest comes
both from the fact that entanglement between electrons in
a solid-state structure has not yet been demonstrated and
from the recent experimental progress in the field of quantum
information processing in these systems,9 which has, among
other things, led to experimental realization of single- and
two-qubit manipulations of electron spin qubits in quantum
dots10,11 and coherent control of spins in diamond.12

In this work we propose a scheme for detecting en-
tanglement in the former system, namely, entanglement of
two-electron spin qubits in a double quantum dot (DQD).
Many aspects of this quantum system, such as hyperfine
coupling to the nuclear spins,13–15 the spin blockade,16,17

and the effects of applying a slanting magnetic field18 are
currently active topics of research. Our proposal consists of
preparing and tuning the two-spin system such that the ground
state contains a large entangled component and measuring
a so-called entanglement witness operator19 to demonstrate
the presence of this entanglement. Entanglement witnesses
are Hermitian operators that are designed to detect a specific
entangled state. Their expectation value is positive for all
separable quantum states (in the class of states considered)
and negative for at least one entangled state, usually the state
the experiment aims to create. Entanglement witnesses have
been used to detect entangled states in trapped ion systems or
entangled photon states.20

Theoretical proposals for detecting entanglement between
individual electrons using witness operators are scarce. The
authors of Ref. 21 present a proposal for implementing
witness operators to detect electron-hole entanglement in
multiterminal conductors in the presence of noise due to
random accumulated phases. In a previous work,22 we have

proposed a turnstile mechanism as a suitable setup for
demonstrating entanglement between two electron spins in
a DQD, assuming phenomenological decoherence times for
the spin relaxation (T1 time) and decoherence (T2 time). A
short-lived entangled singlet state can be generated in this
system by fast adiabatic passage.11 However, because of
hyperfine interaction this singlet state is rapidly mixed with
the triplet state with typical dephasing time of 10 ns. Here,
we propose a different approach in which slow adiabatic
passage is used to drive the system to a configuration where
the ground state is highly entangled. This technique allows us
to obtain a state which remains entangled for longer times. We
explicitly consider the influence of the hyperfine interaction
and the decoherence due to quantum charge fluctuations, which
are caused by changing gate voltages to control the system.
Starting from the two-electron Hamiltonian, and assuming a
large external magnetic field, we first calculate the energy
levels and eigenstates in the three-dimensional Hilbert space
spanned by the |S(0,2)〉, |S(1,1)〉, and |T0(1,1)〉 eigenstates,
where |S(n,m)〉 (|T0(n,m)〉) represents the singlet (triplet)
state with n electrons in the left and m electrons in the right
dot. We then average over the nuclear field components and
calculate the average probability of having one electron in each
dot, 〈P11〉nucl, and the concurrence 〈C〉nucl of the entangled
component of the ground state. This allows us to determine
the “optimal” configuration in the level diagram in which
both of the latter quantities are large. We then investigate the
effects of decoherence of the entangled quantum state due to
quantum charge fluctuations, modeled as a boson bath. Using
the Born-Markov approximation, we calculate the reduced
density matrix ρ(t) of the system and the evolution of the
expectation value of the witness operator, Tr[Wρ(t)]. We find
the optimal values in our parameter space that provide a highly
entangled ground state which is also robust under the action
of charge fluctuations.

Model. We consider a charge configuration of the DQD
where each electron can be located in a different quantum dot
(1,1), or both of them in the right dot (0,2). In the (1,1) config-
uration the four accessible states are the singlet |S(1,1)〉 =
(|↑↓〉 − |↓↑〉)/√2 and the three triplet states |T0(1,1)〉 =
(|↑↓〉 + |↓↑〉)/√2, |T+〉 = |↑↑〉 and |T−〉 = |↓↓〉. In the
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(0,2) configuration only the singlet |S(0,2)〉 can be populated,
the triplet states |Ti(0,2)〉 having much higher energies. The
spin-preserving part of the Hamiltonian is given by H0 =
�|S02〉〈S02| + t(|S02〉〈S11| + |S11〉〈S02|).

The tunneling parameter t couples the two singlets, al-
lowing one electron to transfer between the two dots, while
� is the energy difference between the (0,2) and the (1,1)
singlets. Both parameters can be externally controlled by
changing gate voltages and are used to tune the system to the
desired configuration. In addition, the hyperfine interaction
of the electrons with the nuclear spins mixes the singlet and
triplet states in the (1,1) configuration. Each electron interacts
with a large number of nuclear spins in the left (L) and right
(R) dots. The global action of these nuclear spins can be

included in a single operator B̂
nucl
L,R which allows us to treat the

hyperfine interaction as the interaction between the electrons
and this apparent magnetic field. We assume that this nuclear
magnetic field remains unchanged over the typical time scale
of the electron spin evolution23 and hence it can be treated
as a classical magnetic field. The combined action of the
nuclear magnetic field and of an external magnetic field Bext is
given by

Hspin = Bz
s (|T+〉〈T+| − |T−〉〈T−|)

+
(

Bz
a |T0 〉〈S11| + Bx

s ± iB
y
s√

2
|T0〉

× 〈T±| + ∓Bx
a − iB

y
a√

2
|S11〉〈T±| + H.c.

)
, (1)

where Ba ≡ (Bnucl
L − Bnucl

R )/2 and Bs ≡ (Bnucl
L + Bnucl

R )/2 +
Bext z. The total Hamiltonian of the system is then given by
ĤDQD = Ĥ0 + Ĥspin,17 and its dynamics can be externally
controlled by tuning �, t , and Bext. Assuming a large
external magnetic field Bext, the triplet states |Ti〉 are split
off by the Zeeman energy, and the state space is reduced
to {|T0〉,|S(1,1)〉,|S(0,2)〉}. Under these circumstances it is
possible to derive an effective Hamiltonian15

Heff = �|S02〉〈S02| + t |S02〉〈S11| + M|S11〉〈T0| + H.c., (2)

where M ≡ Bz
a + [(Bx

s + iB
y
s )(Bx

a − iB
y
a ) + c.c.]/2Bz

s . The
parameter M includes the effects of the hyperfine interaction.
The eigenstates of the Hamiltonian (2) are given by

|ψi〉 =
M
Ei

|T0〉 + |S11〉 + t
Ei−�

|S02〉√
1 + M2

Ei
2 + t2

(Ei−�)2

, (3)

where Ei are their corresponding energies (E0 < E1 <

E2). These energies are given by E0(1) = �/3 − (s1 +
s2)/2 + (−)i

√
3 (s1 − s2) /2 and E2 = �/3 + s1 + s2, with

s1,2 = (r ±
√

q3 + r2)1/3, r = �(−18M2 + 9t2 + 2�2)/54,
and q = −(3(M2 + t2) + �2)/9.24

The entangled component of the ground state is given by
its projection onto the (1,1) subspace,

|ψ11
0 〉 = (

1 + M2/E2
0

)−1/2
(

M

E0
|T0〉 + |S11〉

)
. (4)

The amount of entanglement of |ψ11
0 〉 can be quantified by

the concurrence.25 Both the concurrence C and the probability

P11 of having one electron in each dot must be large to have
a highly entangled state. Their mathematical expressions are
given by

C = 1 − M2/E2
0

1 + M2/E2
0

, P11 = 1 −
t2

(E0−�)2

1 + M2

E0
2 + t2

(E0−�)2

. (5)

The concurrence C is maximal when |E0| 	 M , while P11

is maximal in the presence of a large detuning (� 	 |E0|).
Both conditions can be simultaneously fulfilled only for
intermediate values of � where � 	 |E0| 	 M (typically
M ∼ 0.1–1 μ eV). To find the optimal � and t values we
consider the maximization of their product ξ = P11C.

Averaging over the nuclear field distribution. Given
the random character of the nuclear magnetic field,
any observable can be calculated by taking the aver-
age over the probability distribution that characterizes
Bnucl

L,R . This distribution is Gaussian with variance 〈Bnucl
L,R〉 =

E2
n/Neff , with En ≈ 0.135 meV for GaAs and Neff ≈

106 the effective number of nuclei in typical dots.17,26

For external magnetic fields Bext > 2.5 μeV (100 mT)
the transversal components of the nuclear magnetic field
(Bnucl

x,y ) are negligible and the hyperfine interaction parameter
M is mainly given by the difference of the z components of the
nuclear magnetic fields (M � Bz

a). The probability distribution
for M is then approximately Gaussian with variance σ 2 =
〈Bnucl

L,R〉/2.
Figure 1 shows the averaged success rate 〈ξ 〉nucl obtained

using the previous approximated Gaussian distribution for
M . The entanglement of the ground state is low for � < 0
where P11 < 0.5, and for small values of the interdot coupling
t where the ground state is nearly a separable state. The
black line links the optimal values {�opt,topt} that maximize
〈ξ 〉nucl. For topt > 5 μeV, and in a large region nearby, the
ground state is highly entangled (〈ξ 〉nucl > 0.95) up to values
of 0.99 for topt = 20 μeV. Obtaining the average over the
nuclear probability distribution is usually a difficult task,
but in this case the value of the hyperfine parameter M in
Eqs. (5) can to a good approximation be substituted by the
standard deviation of its Gaussian probability distribution
[〈ξ (M)〉nucl ≈ ξ (

√
〈M2〉) = ξ (σ )]. We have checked that this

approximation holds in the highly entangled region and fails
only for small t and large �. In that region E0 � M , and small
variations in M have a great impact on the (small) value of the
concurrence C, and hence on ξ .

The entanglement of the system can be detected using
witness operators. For an entangled state |ϕ〉 = γ1|T0〉 +
γ2|S(1,1)〉 (with γ2 > γ1) the optimal operator to detect its
entanglement is given by W = |T0〉〈T0| + |S(1,1)〉〈S(1,1)| +
|T0〉〈S(1,1)| + |S(1,1)〉〈T0|.20 Its expectation value is given
by Tr(W |ϕ〉〈ϕ|) = (γ 2

1 − γ 2
2 )/2, which is proportional to the

concurrence [Tr(W |ϕ〉〈ϕ|) = −C/2]. This witness can be
rewritten as W = I/2 − |S(1,1)〉〈S(1,1)|. In order to measure
the expectation value of W , it is then enough to measure the
probability P [S(1,1)] of the ground state to be the |S(1,1)〉
state. In a DQD this probability can easily be measured using
a quantum point contact (QPC).9 Our proposal to detect the
entanglement is then the following: to initialize the system in
the |S(0,2)〉 state (point A in Fig. 1) and adiabatically increase
� to the optimal position {�opt,topt} (point B in Fig. 1). A
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FIG. 1. (Color online) Averaged entanglement probability
〈ξ〉nucl. The black line represents the optimal configuration {�opt,topt}
that maximizes the entanglement of the system. The white solid line
represents the trajectory followed from the initial state A to the final
state B.

QPC can then be used to measure P(S(1,1)) and obtain the
expectation value of the witness operator.

Entanglement time evolution. When modifying gate volt-
ages to drive the system to its optimal position and to measure
the probability P [S(1,1)], the resulting charge fluctuations
cause the tunnel coupling t and energy offset � to fluctuate.
The inset of Fig. 2 shows that Egap � kBT for T = 10 mK
and topt � 5 μeV, (i.e., in the highly entangled region) so
that quantum fluctuations are important.27 In the last part, we
explore the influence of these fluctuations on the time evolution
of the expectation value of the entanglement witness.
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FIG. 2. (Color online) Time evolution of the expectation value
of the witness operator for T = 10 mK, α = 0.007,27 and topt = 20
(orange dot-dashed line), 10 (green solid line), and 5 μeV (black
dashed line). Dotted lines mark their asymptotic values. Inset:
Energy gap between ground and first excited states in the optimal
configuration {�opt,topt} (blue dashed line); the red solid line indicates
the thermal energy kBT = 0.86 μeV.

To study the effect of these charge fluctuations we model
the environment as a bosonic bath.28 The Hamiltonian of the
DQD plus the environment is then given by

Ĥ = ĤDQD + V̂t Ât + V̂�Â� + Ĥbath,t + Ĥbath,�, (6)

where V̂t = |S(1,1)〉〈S(0,2)| + |S(0,2)〉〈S(1,1)|, V̂� =
|S(0,2)〉〈S(0,2)|, Âi = ∑

k ai,k(b†i,k + bi,k), and Ĥbath,i =∑
k h̄ωk(b†i,k + bi,k), with i = t,�. The bosonic baths

are characterized by symmetric and antisymmetric
spectral functions S±(ω) which are related by
S+(ω) = coth(h̄ω/2kbT )S−(ω), where ω is the frequency
of the harmonic oscillators of the bath. We assume a
bath with Lorentzian damping S−(ω) = αh̄2ω 1

1+(ω/ωc)2 ,
with ωc a high cut-off frequency. We also assume weak
coupling between the system and the bath and short
bath correlation times. Following the Bloch-Redfield
approximation, the time-dependent reduced density matrix,
written in the basis of the eigenstates of ĤDQD is given by
∂tρab = −iωabρab + ∑

cd Rabcdρcd , where h̄ωab = Ea − Eb

and Rabcd is the Bloch-Redfield tensor.28 The sum in this
equation extends over terms with ωab − ωcd  1/�τ (the
so-called secular constraint), where �τ is the time scale
of the Markovian course-grained evolution.29 Considering
the initial condition ρ(0) = |ψ0〉〈ψ0| the only relevant
components of the Bloch-Redfield tensor are R0000 = −R1100

and R1111 = −R0011. The time evolutions for the populations
of the ground and first excited states are then given by

ρ00(τ ) = R0011 + R1100e
−(R0011+R1100)τ

R0011 + R1100
, (7)

ρ11(τ ) = R1100(1 − e−(R0011+R1100)τ )

R0011 + R1100
. (8)

Rewriting the eigenstates given in (3) as |ψi〉 =
αi |T0〉 + βi |S11〉 + γi |S02〉, the coefficients Riijj for
the optimal values {�opt,topt} are approximately given
by Riijj ≈ 2G(ωji)(βiγj + βjγi)2/h̄2 with G(ωij ) =
2π2αh̄2ω[1 + coth(h̄ω/2kBT )]. Introducing these expressions
in Eqs. (7) and (8), we can obtain the time-dependent
probability P [S(1,1)](τ ) = |〈S(1,1)|ρ(τ )|S(1,1)〉| which,
averaged over the nuclear magnetic field probability, provides
the expectation value of the entanglement witness plotted in
Fig. 2. For these optimal values P [S(1,1)] is approximately
given by P [S(1,1)] ≈ ρ00(τ )α1β0γ2.

As can be seen in Fig. 2, the larger the value of the interdot
coupling t the longer the system retains a large amount of
its initial entanglement. If the ground state is in its optimal
configuration {�opt,topt} the loss of entanglement caused by
the quantum charge fluctuations in the environment becomes
important for time scales of the order of microseconds.
These times are much longer than the time scales required to
manipulate electrons confined in a DQD [1–100 ns (Ref. 9)],
and long enough to adiabatically tune � to its optimum
value. This tuning must be done slowly compared to the
nuclear mixing time ∼h̄/M [∼1 μs (Ref. 11)]. The decay
of the entanglement is smaller for � < �opt, allowing for safe
adiabatic tuning of �. For longer times, the entanglement
reaches asymptotic values ranging from C = 0.4 (t = 5 μeV)
to C = 0.7 (t = 20 μeV). Using several DQD’s it is possible in
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principle to use distillation of entanglement30 to obtain fewer
couples of maximally entangled electrons. For these longer
times, different sources of decoherence like the spin-orbit
interaction32 or fluctuations in the nuclear spin configuration23

might have a relevant role, and should be explicitly
considered.

Conclusion. We have proposed a scheme to detect the
entanglement between two electrons in a double quantum dot
and shown that it is possible to maximize the entanglement
between the two electrons in the ground state of the system.
A highly entangled state can be obtained for large tunnel

coupling between the dots, with � tuned to its corresponding
optimum value. This entanglement can be detected using an
entanglement witness, and its expectation value can be easily
measured using a quantum point contact. We have also found
that both in the optimal configuration that maximizes the
entanglement and in its trajectory to this configuration, the
entanglement of the ground state is robust against charge
fluctuations in the environment.
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